|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- Gustavosta/Stable-Diffusion-Prompts |
|
model-index: |
|
- name: neo-125M-promptgen-v1-act |
|
results: [] |
|
widget: |
|
- text: "morning sun over Jakarta" |
|
example_title: "morning sun" |
|
- text: "WARNING: pip is" |
|
example_title: "pip" |
|
- text: "sentient cheese" |
|
example_title: "sentient cheese" |
|
- text: "cheeps are" |
|
example_title: "cheeps" |
|
parameters: |
|
min_length: 16 |
|
max_length: 64 |
|
no_repeat_ngram_size: 1 |
|
do_sample: True |
|
temperature: 1.1 |
|
top_k: 60 |
|
top_p: 0.95 |
|
repetition_penalty: 7.3 |
|
--- |
|
|
|
# neo-125M-promptgen-v1-act |
|
|
|
This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the Gustavosta/Stable-Diffusion-Prompts dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8875 |
|
- perplexity: 6.6028 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 256 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 3.2189 | 0.99 | 33 | 3.0051 | |
|
| 2.5466 | 1.99 | 66 | 2.5215 | |
|
| 2.2791 | 2.99 | 99 | 2.2881 | |
|
| 2.107 | 3.99 | 132 | 2.1322 | |
|
| 1.9458 | 4.99 | 165 | 2.0270 | |
|
| 1.8664 | 5.99 | 198 | 1.9580 | |
|
| 1.8083 | 6.99 | 231 | 1.9177 | |
|
| 1.7631 | 7.99 | 264 | 1.8964 | |
|
| 1.7369 | 8.99 | 297 | 1.8885 | |
|
| 1.766 | 9.99 | 330 | 1.8875 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.0.dev0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|