Image Segmentation
ONNX
kopooli's picture
Update README.md
2df685b verified
---
license: cc-by-4.0
pipeline_tag: image-segmentation
---
# Model Card
This Hugging Face repository contains models trained in the article **"Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware."**
**Paper:** [Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware](https://huggingface.co/papers/2507.01472)
## Model Overview
The models here were trained using the code available at the following GitHub repository:
* **Training Code**: [HyperspectralViTs](https://github.com/previtus/HyperspectralViTs)
The main project code, including filters benchmarking and demos, is available at the:
* **Project Code**: [Methane Filters Benchmark](https://github.com/zaitra/methane-filters-benchmark)
## Data and Products
The precomputed products used for training were created by code in the main project repository:
* **Products Creation Code**: [methane-filters-benchmark](https://github.com/zaitra/methane-filters-benchmark)
Additionally, these precomputed products are hosted and accessible here:
* **Dataset Repository**: [STARCOP-fast-products](https://huggingface.co/datasets/onboard-coop/STARCOP-fast-products)
## Sample Usage
You can try out our models and demos directly in Google Colab using the provided notebooks:
* **Models Demo**: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/zaitra/methane-filters-benchmark/blob/main/ntbs/Models_demo.ipynb)
This notebook demonstrates model inference.
* **Products Creation and Benchmarking Demo**: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/zaitra/methane-filters-benchmark/blob/main/ntbs/Products_demo.ipynb)
This notebook demonstrates generating products and measuring their runtime.
For local inference using the ONNX models, refer to the `benchmark/onnx_inference_time.py` script in the [Project Code repository](https://github.com/zaitra/methane-filters-benchmark).
## Citation
If you use these models in your research, please cite our article:
```bibtex
@misc{herec2025optimizingmethanedetectionboard,
title={Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware},
author={Jonáš Herec and Vít Růžička and Rado Pitoňák},
year={2025},
eprint={2507.01472},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2507.01472},
}
```
## Models performance
## U-Net - CEM
| ID | Recall | Precision | F1 | F1 strong |
|----|--------|-----------|-------|-----------|
| A | 0.441 | 0.317 | 0.369 | 0.500 |
| B | 0.701 | 0.158 | 0.258 | 0.550 |
| C | 0.531 | 0.299 | 0.382 | 0.610 |
| D | 0.536 | 0.218 | 0.310 | 0.551 |
| E | 0.564 | 0.182 | 0.275 | 0.469 |
| **AVG** | 55.47% | 23.49% | 31.90% | 53.55% |
| **STD** | 8.41% | 6.30% | 4.94% | 4.85% |
---
## U-Net - ACE
| ID | Recall | Precision | F1 | F1 strong |
|----|--------|-----------|-------|-----------|
| A | 0.468 | 0.202 | 0.282 | 0.460 |
| B | 0.480 | 0.288 | 0.360 | 0.537 |
| C | 0.413 | 0.253 | 0.314 | 0.461 |
| D | 0.550 | 0.194 | 0.287 | 0.510 |
| E | 0.500 | 0.162 | 0.245 | 0.442 |
| **AVG** | 48.22% | 21.99% | 29.77% | 48.19% |
| **STD** | 4.46% | 4.50% | 3.82% | 3.57% |
---
## U-Net - MF
| ID | Recall | Precision | F1 | F1 strong |
|----|--------|-----------|-------|-----------|
| A | 0.603 | 0.153 | 0.243 | 0.451 |
| B | 0.673 | 0.198 | 0.306 | 0.585 |
| C | 0.563 | 0.259 | 0.355 | 0.507 |
| D | 0.625 | 0.173 | 0.271 | 0.558 |
| E | 0.466 | 0.301 | 0.366 | 0.496 |
| **AVG** | 58.60% | 21.68% | 30.82% | 51.94% |
| **STD** | 6.97% | 5.52% | 4.73% | 4.73% |
---
## U-Net - MAG1C-SAS
| ID | Recall | Precision | F1 | F1 strong |
|----|--------|-----------|-------|-----------|
| A | 0.587 | 0.456 | 0.513 | 0.668 |
| B | 0.618 | 0.291 | 0.395 | 0.642 |
| C | 0.576 | 0.290 | 0.386 | 0.604 |
| D | 0.613 | 0.414 | 0.495 | 0.686 |
| E | 0.427 | 0.280 | 0.338 | 0.470 |
| **AVG** | 56.42% | 34.62% | 42.54% | 61.40% |
| **STD** | 7.04% | 7.38% | 6.73% | 7.71% |
---
## U-Net - MAG1C (tile-wise)
| ID | Recall | Precision | F1 | F1 strong |
|----|--------|-----------|-------|-----------|
| A | 0.643 | 0.218 | 0.325 | 0.599 |
| B | 0.732 | 0.288 | 0.413 | 0.692 |
| C | 0.613 | 0.362 | 0.455 | 0.659 |
| D | 0.669 | 0.242 | 0.355 | 0.633 |
| E | 0.640 | 0.366 | 0.466 | 0.684 |
| **AVG** | 65.94% | 29.52% | 40.28% | 65.34% |
| **STD** | 4.04% | 6.05% | 5.51% | 3.42% |
---
## LinkNet - CEM
| ID | Recall | Precision | F1 | F1 strong |
|----|--------|-----------|-------|-----------|
| A | 0.597 | 0.319 | 0.416 | 0.633 |
| B | 0.539 | 0.274 | 0.363 | 0.603 |
| C | 0.452 | 0.233 | 0.308 | 0.527 |
| D | 0.606 | 0.165 | 0.260 | 0.561 |
| E | 0.442 | 0.144 | 0.217 | 0.455 |
| **AVG** | 52.72% | 22.70% | 31.27% | 55.56% |
| **STD** | 6.96% | 6.54% | 7.09% | 6.20% |
---
## LinkNet - MAG1C-SAS
| ID | Recall | Precision | F1 | F1 strong |
|----|--------|-----------|-------|-----------|
| A | 0.566 | 0.324 | 0.412 | 0.612 |
| B | 0.505 | 0.515 | 0.510 | 0.613 |
| C | 0.381 | 0.422 | 0.400 | 0.507 |
| D | 0.590 | 0.383 | 0.464 | 0.660 |
| E | 0.513 | 0.378 | 0.435 | 0.627 |
| **AVG** | 51.10% | 40.44% | 44.42% | 60.38% |
| **STD** | 7.24% | 6.35% | 3.95% | 5.14% |