| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						library_name: pytorch | 
					
					
						
						| 
							 | 
						license: other | 
					
					
						
						| 
							 | 
						tags: | 
					
					
						
						| 
							 | 
						- real_time | 
					
					
						
						| 
							 | 
						- android | 
					
					
						
						| 
							 | 
						pipeline_tag: object-detection | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						# Yolo-v6: Optimized for Mobile Deployment | 
					
					
						
						| 
							 | 
						## Real-time object detection optimized for mobile and edge | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						YoloV6 is a machine learning model that predicts bounding boxes and classes of objects in an image. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This model is an implementation of Yolo-v6 found [here](https://github.com/meituan/YOLOv6/). | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This repository provides scripts to run Yolo-v6 on Qualcomm® devices. | 
					
					
						
						| 
							 | 
						More details on model performance across various devices, can be found | 
					
					
						
						| 
							 | 
						[here](https://aihub.qualcomm.com/models/yolov6). | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						**WARNING**: The model assets are not readily available for download due to licensing restrictions. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Model Details | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- **Model Type:** Model_use_case.object_detection | 
					
					
						
						| 
							 | 
						- **Model Stats:** | 
					
					
						
						| 
							 | 
						  - Model checkpoint: YoloV6-N | 
					
					
						
						| 
							 | 
						  - Input resolution: 640x640 | 
					
					
						
						| 
							 | 
						  - Number of parameters: 4.68M | 
					
					
						
						| 
							 | 
						  - Model size (float): 17.9 MB | 
					
					
						
						| 
							 | 
						  - Model size (w8a8): 4.68 MB | 
					
					
						
						| 
							 | 
						  - Model size (w8a16): 5.03 MB | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model | 
					
					
						
						| 
							 | 
						|---|---|---|---|---|---|---|---|---| | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 24.354 ms | 0 - 29 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 14.996 ms | 0 - 63 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 12.422 ms | 0 - 42 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 7.673 ms | 5 - 43 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 12.21 ms | 0 - 43 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.768 ms | 5 - 42 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 8.005 ms | 0 - 57 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 14.443 ms | 0 - 28 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 6.462 ms | 1 - 63 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 24.354 ms | 0 - 29 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 14.996 ms | 0 - 63 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 13.115 ms | 0 - 42 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.755 ms | 5 - 44 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 13.464 ms | 0 - 36 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 7.331 ms | 2 - 32 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 12.946 ms | 0 - 43 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.732 ms | 5 - 46 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 14.443 ms | 0 - 28 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 6.462 ms | 1 - 63 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 8.585 ms | 0 - 41 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.446 ms | 5 - 107 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 6.339 ms | 5 - 98 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 6.72 ms | 0 - 31 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 2.708 ms | 5 - 72 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 5.042 ms | 1 - 70 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 6.486 ms | 0 - 32 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 2.199 ms | 5 - 74 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 3.371 ms | 3 - 76 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.97 ms | 46 - 46 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.418 ms | 6 - 6 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 5.063 ms | 2 - 31 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.637 ms | 2 - 39 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.101 ms | 1 - 17 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 10.459 ms | 2 - 29 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 9.065 ms | 2 - 34 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 5.063 ms | 2 - 31 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.104 ms | 1 - 17 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3.285 ms | 2 - 37 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.112 ms | 2 - 10 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 10.459 ms | 2 - 29 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.407 ms | 2 - 42 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.093 ms | 2 - 41 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.904 ms | 2 - 38 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.377 ms | 7 - 7 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 4.42 ms | 0 - 24 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 3.356 ms | 1 - 26 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2.249 ms | 0 - 39 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.764 ms | 1 - 38 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.071 ms | 0 - 30 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.413 ms | 1 - 27 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.492 ms | 0 - 24 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 7.12 ms | 1 - 27 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 4.605 ms | 0 - 31 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 5.437 ms | 1 - 32 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 37.236 ms | 3 - 13 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 4.42 ms | 0 - 24 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 3.356 ms | 1 - 26 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.078 ms | 0 - 30 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.416 ms | 1 - 28 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.976 ms | 0 - 30 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.28 ms | 1 - 31 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.078 ms | 0 - 30 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.417 ms | 1 - 27 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.492 ms | 0 - 24 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 7.12 ms | 1 - 27 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.344 ms | 0 - 34 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.931 ms | 1 - 43 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1.104 ms | 0 - 32 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.691 ms | 1 - 32 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 1.011 ms | 0 - 30 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.574 ms | 1 - 31 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						| Yolo-v6 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.627 ms | 13 - 13 MB | NPU | -- | | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Installation | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Install the package via pip: | 
					
					
						
						| 
							 | 
						```bash | 
					
					
						
						| 
							 | 
						pip install "qai-hub-models[yolov6]" | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your | 
					
					
						
						| 
							 | 
						Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						With this API token, you can configure your client to run models on the cloud | 
					
					
						
						| 
							 | 
						hosted devices. | 
					
					
						
						| 
							 | 
						```bash | 
					
					
						
						| 
							 | 
						qai-hub configure --api_token API_TOKEN | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Demo off target | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						The package contains a simple end-to-end demo that downloads pre-trained | 
					
					
						
						| 
							 | 
						weights and runs this model on a sample input. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```bash | 
					
					
						
						| 
							 | 
						python -m qai_hub_models.models.yolov6.demo | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						The above demo runs a reference implementation of pre-processing, model | 
					
					
						
						| 
							 | 
						inference, and post processing. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						**NOTE**: If you want running in a Jupyter Notebook or Google Colab like | 
					
					
						
						| 
							 | 
						environment, please add the following to your cell (instead of the above). | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						%run -m qai_hub_models.models.yolov6.demo | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						### Run model on a cloud-hosted device | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® | 
					
