chore: update model based on 24.11_freeze10 run with intervals
Browse files- .gitattributes +1 -0
- README.md +217 -0
- classifier.skops +3 -0
- config.json +226 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
classifier.skops filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-classification
|
7 |
+
model_format: skops
|
8 |
+
model_file: classifier.skops
|
9 |
+
widget:
|
10 |
+
- structuredData:
|
11 |
+
credibleSetConfidence:
|
12 |
+
- 0.75
|
13 |
+
- 0.75
|
14 |
+
- 0.75
|
15 |
+
dhsPmtrCorrelationMean:
|
16 |
+
- 0.0
|
17 |
+
- 0.0
|
18 |
+
- 0.0
|
19 |
+
dhsPmtrCorrelationMeanNeighbourhood:
|
20 |
+
- 0.0
|
21 |
+
- 0.0
|
22 |
+
- 0.0
|
23 |
+
distanceFootprintMean:
|
24 |
+
- 0.8487144112586975
|
25 |
+
- 0.9365111589431763
|
26 |
+
- 0.9975032806396484
|
27 |
+
distanceFootprintMeanNeighbourhood:
|
28 |
+
- 0.8487144112586975
|
29 |
+
- 0.9365111589431763
|
30 |
+
- 0.9975032806396484
|
31 |
+
distanceSentinelFootprint:
|
32 |
+
- 0.8487144112586975
|
33 |
+
- 0.9365111589431763
|
34 |
+
- 0.9975032806396484
|
35 |
+
distanceSentinelFootprintNeighbourhood:
|
36 |
+
- 0.8487144112586975
|
37 |
+
- 0.9365111589431763
|
38 |
+
- 0.9975032806396484
|
39 |
+
distanceSentinelTss:
|
40 |
+
- 0.8487144112586975
|
41 |
+
- 0.9257694482803345
|
42 |
+
- 0.9975032806396484
|
43 |
+
distanceSentinelTssNeighbourhood:
|
44 |
+
- 0.850220799446106
|
45 |
+
- 0.9274126291275024
|
46 |
+
- 0.9992737770080566
|
47 |
+
distanceTssMean:
|
48 |
+
- 0.8487144112586975
|
49 |
+
- 0.9257694482803345
|
50 |
+
- 0.9975032806396484
|
51 |
+
distanceTssMeanNeighbourhood:
|
52 |
+
- 0.850220799446106
|
53 |
+
- 0.9274126291275024
|
54 |
+
- 0.9992737770080566
|
55 |
+
eQtlColocClppMaximum:
|
56 |
+
- 0.0
|
57 |
+
- 0.0
|
58 |
+
- 0.0
|
59 |
+
eQtlColocClppMaximumNeighbourhood:
|
60 |
+
- 0.0
|
61 |
+
- 0.0
|
62 |
+
- 0.0
|
63 |
+
eQtlColocH4Maximum:
|
64 |
+
- 0.0
|
65 |
+
- 0.0
|
66 |
+
- 0.0
|
67 |
+
eQtlColocH4MaximumNeighbourhood:
|
68 |
+
- 0.0
|
69 |
+
- 0.0
|
70 |
+
- 0.0
|
71 |
+
enhTssCorrelationMean:
|
72 |
+
- 0.0
|
73 |
+
- 0.0
|
74 |
+
- 0.0
|
75 |
+
enhTssCorrelationMeanNeighbourhood:
|
76 |
+
- 0.0
|
77 |
+
- 0.0
|
78 |
+
- 0.0
|
79 |
+
geneCount500kb:
|
80 |
+
- 20.0
|
81 |
+
- 20.0
|
82 |
+
- 20.0
|
83 |
+
pQtlColocClppMaximum:
|
84 |
+
- 0.0
|
85 |
+
- 0.0
|
86 |
+
- 0.0
|
87 |
+
pQtlColocClppMaximumNeighbourhood:
|
88 |
+
- 0.0
|
89 |
+
- 0.0
|
90 |
+
- 0.0
|
91 |
+
pQtlColocH4Maximum:
|
92 |
+
- 0.0
|
93 |
+
- 0.0
|
94 |
+
- 0.0
|
95 |
+
pQtlColocH4MaximumNeighbourhood:
|
96 |
+
- 0.0
|
97 |
+
- 0.0
|
98 |
+
- 0.0
|
99 |
+
pchicMean:
|
100 |
+
- 0.0
|
101 |
+
- 0.0
|
102 |
+
- 0.0
|
103 |
+
pchicMeanNeighbourhood:
|
104 |
+
- 0.0
|
105 |
+
- 0.0
|
106 |
+
- 0.0
|
107 |
