metadata
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: skops
model_file: classifier.skops
widget:
- structuredData:
credibleSetConfidence:
- 0.75
- 0.75
- 0.75
dhsPmtrCorrelationMean:
- 0
- 0
- 0
dhsPmtrCorrelationMeanNeighbourhood:
- 0
- 0
- 0
distanceFootprintMean:
- 0.8487144112586975
- 0.9365111589431763
- 0.9975032806396484
distanceFootprintMeanNeighbourhood:
- 0.8487144112586975
- 0.9365111589431763
- 0.9975032806396484
distanceSentinelFootprint:
- 0.8487144112586975
- 0.9365111589431763
- 0.9975032806396484
distanceSentinelFootprintNeighbourhood:
- 0.8487144112586975
- 0.9365111589431763
- 0.9975032806396484
distanceSentinelTss:
- 0.8487144112586975
- 0.9257694482803345
- 0.9975032806396484
distanceSentinelTssNeighbourhood:
- 0.850220799446106
- 0.9274126291275024
- 0.9992737770080566
distanceTssMean:
- 0.8487144112586975
- 0.9257694482803345
- 0.9975032806396484
distanceTssMeanNeighbourhood:
- 0.850220799446106
- 0.9274126291275024
- 0.9992737770080566
eQtlColocClppMaximum:
- 0
- 0
- 0
eQtlColocClppMaximumNeighbourhood:
- 0
- 0
- 0
eQtlColocH4Maximum:
- 0
- 0
- 0
eQtlColocH4MaximumNeighbourhood:
- 0
- 0
- 0
enhTssCorrelationMean:
- 0
- 0
- 0
enhTssCorrelationMeanNeighbourhood:
- 0
- 0
- 0
geneCount500kb:
- 20
- 20
- 20
pQtlColocClppMaximum:
- 0
- 0
- 0
pQtlColocClppMaximumNeighbourhood:
- 0
- 0
- 0
pQtlColocH4Maximum:
- 0
- 0
- 0
pQtlColocH4MaximumNeighbourhood:
- 0
- 0
- 0
pchicMean:
- 0
- 0
- 0
pchicMeanNeighbourhood:
- 0
- 0
- 0
proteinGeneCount500kb:
- 8
- 8
- 8
sQtlColocClppMaximum:
- 0
- 0
- 0
sQtlColocClppMaximumNeighbourhood:
- 0
- 0
- 0
sQtlColocH4Maximum:
- 0
- 0
- 0
sQtlColocH4MaximumNeighbourhood:
- 0
- 0
- 0
studyLocusId:
- 005bc8624f8dd7f7c7bc63e651e9e59d
- 005bc8624f8dd7f7c7bc63e651e9e59d
- 005bc8624f8dd7f7c7bc63e651e9e59d
traitFromSourceMappedId:
- EFO_0004612
- EFO_0004612
- EFO_0004612
vepMaximum:
- 0
- 0
- 0
vepMaximumNeighbourhood:
- 0
- 0
- 0
vepMean:
- 0
- 0
- 0
vepMeanNeighbourhood:
- 0
- 0
- 0
Model description
The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
- Distance: (from credible set variants to gene)
- Molecular QTL Colocalization
- Chromatin Interaction: (e.g., promoter-capture Hi-C)
- Variant Pathogenicity: (from VEP)
More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
Intended uses & limitations
[More Information Needed]
Training Procedure
Gradient Boosting Classifier
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
ccp_alpha | 0 |
criterion | friedman_mse |
init | |
learning_rate | 0.1 |
loss | log_loss |
max_depth | 5 |
max_features | |
max_leaf_nodes | |
min_impurity_decrease | 0.0 |
min_samples_leaf | 5 |
min_samples_split | 5 |
min_weight_fraction_leaf | 0.0 |
n_estimators | 100 |
n_iter_no_change | |
random_state | 42 |
subsample | 1 |
tol | 0.0001 |
validation_fraction | 0.1 |
verbose | 0 |
warm_start | False |
How to Get Started with the Model
To use the model, you can load it using the LocusToGeneModel.load_from_hub
method. This will return a LocusToGeneModel
object that can be used to make predictions on a feature matrix.
The model can then be used to make predictions using the predict
method.
More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
Citation
https://doi.org/10.1038/s41588-021-00945-5
License
MIT