File size: 2,234 Bytes
3daae81
 
 
 
f2befb8
 
3daae81
 
 
5f2109f
 
 
 
 
 
 
 
 
 
 
6c11e93
5f2109f
 
a6b830e
5f2109f
 
a6b830e
3daae81
a6b830e
3daae81
 
f2befb8
3daae81
 
6059b8f
3daae81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- Gustavosta/Stable-Diffusion-Prompts
model-index:
- name: neo-125M-promptgen-v1-act
  results: []
widget:
 - text: "morning sun over Jakarta"
   example_title: "morning sun"
 - text: "WARNING: pip is"
   example_title: "pip"
 - text: "sentient cheese"
   example_title: "sentient cheese"
 - text: "cheeps are"
   example_title: "cheeps"
parameters:
  min_length: 16
  max_length: 64
  no_repeat_ngram_size: 1
  do_sample: True
  temperature: 1.1
  top_k: 60
  top_p: 0.95
  repetition_penalty: 7.3
---

# neo-125M-promptgen-v1-act

This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the Gustavosta/Stable-Diffusion-Prompts dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8875
- perplexity:   6.6028

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.2189        | 0.99  | 33   | 3.0051          |
| 2.5466        | 1.99  | 66   | 2.5215          |
| 2.2791        | 2.99  | 99   | 2.2881          |
| 2.107         | 3.99  | 132  | 2.1322          |
| 1.9458        | 4.99  | 165  | 2.0270          |
| 1.8664        | 5.99  | 198  | 1.9580          |
| 1.8083        | 6.99  | 231  | 1.9177          |
| 1.7631        | 7.99  | 264  | 1.8964          |
| 1.7369        | 8.99  | 297  | 1.8885          |
| 1.766         | 9.99  | 330  | 1.8875          |


### Framework versions

- Transformers 4.25.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.1