+
proteinGeneCount500kb:
|
108 |
+
- 8.0
|
109 |
+
- 8.0
|
110 |
+
- 8.0
|
111 |
+
sQtlColocClppMaximum:
|
112 |
+
- 0.0
|
113 |
+
- 0.0
|
114 |
+
- 0.0
|
115 |
+
sQtlColocClppMaximumNeighbourhood:
|
116 |
+
- 0.0
|
117 |
+
- 0.0
|
118 |
+
- 0.0
|
119 |
+
sQtlColocH4Maximum:
|
120 |
+
- 0.0
|
121 |
+
- 0.0
|
122 |
+
- 0.0
|
123 |
+
sQtlColocH4MaximumNeighbourhood:
|
124 |
+
- 0.0
|
125 |
+
- 0.0
|
126 |
+
- 0.0
|
127 |
+
studyLocusId:
|
128 |
+
- 005bc8624f8dd7f7c7bc63e651e9e59d
|
129 |
+
- 005bc8624f8dd7f7c7bc63e651e9e59d
|
130 |
+
- 005bc8624f8dd7f7c7bc63e651e9e59d
|
131 |
+
traitFromSourceMappedId:
|
132 |
+
- EFO_0004612
|
133 |
+
- EFO_0004612
|
134 |
+
- EFO_0004612
|
135 |
+
vepMaximum:
|
136 |
+
- 0.0
|
137 |
+
- 0.0
|
138 |
+
- 0.0
|
139 |
+
vepMaximumNeighbourhood:
|
140 |
+
- 0.0
|
141 |
+
- 0.0
|
142 |
+
- 0.0
|
143 |
+
vepMean:
|
144 |
+
- 0.0
|
145 |
+
- 0.0
|
146 |
+
- 0.0
|
147 |
+
vepMeanNeighbourhood:
|
148 |
+
- 0.0
|
149 |
+
- 0.0
|
150 |
+
- 0.0
|
151 |
+
---
|
152 |
+
|
153 |
+
# Model description
|
154 |
+
|
155 |
+
The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
|
156 |
+
|
157 |
+
- Distance: (from credible set variants to gene)
|
158 |
+
- Molecular QTL Colocalization
|
159 |
+
- Chromatin Interaction: (e.g., promoter-capture Hi-C)
|
160 |
+
- Variant Pathogenicity: (from VEP)
|
161 |
+
|
162 |
+
More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
|
163 |
+
|
164 |
+
|
165 |
+
## Intended uses & limitations
|
166 |
+
|
167 |
+
[More Information Needed]
|
168 |
+
|
169 |
+
## Training Procedure
|
170 |
+
|
171 |
+
Gradient Boosting Classifier
|
172 |
+
|
173 |
+
### Hyperparameters
|
174 |
+
|
175 |
+
<details>
|
176 |
+
<summary> Click to expand </summary>
|
177 |
+
|
178 |
+
| Hyperparameter | Value |
|
179 |
+
|--------------------------|--------------|
|
180 |
+
| ccp_alpha | 0 |
|
181 |
+
| criterion | friedman_mse |
|
182 |
+
| init | |
|
183 |
+
| learning_rate | 0.1 |
|
184 |
+
| loss | log_loss |
|
185 |
+
| max_depth | 5 |
|
186 |
+
| max_features | |
|
187 |
+
| max_leaf_nodes | |
|
188 |
+
| min_impurity_decrease | 0.0 |
|
189 |
+
| min_samples_leaf | 5 |
|
190 |
+
| min_samples_split | 5 |
|
191 |
+
| min_weight_fraction_leaf | 0.0 |
|
192 |
+
| n_estimators | 100 |
|
193 |
+
| n_iter_no_change | |
|
194 |
+
| random_state | 42 |
|
195 |
+
| subsample | 1 |
|
196 |
+
| tol | 0.0001 |
|
197 |
+
| validation_fraction | 0.1 |
|
198 |
+
| verbose | 0 |
|
199 |
+
| warm_start | False |
|
200 |
+
|
201 |
+
</details>
|
202 |
+
|
203 |
+
# How to Get Started with the Model
|
204 |
+
|
205 |
+
To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
|
206 |
+
The model can then be used to make predictions using the `predict` method.
