File size: 15,371 Bytes
b76a3dd dfc4c54 b76a3dd cf72f75 b76a3dd 983439d b76a3dd e0bee03 b76a3dd 1c2fae3 e0bee03 738f4c9 b76a3dd dfc4c54 b76a3dd dcf00ae b76a3dd dfc4c54 98261a0 82e4c20 738f4c9 c0d1823 738f4c9 82e4c20 738f4c9 82e4c20 738f4c9 82e4c20 738f4c9 b76a3dd 738f4c9 b76a3dd 738f4c9 f71f673 738f4c9 82e4c20 738f4c9 b76a3dd 98261a0 b76a3dd b85fa53 98261a0 b76a3dd 98261a0 b76a3dd 738f4c9 b76a3dd 738f4c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
---
library_name: pytorch
license: other
tags:
- real_time
- android
pipeline_tag: object-detection
---

# Yolo-v6: Optimized for Mobile Deployment
## Real-time object detection optimized for mobile and edge
YoloV6 is a machine learning model that predicts bounding boxes and classes of objects in an image.
This model is an implementation of Yolo-v6 found [here](https://github.com/meituan/YOLOv6/).
This repository provides scripts to run Yolo-v6 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/yolov6).
**WARNING**: The model assets are not readily available for download due to licensing restrictions.
### Model Details
- **Model Type:** Model_use_case.object_detection
- **Model Stats:**
- Model checkpoint: YoloV6-N
- Input resolution: 640x640
- Number of parameters: 4.68M
- Model size (float): 17.9 MB
- Model size (w8a8): 4.68 MB
- Model size (w8a16): 5.03 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Yolo-v6 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 22.578 ms | 0 - 31 MB | NPU | -- |
| Yolo-v6 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 14.693 ms | 2 - 70 MB | NPU | -- |
| Yolo-v6 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 12.22 ms | 0 - 42 MB | NPU | -- |
| Yolo-v6 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 6.754 ms | 5 - 41 MB | NPU | -- |
| Yolo-v6 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 11.377 ms | 0 - 40 MB | NPU | -- |
| Yolo-v6 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.652 ms | 5 - 54 MB | NPU | -- |
| Yolo-v6 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 8.01 ms | 1 - 55 MB | NPU | -- |
| Yolo-v6 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 13.063 ms | 0 - 30 MB | NPU | -- |
| Yolo-v6 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 6.298 ms | 1 - 68 MB | NPU | -- |
| Yolo-v6 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 22.578 ms | 0 - 31 MB | NPU | -- |
| Yolo-v6 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 14.693 ms | 2 - 70 MB | NPU | -- |
| Yolo-v6 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 11.338 ms | 0 - 39 MB | NPU | -- |
| Yolo-v6 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.642 ms | 0 - 36 MB | NPU | -- |
| Yolo-v6 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 13.234 ms | 0 - 37 MB | NPU | -- |
| Yolo-v6 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 6.898 ms | 4 - 36 MB | NPU | -- |
| Yolo-v6 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 11.398 ms | 0 - 39 MB | NPU | -- |
| Yolo-v6 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.637 ms | 5 - 50 MB | NPU | -- |
| Yolo-v6 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 13.063 ms | 0 - 30 MB | NPU | -- |
| Yolo-v6 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 6.298 ms | 1 - 68 MB | NPU | -- |
| Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 7.822 ms | 30 - 71 MB | NPU | -- |
| Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.371 ms | 5 - 111 MB | NPU | -- |
| Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 6.289 ms | 5 - 94 MB | NPU | -- |
| Yolo-v6 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 6.755 ms | 0 - 33 MB | NPU | -- |
| Yolo-v6 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 2.61 ms | 5 - 71 MB | NPU | -- |
| Yolo-v6 | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 4.99 ms | 2 - 73 MB | NPU | -- |
| Yolo-v6 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 5.488 ms | 0 - 32 MB | NPU | -- |
| Yolo-v6 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 2.229 ms | 5 - 76 MB | NPU | -- |
| Yolo-v6 | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 3.363 ms | 3 - 77 MB | NPU | -- |
| Yolo-v6 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.879 ms | 37 - 37 MB | NPU | -- |
| Yolo-v6 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.387 ms | 6 - 6 MB | NPU | -- |
| Yolo-v6 | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 5.129 ms | 1 - 31 MB | NPU | -- |
| Yolo-v6 | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.718 ms | 2 - 40 MB | NPU | -- |
| Yolo-v6 | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.115 ms | 1 - 19 MB | NPU | -- |
| Yolo-v6 | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.698 ms | 1 - 31 MB | NPU | -- |
| Yolo-v6 | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 8.665 ms | 2 - 37 MB | NPU | -- |
