File size: 15,371 Bytes
b76a3dd
 
dfc4c54
b76a3dd
 
 
cf72f75
b76a3dd
 
 
983439d
b76a3dd
 
 
 
e0bee03
b76a3dd
 
1c2fae3
e0bee03
 
738f4c9
 
 
 
 
b76a3dd
 
 
dfc4c54
b76a3dd
 
 
 
dcf00ae
 
 
b76a3dd
dfc4c54
98261a0
82e4c20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
738f4c9
 
 
 
 
 
 
 
 
c0d1823
738f4c9
 
 
 
82e4c20
738f4c9
82e4c20
738f4c9
 
 
 
 
 
 
82e4c20
738f4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b76a3dd
738f4c9
 
b76a3dd
738f4c9
 
 
 
f71f673
738f4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82e4c20
738f4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b76a3dd
98261a0
b76a3dd
b85fa53
 
98261a0
 
 
b76a3dd
 
 
 
 
98261a0
 
b76a3dd
738f4c9
b76a3dd
 
738f4c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
---
library_name: pytorch
license: other
tags:
- real_time
- android
pipeline_tag: object-detection

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov6/web-assets/model_demo.png)

# Yolo-v6: Optimized for Mobile Deployment
## Real-time object detection optimized for mobile and edge


YoloV6 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of Yolo-v6 found [here](https://github.com/meituan/YOLOv6/).


This repository provides scripts to run Yolo-v6 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/yolov6).