|
207 |
+
|
208 |
+
More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
|
209 |
+
|
210 |
+
|
211 |
+
# Citation
|
212 |
+
|
213 |
+
https://doi.org/10.1038/s41588-021-00945-5
|
214 |
+
|
215 |
+
# License
|
216 |
+
|
217 |
+
MIT
|
classifier.skops
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aea6a19c5cfdf6299286c8324b31367430639a2a1e7b7fe12427d5f416c57473
|
3 |
+
size 2888608
|
config.json
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"studyLocusId",
|
5 |
+
"traitFromSourceMappedId",
|
6 |
+
"eQtlColocClppMaximum",
|
7 |
+
"pQtlColocClppMaximum",
|
8 |
+
"sQtlColocClppMaximum",
|
9 |
+
"eQtlColocH4Maximum",
|
10 |
+
"pQtlColocH4Maximum",
|
11 |
+
"sQtlColocH4Maximum",
|
12 |
+
"eQtlColocClppMaximumNeighbourhood",
|
13 |
+
"pQtlColocClppMaximumNeighbourhood",
|
14 |
+
"sQtlColocClppMaximumNeighbourhood",
|
15 |
+
"eQtlColocH4MaximumNeighbourhood",
|
16 |
+
"pQtlColocH4MaximumNeighbourhood",
|
17 |
+
"sQtlColocH4MaximumNeighbourhood",
|
18 |
+
"distanceSentinelFootprint",
|
19 |
+
"distanceSentinelFootprintNeighbourhood",
|
20 |
+
"distanceFootprintMean",
|
21 |
+
"distanceFootprintMeanNeighbourhood",
|
22 |
+
"distanceTssMean",
|
23 |
+
"distanceTssMeanNeighbourhood",
|
24 |
+
"distanceSentinelTss",
|
25 |
+
"distanceSentinelTssNeighbourhood",
|
26 |
+
"vepMaximum",
|
27 |
+
"vepMaximumNeighbourhood",
|
28 |
+
"vepMean",
|
29 |
+
"vepMeanNeighbourhood",
|
30 |
+
"pchicMean",
|
31 |
+
"pchicMeanNeighbourhood",
|
32 |
+
"enhTssCorrelationMean",
|
33 |
+
"enhTssCorrelationMeanNeighbourhood",
|
34 |
+
"dhsPmtrCorrelationMean",
|
35 |
+
"dhsPmtrCorrelationMeanNeighbourhood",
|
36 |
+
"geneCount500kb",
|
37 |
+
"proteinGeneCount500kb",
|
38 |
+
"credibleSetConfidence"
|
39 |
+
],
|
40 |
+
"environment": [
|
41 |
+
"scikit-learn=1.6.1"
|
42 |
+
],
|
43 |
+
"example_input": {
|
44 |
+
"credibleSetConfidence": [
|
45 |
+
0.75,
|
46 |
+
0.75,
|
47 |
+
0.75
|
48 |
+
],
|
49 |
+
"dhsPmtrCorrelationMean": [
|
50 |
+
0.0,
|
51 |
+
0.0,
|
52 |
+
0.0
|
53 |
+
],
|
54 |
+
"dhsPmtrCorrelationMeanNeighbourhood": [
|
55 |
+
0.0,
|
56 |
+
0.0,
|
57 |
+
0.0
|
58 |
+
],
|
59 |
+
"distanceFootprintMean": [
|
60 |
+
0.8487144112586975,
|
61 |
+
0.9365111589431763,
|
62 |
+
0.9975032806396484
|
63 |
+
],
|
64 |
+
"distanceFootprintMeanNeighbourhood": [
|
65 |
+
0.8487144112586975,
|
66 |
+
0.9365111589431763,
|
67 |
+
0.9975032806396484
|
68 |
+
],
|
69 |
+
"distanceSentinelFootprint": [
|
70 |
+
0.8487144112586975,
|
71 |
+
0.9365111589431763,
|
72 |
+
0.9975032806396484
|
73 |
+
],
|
74 |
+
"distanceSentinelFootprintNeighbourhood": [
|
75 |
+
0.8487144112586975,
|
76 |
+
0.9365111589431763,
|
77 |
+
0.9975032806396484
|
78 |
+
],
|
79 |
+
"distanceSentinelTss": [
|
80 |
+
0.8487144112586975,
|
81 |
+
0.9257694482803345,
|
82 |
+
0.9975032806396484
|
83 |
+
],
|
84 |
+
"distanceSentinelTssNeighbourhood": [
|
85 |
+
0.850220799446106,
|
86 |
+
0.9274126291275024,