| Yolo-v6 | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 5.129 ms | 1 - 31 MB | NPU | -- |
| Yolo-v6 | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.123 ms | 1 - 17 MB | NPU | -- |
| Yolo-v6 | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3.312 ms | 2 - 37 MB | NPU | -- |
| Yolo-v6 | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.122 ms | 1 - 18 MB | NPU | -- |
| Yolo-v6 | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.698 ms | 1 - 31 MB | NPU | -- |
| Yolo-v6 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.423 ms | 2 - 37 MB | NPU | -- |
| Yolo-v6 | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.09 ms | 2 - 42 MB | NPU | -- |
| Yolo-v6 | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 3.418 ms | 2 - 41 MB | NPU | -- |
| Yolo-v6 | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.914 ms | 2 - 42 MB | NPU | -- |
| Yolo-v6 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.41 ms | 10 - 10 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 4.479 ms | 0 - 26 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 3.19 ms | 1 - 27 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2.247 ms | 0 - 35 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.692 ms | 1 - 42 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.069 ms | 0 - 30 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.37 ms | 1 - 29 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.503 ms | 0 - 26 MB | NPU | -- |
| Yolo-v6 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.702 ms | 1 - 28 MB | NPU | -- |
| Yolo-v6 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 4.322 ms | 0 - 32 MB | NPU | -- |
| Yolo-v6 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 5.149 ms | 1 - 33 MB | NPU | -- |
| Yolo-v6 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 35.402 ms | 3 - 11 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 4.479 ms | 0 - 26 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 3.19 ms | 1 - 27 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.07 ms | 0 - 5 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.382 ms | 1 - 28 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.973 ms | 0 - 31 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.317 ms | 1 - 33 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.071 ms | 0 - 30 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.381 ms | 1 - 30 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.503 ms | 0 - 26 MB | NPU | -- |
| Yolo-v6 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.702 ms | 1 - 28 MB | NPU | -- |
| Yolo-v6 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.366 ms | 0 - 44 MB | NPU | -- |
| Yolo-v6 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.907 ms | 1 - 43 MB | NPU | -- |
| Yolo-v6 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1.084 ms | 0 - 29 MB | NPU | -- |
| Yolo-v6 | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.679 ms | 1 - 33 MB | NPU | -- |
| Yolo-v6 | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 2.289 ms | 0 - 34 MB | NPU | -- |
| Yolo-v6 | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 1.697 ms | 1 - 35 MB | NPU | -- |
| Yolo-v6 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 1.015 ms | 0 - 32 MB | NPU | -- |
| Yolo-v6 | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.566 ms | 1 - 37 MB | NPU | -- |
| Yolo-v6 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.576 ms | 13 - 13 MB | NPU | -- |
## Installation
Install the package via pip:
```bash
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[yolov6]"
```
## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.yolov6.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolov6.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.yolov6.export
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/yolov6/qai_hub_models/models/Yolo-v6/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.yolov6 import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub Workbench. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.yolov6.demo --eval-mode on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolov6.demo -- --eval-mode on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Yolo-v6's performance across various devices [here](https://aihub.qualcomm.com/models/yolov6).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of Yolo-v6 can be found
[here](https://github.com/meituan/YOLOv6/blob/47625514e7480706a46ff3c0cd0252907ac12f22/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/meituan/YOLOv6/blob/47625514e7480706a46ff3c0cd0252907ac12f22/LICENSE)
## References
* [YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications](https://arxiv.org/abs/2209.02976)
* [Source Model Implementation](https://github.com/meituan/YOLOv6/)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|