**WARNING**: The model assets are not readily available for download due to licensing restrictions.

### Model Details

- **Model Type:** Model_use_case.object_detection
- **Model Stats:**
  - Model checkpoint: YoloV6-N
  - Input resolution: 640x640
  - Number of parameters: 4.68M
  - Model size (float): 17.9 MB
  - Model size (w8a8): 4.68 MB
  - Model size (w8a16): 5.03 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Yolo-v6 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 22.578 ms | 0 - 31 MB | NPU | -- |
| Yolo-v6 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 14.693 ms | 2 - 70 MB | NPU | -- |
| Yolo-v6 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 12.22 ms | 0 - 42 MB | NPU | -- |
| Yolo-v6 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 6.754 ms | 5 - 41 MB | NPU | -- |
| Yolo-v6 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 11.377 ms | 0 - 40 MB | NPU | -- |
| Yolo-v6 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.652 ms | 5 - 54 MB | NPU | -- |
| Yolo-v6 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 8.01 ms | 1 - 55 MB | NPU | -- |
| Yolo-v6 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 13.063 ms | 0 - 30 MB | NPU | -- |
| Yolo-v6 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 6.298 ms | 1 - 68 MB | NPU | -- |
| Yolo-v6 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 22.578 ms | 0 - 31 MB | NPU | -- |
| Yolo-v6 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 14.693 ms | 2 - 70 MB | NPU | -- |
| Yolo-v6 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 11.338 ms | 0 - 39 MB | NPU | -- |
| Yolo-v6 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.642 ms | 0 - 36 MB | NPU | -- |
| Yolo-v6 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 13.234 ms | 0 - 37 MB | NPU | -- |
| Yolo-v6 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 6.898 ms | 4 - 36 MB | NPU | -- |
| Yolo-v6 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 11.398 ms | 0 - 39 MB | NPU | -- |
| Yolo-v6 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.637 ms | 5 - 50 MB | NPU | -- |
| Yolo-v6 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 13.063 ms | 0 - 30 MB | NPU | -- |
| Yolo-v6 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 6.298 ms | 1 - 68 MB | NPU | -- |
| Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 7.822 ms | 30 - 71 MB | NPU | -- |
| Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.371 ms | 5 - 111 MB | NPU | -- |
| Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 6.289 ms | 5 - 94 MB | NPU | -- |
| Yolo-v6 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 6.755 ms | 0 - 33 MB | NPU | -- |
| Yolo-v6 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 2.61 ms | 5 - 71 MB | NPU | -- |
| Yolo-v6 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 4.99 ms | 2 - 73 MB | NPU | -- |
| Yolo-v6 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 5.488 ms | 0 - 32 MB | NPU | -- |
| Yolo-v6 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 2.229 ms | 5 - 76 MB | NPU | -- |
| Yolo-v6 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 3.363 ms | 3 - 77 MB | NPU | -- |
| Yolo-v6 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.879 ms | 37 - 37 MB | NPU | -- |
| Yolo-v6 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.387 ms | 6 - 6 MB | NPU | -- |
| Yolo-v6 | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 5.129 ms | 1 - 31 MB | NPU | -- |
| Yolo-v6 | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.718 ms | 2 - 40 MB | NPU | -- |
| Yolo-v6 | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.115 ms | 1 - 19 MB | NPU | -- |
| Yolo-v6 | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.698 ms | 1 - 31 MB | NPU | -- |
| Yolo-v6 | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 8.665 ms | 2 - 37 MB | NPU | -- |
| Yolo-v6 | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 5.129 ms | 1 - 31 MB | NPU | -- |
| Yolo-v6 | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.123 ms | 1 - 17 MB | NPU | -- |
| Yolo-v6 | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3.312 ms | 2 - 37 MB | NPU | -- |
| Yolo-v6 | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.122 ms | 1 - 18 MB | NPU | -- |
| Yolo-v6 | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.698 ms | 1 - 31 MB | NPU | -- |
| Yolo-v6 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.423 ms | 2 - 37 MB | NPU | -- |
| Yolo-v6 | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.09 ms | 2 - 42 MB | NPU | -- |
| Yolo-v6 | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 3.418 ms | 2 - 41 MB | NPU | -- |
| Yolo-v6 | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.914 ms | 2 - 42 MB | NPU | -- |
| Yolo-v6 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.41 ms | 10 - 10 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 4.479 ms | 0 - 26 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 3.19 ms | 1 - 27 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2.247 ms | 0 - 35 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.692 ms | 1 - 42 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.069 ms | 0 - 30 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.37 ms | 1 - 29 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.503 ms | 0 - 26 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.702 ms | 1 - 28 MB | NPU | -- |
| Yolo-v6 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 4.322 ms | 0 - 32 MB | NPU | -- |
| Yolo-v6 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 5.149 ms | 1 - 33 MB | NPU | -- |
| Yolo-v6 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 35.402 ms | 3 - 11 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 4.479 ms | 0 - 26 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 3.19 ms | 1 - 27 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.07 ms | 0 - 5 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.382 ms | 1 - 28 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.973 ms | 0 - 31 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.317 ms | 1 - 33 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.071 ms | 0 - 30 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.381 ms | 1 - 30 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.503 ms | 0 - 26 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.702 ms | 1 - 28 MB | NPU | -- |
| Yolo-v6 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.366 ms | 0 - 44 MB | NPU | -- |
| Yolo-v6 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.907 ms | 1 - 43 MB | NPU | -- |
| Yolo-v6 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1.084 ms | 0 - 29 MB | NPU | -- |
| Yolo-v6 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.679 ms | 1 - 33 MB | NPU | -- |
| Yolo-v6 | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 2.289 ms | 0 - 34 MB | NPU | -- |
| Yolo-v6 | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 1.697 ms | 1 - 35 MB | NPU | -- |
| Yolo-v6 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 1.015 ms | 0 - 32 MB | NPU | -- |
| Yolo-v6 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.566 ms | 1 - 37 MB | NPU | -- |
| Yolo-v6 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.576 ms | 13 - 13 MB | NPU | -- |




## Installation


Install the package via pip:
```bash
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[yolov6]"
```


## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.yolov6.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolov6.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.yolov6.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/yolov6/qai_hub_models/models/Yolo-v6/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.yolov6 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub Workbench. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.yolov6.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolov6.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Yolo-v6's performance across various devices [here](https://aihub.qualcomm.com/models/yolov6).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Yolo-v6 can be found
  [here](https://github.com/meituan/YOLOv6/blob/47625514e7480706a46ff3c0cd0252907ac12f22/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/meituan/YOLOv6/blob/47625514e7480706a46ff3c0cd0252907ac12f22/LICENSE)



## References
* [YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications](https://arxiv.org/abs/2209.02976)
* [Source Model Implementation](https://github.com/meituan/YOLOv6/)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).