					
						
						| 
							 | 
						device. This script does the following: | 
					
					
						
						| 
							 | 
						* Performance check on-device on a cloud-hosted device | 
					
					
						
						| 
							 | 
						* Downloads compiled assets that can be deployed on-device for Android. | 
					
					
						
						| 
							 | 
						* Accuracy check between PyTorch and on-device outputs. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```bash | 
					
					
						
						| 
							 | 
						python -m qai_hub_models.models.yolov6.export | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## How does this work? | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						This [export script](https://aihub.qualcomm.com/models/yolov6/qai_hub_models/models/Yolo-v6/export.py) | 
					
					
						
						| 
							 | 
						leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model | 
					
					
						
						| 
							 | 
						on-device. Lets go through each step below in detail: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Step 1: **Compile model for on-device deployment** | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						To compile a PyTorch model for on-device deployment, we first trace the model | 
					
					
						
						| 
							 | 
						in memory using the `jit.trace` and then call the `submit_compile_job` API. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						import qai_hub as hub | 
					
					
						
						| 
							 | 
						from qai_hub_models.models.yolov6 import Model | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# Load the model | 
					
					
						
						| 
							 | 
						torch_model = Model.from_pretrained() | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# Device | 
					
					
						
						| 
							 | 
						device = hub.Device("Samsung Galaxy S25") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# Trace model | 
					
					
						
						| 
							 | 
						input_shape = torch_model.get_input_spec() | 
					
					
						
						| 
							 | 
						sample_inputs = torch_model.sample_inputs() | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# Compile model on a specific device | 
					
					
						
						| 
							 | 
						compile_job = hub.submit_compile_job( | 
					
					
						
						| 
							 | 
						    model=pt_model, | 
					
					
						
						| 
							 | 
						    device=device, | 
					
					
						
						| 
							 | 
						    input_specs=torch_model.get_input_spec(), | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# Get target model to run on-device | 
					
					
						
						| 
							 | 
						target_model = compile_job.get_target_model() | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Step 2: **Performance profiling on cloud-hosted device** | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						After compiling models from step 1. Models can be profiled model on-device using the | 
					
					
						
						| 
							 | 
						`target_model`. Note that this scripts runs the model on a device automatically | 
					
					
						
						| 
							 | 
						provisioned in the cloud.  Once the job is submitted, you can navigate to a | 
					
					
						
						| 
							 | 
						provided job URL to view a variety of on-device performance metrics. | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						profile_job = hub.submit_profile_job( | 
					
					
						
						| 
							 | 
						    model=target_model, | 
					
					
						
						| 
							 | 
						    device=device, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Step 3: **Verify on-device accuracy** | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						To verify the accuracy of the model on-device, you can run on-device inference | 
					
					
						
						| 
							 | 
						on sample input data on the same cloud hosted device. | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						input_data = torch_model.sample_inputs() | 
					
					
						
						| 
							 | 
						inference_job = hub.submit_inference_job( | 
					
					
						
						| 
							 | 
						    model=target_model, | 
					
					
						
						| 
							 | 
						    device=device, | 
					
					
						
						| 
							 | 
						    inputs=input_data, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						    on_device_output = inference_job.download_output_data() | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						With the output of the model, you can compute like PSNR, relative errors or | 
					
					
						
						| 
							 | 
						spot check the output with expected output. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						**Note**: This on-device profiling and inference requires access to Qualcomm® | 
					
					
						
						| 
							 | 
						AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Run demo on a cloud-hosted device | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						You can also run the demo on-device. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						```bash | 
					
					
						
						| 
							 | 
						python -m qai_hub_models.models.yolov6.demo --eval-mode on-device | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						**NOTE**: If you want running in a Jupyter Notebook or Google Colab like | 
					
					
						
						| 
							 | 
						environment, please add the following to your cell (instead of the above). | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						%run -m qai_hub_models.models.yolov6.demo -- --eval-mode on-device | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Deploying compiled model to Android | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						The models can be deployed using multiple runtimes: | 
					
					
						
						| 
							 | 
						- TensorFlow Lite (`.tflite` export): [This | 
					
					
						
						| 
							 | 
						  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a | 
					
					
						
						| 
							 | 
						  guide to deploy the .tflite model in an Android application. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						- QNN (`.so` export ): This [sample | 
					
					
						
						| 
							 | 
						  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) | 
					
					
						
						| 
							 | 
						provides instructions on how to use the `.so` shared library  in an Android application. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## View on Qualcomm® AI Hub | 
					
					
						
						| 
							 | 
						Get more details on Yolo-v6's performance across various devices [here](https://aihub.qualcomm.com/models/yolov6). | 
					
					
						
						| 
							 | 
						Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## License | 
					
					
						
						| 
							 | 
						* The license for the original implementation of Yolo-v6 can be found | 
					
					
						
						| 
							 | 
						  [here](https://github.com/meituan/YOLOv6/blob/47625514e7480706a46ff3c0cd0252907ac12f22/LICENSE). | 
					
					
						
						| 
							 | 
						* The license for the compiled assets for on-device deployment can be found [here](https://github.com/meituan/YOLOv6/blob/47625514e7480706a46ff3c0cd0252907ac12f22/LICENSE) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## References | 
					
					
						
						| 
							 | 
						* [YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications](https://arxiv.org/abs/2209.02976) | 
					
					
						
						| 
							 | 
						* [Source Model Implementation](https://github.com/meituan/YOLOv6/) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						## Community | 
					
					
						
						| 
							 | 
						* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. | 
					
					
						
						| 
							 | 
						* For questions or feedback please [reach out to us](mailto:[email protected]). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 |