File size: 1,396 Bytes
e8e6fdf 93370d2 e8e6fdf 93370d2 e8e6fdf 93370d2 b1c831e 93370d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
language: ja
license: cc-by-sa-4.0
datasets:
- Hazumi
---
# ouktlab/Hazumi-AffNeg-Classifier
## Model description
This is a Japanese fine-tuned [BERT](https://github.com/google-research/bert) model trained on exchange data
(Yes/No questions from the system and corresponding user responses)
extracted from the multimodal dialogue corpus Hazumi.
The pre-trained BERT model used is [cl-tohoku/bert-base-japanese-v3](https://huggingface.co/tohoku-nlp/bert-base-japanese-v3), released by Tohoku University.
For fine-tuning, the JNLI script from [JGLUE](https://github.com/yahoojapan/JGLUE) was employed.
## Training procedure
This model was fine-tuned using the following script, which was borrowed from the JNLI script in [JGLUE](https://github.com/yahoojapan/JGLUE).
```
python transformers-4.9.2/examples/pytorch/text-classification/run_glue.py \
--model_name_or_path tohoku-nlp/bert-base-japanese-v3 \
--metric_name wnli \
--do_train --do_eval --do_predict \
--max_seq_length 128 \
--per_device_train_batch_size 8 \
--learning_rate 5e-05 \
--num_train_epochs 4 \
--output_dir <output_dir> \
--train_file <train json file> \
--validation_file <train json file> \
--test_file <train json file> \
--use_fast_tokenizer False \
--evaluation_strategy epoch \
--save_steps 5000 \
--warmup_ratio 0.1
```
|