File size: 1,396 Bytes
e8e6fdf
93370d2
e8e6fdf
93370d2
 
e8e6fdf
93370d2
 
 
 
 
 
 
 
 
 
 
 
 
b1c831e
93370d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---

language: ja
license: cc-by-sa-4.0
datasets:
- Hazumi
---


# ouktlab/Hazumi-AffNeg-Classifier 

## Model description

This is a Japanese fine-tuned [BERT](https://github.com/google-research/bert) model trained on exchange data 
(Yes/No questions from the system and corresponding user responses) 
extracted from the multimodal dialogue corpus Hazumi. 
The pre-trained BERT model used is [cl-tohoku/bert-base-japanese-v3](https://huggingface.co/tohoku-nlp/bert-base-japanese-v3), released by Tohoku University.
For fine-tuning, the JNLI script from [JGLUE](https://github.com/yahoojapan/JGLUE) was employed.

## Training procedure

This model was fine-tuned using the following script, which was borrowed from the JNLI script in [JGLUE](https://github.com/yahoojapan/JGLUE).

```

python transformers-4.9.2/examples/pytorch/text-classification/run_glue.py \

   --model_name_or_path tohoku-nlp/bert-base-japanese-v3 \

   --metric_name wnli \

   --do_train --do_eval --do_predict  \

   --max_seq_length 128 \

   --per_device_train_batch_size 8 \

   --learning_rate 5e-05 \

   --num_train_epochs 4  \

   --output_dir <output_dir> \

   --train_file <train json file> \

   --validation_file <train json file> \

   --test_file <train json file> \

   --use_fast_tokenizer False \

   --evaluation_strategy epoch \

   --save_steps 5000 \

   --warmup_ratio 0.1

```