|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: EuroBERT/EuroBERT-210m |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: euro_biodiversity |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# euro_biodiversity |
|
|
|
This model is a fine-tuned version of [EuroBERT/EuroBERT-210m](https://huggingface.co/EuroBERT/EuroBERT-210m) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0427 |
|
- Accuracy: 0.9912 |
|
- F1: 0.9912 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 1.8497 | 1.0 | 510 | 1.2038 | 0.5608 | 0.4813 | |
|
| 1.0041 | 2.0 | 1020 | 0.6259 | 0.7922 | 0.7569 | |
|
| 0.6072 | 3.0 | 1530 | 0.3784 | 0.8907 | 0.8871 | |
|
| 0.4545 | 4.0 | 2040 | 0.2004 | 0.9456 | 0.9461 | |
|
| 0.3165 | 5.0 | 2550 | 0.1290 | 0.9676 | 0.9675 | |
|
| 0.1852 | 6.0 | 3060 | 0.1372 | 0.9706 | 0.9706 | |
|
| 0.1357 | 7.0 | 3570 | 0.0722 | 0.9838 | 0.9838 | |
|
| 0.1025 | 8.0 | 4080 | 0.0734 | 0.9868 | 0.9868 | |
|
| 0.101 | 9.0 | 4590 | 0.0497 | 0.9902 | 0.9902 | |
|
| 0.0775 | 10.0 | 5100 | 0.0423 | 0.9887 | 0.9887 | |
|
| 0.0653 | 11.0 | 5610 | 0.0463 | 0.9907 | 0.9907 | |
|
| 0.0624 | 12.0 | 6120 | 0.0427 | 0.9912 | 0.9912 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.3 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |
|
|