AliBERT-7GB / README.md
Quinten Datalab
Update README.md
db24c7e
|
raw
history blame
4.19 kB
---
license: mit
language:
- fr
library_name: transformers
tags:
- Biomedical
- Medical
- French-Biomedical
Mask token:
- [MASK]
widget:
- text: "A l’admission, l’examen clinique mettait en évidence : - une hypotension artérielle avec une pression [MASK] à 6 mmHg."
example_title: "Example 1"
- text: "Le patient a été diagnostiqué avec une [MASK] lobaire aiguë et a été traité avec des antibiotiques appropriés"
example_title: "Example 2"
- text: "En mars 2001, le malade fut opéré, mais vu le caractère hémorragique de la tumeur, une simple biopsie surrénalienne a été réalisée ayant montré l’aspect de [MASK] malin non Hodgkinien de haut grade de malignité."
example_title: "Example 3"
- text: "La cytologie urinaire n’a mis en évidence que des cellules [MASK] normales et l’examen cyto-bactériologique des urines était stérile."
example_title: "Example 4"
- text: "La prise de greffe a été systématiquement réalisée au niveau de la face interne de la [MASK] afin de limiter la plaie cicatricielle."
example_title: "Example 5"
---
# quinten-datalab/AliBERT-7GB: AliBERT: is a pre-trained language model for French biomedical text.
# Introduction
AliBERT: is a pre-trained language model for French biomedical text. It is trained with masked language model like RoBERTa.
Here are the main contributions of our work:
A French biomedical language model, a language-specific and domain-specific PLM, which can be used to represent French biomedical text for different downstream tasks.
A normalization of a Unigram sub-word tokenization of French biomedical textual input which improves our vocabulary and overall performance of the models trained.
AliBERT outperforms other French PLMs in different downstream tasks. It is a foundation model that achieved state-of-the-art results on French biomedical text.
# Data
The pre-training corpus was gathered from different sub-corpora.It is composed of 7GB French biomedical textual documents. Here are the sources used.
|Dataset name| Quantity| Size |
|----|---|---|
|Drug database| 23K| 550Mb |
|RCP| 35K| 2200Mb|
|Articles| 500K| 4300Mb |
|Thesis| 300K|300Mb |
|Cochrane| 7.6K| 27Mb|
# How to use alibert-quinten/Oncology-NER with HuggingFace
Load quinten-datalab/AliBERT-7GB fill-mask model and the tokenizer used to train AliBERT:
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification,pipeline
tokenizer = AutoTokenizer.from_pretrained("quinten-datalab/AliBERT-7GB")
model = AutoModelForTokenMaskedLM.from_pretrained("quinten-datalab/AliBERT-7GB")
fill_mask=pipeline("fill-mask",model=model,tokenizer=tokenizer)
nlp_AliBERT=fill_mask("La prise de greffe a été systématiquement réalisée au niveau de la face interne de la [MASK] afin de limiter la plaie cicatricielle.")
[{'score': 0.7724128365516663,
'token': 6749,
'token_str': 'cuisse',
'sequence': 'La prise de greffe a été systématiquement réalisée au niveau de la face interne de la cuisse afin de limiter la plaie cicatricielle.'},
{'score': 0.09472355246543884,
'token': 4915,
'token_str': 'jambe',
'sequence': 'La prise de greffe a été systématiquement réalisée au niveau de la face interne de la jambe afin de limiter la plaie cicatricielle.'},
{'score': 0.03340734913945198,
'token': 2050,
'token_str': 'main',
'sequence': 'La prise de greffe a été systématiquement réalisée au niveau de la face interne de la main afin de limiter la plaie cicatricielle.'},
{'score': 0.030924487859010696,
'token': 844,
'token_str': 'face',
'sequence': 'La prise de greffe a été systématiquement réalisée au niveau de la face interne de la face afin de limiter la plaie cicatricielle.'},
{'score': 0.012518334202468395,
'token': 3448,
'token_str': 'joue',
'sequence': 'La prise de greffe a été systématiquement réalisée au niveau de la face interne de la joue afin de limiter la plaie cicatricielle.'}]
```
# Metrics and results
The model has been evaluted in the following downstream tasks
## Biomedical Named Entity Recognition (NER)
##
AliBERT: A Pre-trained Language Model for French Biomedical Text