File size: 2,340 Bytes
4719594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: transformers
license: apache-2.0
base_model: EuroBERT/EuroBERT-210m
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: euro_biodiversity
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# euro_biodiversity
This model is a fine-tuned version of [EuroBERT/EuroBERT-210m](https://huggingface.co/EuroBERT/EuroBERT-210m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0427
- Accuracy: 0.9912
- F1: 0.9912
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.8497 | 1.0 | 510 | 1.2038 | 0.5608 | 0.4813 |
| 1.0041 | 2.0 | 1020 | 0.6259 | 0.7922 | 0.7569 |
| 0.6072 | 3.0 | 1530 | 0.3784 | 0.8907 | 0.8871 |
| 0.4545 | 4.0 | 2040 | 0.2004 | 0.9456 | 0.9461 |
| 0.3165 | 5.0 | 2550 | 0.1290 | 0.9676 | 0.9675 |
| 0.1852 | 6.0 | 3060 | 0.1372 | 0.9706 | 0.9706 |
| 0.1357 | 7.0 | 3570 | 0.0722 | 0.9838 | 0.9838 |
| 0.1025 | 8.0 | 4080 | 0.0734 | 0.9868 | 0.9868 |
| 0.101 | 9.0 | 4590 | 0.0497 | 0.9902 | 0.9902 |
| 0.0775 | 10.0 | 5100 | 0.0423 | 0.9887 | 0.9887 |
| 0.0653 | 11.0 | 5610 | 0.0463 | 0.9907 | 0.9907 |
| 0.0624 | 12.0 | 6120 | 0.0427 | 0.9912 | 0.9912 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
|