|
87 |
+
0.9992737770080566
|
88 |
+
],
|
89 |
+
"distanceTssMean": [
|
90 |
+
0.8487144112586975,
|
91 |
+
0.9257694482803345,
|
92 |
+
0.9975032806396484
|
93 |
+
],
|
94 |
+
"distanceTssMeanNeighbourhood": [
|
95 |
+
0.850220799446106,
|
96 |
+
0.9274126291275024,
|
97 |
+
0.9992737770080566
|
98 |
+
],
|
99 |
+
"eQtlColocClppMaximum": [
|
100 |
+
0.0,
|
101 |
+
0.0,
|
102 |
+
0.0
|
103 |
+
],
|
104 |
+
"eQtlColocClppMaximumNeighbourhood": [
|
105 |
+
0.0,
|
106 |
+
0.0,
|
107 |
+
0.0
|
108 |
+
],
|
109 |
+
"eQtlColocH4Maximum": [
|
110 |
+
0.0,
|
111 |
+
0.0,
|
112 |
+
0.0
|
113 |
+
],
|
114 |
+
"eQtlColocH4MaximumNeighbourhood": [
|
115 |
+
0.0,
|
116 |
+
0.0,
|
117 |
+
0.0
|
118 |
+
],
|
119 |
+
"enhTssCorrelationMean": [
|
120 |
+
0.0,
|
121 |
+
0.0,
|
122 |
+
0.0
|
123 |
+
],
|
124 |
+
"enhTssCorrelationMeanNeighbourhood": [
|
125 |
+
0.0,
|
126 |
+
0.0,
|
127 |
+
0.0
|
128 |
+
],
|
129 |
+
"geneCount500kb": [
|
130 |
+
20.0,
|
131 |
+
20.0,
|
132 |
+
20.0
|
133 |
+
],
|
134 |
+
"pQtlColocClppMaximum": [
|
135 |
+
0.0,
|
136 |
+
0.0,
|
137 |
+
0.0
|
138 |
+
],
|
139 |
+
"pQtlColocClppMaximumNeighbourhood": [
|
140 |
+
0.0,
|
141 |
+
0.0,
|
142 |
+
0.0
|
143 |
+
],
|
144 |
+
"pQtlColocH4Maximum": [
|
145 |
+
0.0,
|
146 |
+
0.0,
|
147 |
+
0.0
|
148 |
+
],
|
149 |
+
"pQtlColocH4MaximumNeighbourhood": [
|
150 |
+
0.0,
|
151 |
+
0.0,
|
152 |
+
0.0
|
153 |
+
],
|
154 |
+
"pchicMean": [
|
155 |
+
0.0,
|
156 |
+
0.0,
|
157 |
+
0.0
|
158 |
+
],
|
159 |
+
"pchicMeanNeighbourhood": [
|
160 |
+
0.0,
|
161 |
+
0.0,
|
162 |
+
0.0
|
163 |
+
],
|
164 |
+
"proteinGeneCount500kb": [
|
165 |
+
8.0,
|
166 |
+
8.0,
|
167 |
+
8.0
|
168 |
+
],
|
169 |
+
"sQtlColocClppMaximum": [
|
170 |
+
0.0,
|
171 |
+
0.0,
|
172 |
+
0.0
|
173 |
+
],
|
174 |
+
"sQtlColocClppMaximumNeighbourhood": [
|
175 |
+
0.0,
|
176 |
+
0.0,
|
177 |
+
0.0
|
178 |
+
],
|
179 |
+
"sQtlColocH4Maximum": [
|
180 |
+
0.0,
|
181 |
+
0.0,
|
182 |
+
0.0
|
183 |
+
],
|
184 |
+
"sQtlColocH4MaximumNeighbourhood": [
|
185 |
+
0.0,
|
186 |
+
0.0,
|
187 |
+
0.0
|
188 |
+
],
|
189 |
+
"studyLocusId": [
|
190 |
+
"005bc8624f8dd7f7c7bc63e651e9e59d",
|
191 |
+
"005bc8624f8dd7f7c7bc63e651e9e59d",
|
192 |
+
"005bc8624f8dd7f7c7bc63e651e9e59d"
|
193 |
+
],
|
194 |
+
"traitFromSourceMappedId": [
|
195 |
+
"EFO_0004612",
|
196 |
+
"EFO_0004612",
|
197 |
+
"EFO_0004612"
|
198 |
+
],
|
199 |
+
"vepMaximum": [
|
200 |
+
0.0,
|
201 |
+
0.0,
|
202 |
+
0.0
|
203 |
+
],
|
204 |
+
"vepMaximumNeighbourhood": [
|
205 |
+
0.0,
|
206 |
+
0.0,
|
207 |
+
0.0
|
208 |
+
],
|
209 |
+
"vepMean": [
|
210 |
+
0.0,
|
211 |
+
0.0,
|
212 |
+
0.0
|
213 |
+
],
|
214 |
+
"vepMeanNeighbourhood": [
|
215 |
+
0.0,
|
216 |
+
0.0,
|
217 |
+
0.0
|
218 |
+
]
|
219 |
+
},
|
220 |
+
"model": {
|
221 |
+
"file": "classifier.skops"
|
222 |
+
},
|
223 |
+
"model_format": "skops",
|
224 |
+
"task": "tabular-classification"
|
225 |
+
}
|
226 |
+
}
|