metadata
language: ja
license: cc-by-sa-4.0
datasets:
- Hazumi
ouktlab/Hazumi-AffNeg-Classifier
Model description
This is a Japanese fine-tuned BERT model trained on exchange data (Yes/No questions from the system and corresponding user responses) extracted from the multimodal dialogue corpus Hazumi. The pre-trained BERT model used is cl-tohoku/bert-base-japanese-v3, released by Tohoku University. For fine-tuning, the JNLI script from JGLUE was employed.
Training procedure
This model was fine-tuned using the following script, which was borrowed from the JNLI script in JGLUE.
python transformers-4.9.2/examples/pytorch/text-classification/run_glue.py \
--model_name_or_path tohoku-nlp/bert-base-japanese-v3 \
--metric_name wnli \
--do_train --do_eval --do_predict \
--max_seq_length 128 \
--per_device_train_batch_size 8 \
--learning_rate 5e-05 \
--num_train_epochs 4 \
--output_dir <output_dir> \
--train_file <train json file> \
--validation_file <train json file> \
--test_file <train json file> \
--use_fast_tokenizer False \
--evaluation_strategy epoch \
--save_steps 5000 \
--warmup_ratio 0.1