Image Segmentation
ONNX
File size: 5,838 Bytes
3136a74
 
483f40f
3136a74
 
 
 
483f40f
 
 
3136a74
 
 
483f40f
 
 
 
 
3136a74
 
 
483f40f
 
 
 
 
 
 
 
 
3136a74
483f40f
 
 
 
 
 
 
 
 
3136a74
75b5ef6
 
 
483f40f
75b5ef6
 
 
 
 
483f40f
75b5ef6
17445cd
 
 
2df685b
17445cd
 
 
 
 
 
 
 
 
 
 
 
 
2df685b
17445cd
 
 
 
 
 
 
 
 
 
 
 
 
2df685b
17445cd
 
 
 
 
 
 
 
 
 
 
 
 
2df685b
17445cd
 
 
 
 
 
 
 
 
 
 
 
 
2df685b
17445cd
 
 
 
 
 
 
 
 
 
 
 
 
2df685b
17445cd
 
 
 
 
 
 
 
 
 
 
 
 
2df685b
17445cd
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
license: cc-by-4.0
pipeline_tag: image-segmentation
---

# Model Card

This Hugging Face repository contains models trained in the article **"Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware."**

**Paper:** [Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware](https://huggingface.co/papers/2507.01472)

## Model Overview

The models here were trained using the code available at the following GitHub repository:
*   **Training Code**: [HyperspectralViTs](https://github.com/previtus/HyperspectralViTs)

The main project code, including filters benchmarking and demos, is available at the:
*   **Project Code**: [Methane Filters Benchmark](https://github.com/zaitra/methane-filters-benchmark)

## Data and Products

The precomputed products used for training were created by code in the main project repository:
*   **Products Creation Code**: [methane-filters-benchmark](https://github.com/zaitra/methane-filters-benchmark)

Additionally, these precomputed products are hosted and accessible here:
*   **Dataset Repository**: [STARCOP-fast-products](https://huggingface.co/datasets/onboard-coop/STARCOP-fast-products)

## Sample Usage

You can try out our models and demos directly in Google Colab using the provided notebooks:

*   **Models Demo**: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/zaitra/methane-filters-benchmark/blob/main/ntbs/Models_demo.ipynb)
    This notebook demonstrates model inference.

*   **Products Creation and Benchmarking Demo**: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/zaitra/methane-filters-benchmark/blob/main/ntbs/Products_demo.ipynb)
    This notebook demonstrates generating products and measuring their runtime.

For local inference using the ONNX models, refer to the `benchmark/onnx_inference_time.py` script in the [Project Code repository](https://github.com/zaitra/methane-filters-benchmark).

## Citation

If you use these models in your research, please cite our article:
```bibtex
@misc{herec2025optimizingmethanedetectionboard,
      title={Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware},
      author={Jonáš Herec and Vít Růžička and Rado Pitoňák},
      year={2025},
      eprint={2507.01472},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2507.01472},
}
```

## Models performance
## U-Net - CEM

| ID | Recall | Precision | F1    | F1 strong |
|----|--------|-----------|-------|-----------|
| A  | 0.441  | 0.317     | 0.369 | 0.500     |
| B  | 0.701  | 0.158     | 0.258 | 0.550     |
| C  | 0.531  | 0.299     | 0.382 | 0.610     |
| D  | 0.536  | 0.218     | 0.310 | 0.551     |
| E  | 0.564  | 0.182     | 0.275 | 0.469     |
| **AVG** | 55.47% | 23.49% | 31.90% | 53.55% |
| **STD** | 8.41% | 6.30% | 4.94% | 4.85% |

---

## U-Net - ACE

| ID | Recall | Precision | F1    | F1 strong |
|----|--------|-----------|-------|-----------|
| A  | 0.468  | 0.202     | 0.282 | 0.460     |
| B  | 0.480  | 0.288     | 0.360 | 0.537     |
| C  | 0.413  | 0.253     | 0.314 | 0.461     |
| D  | 0.550  | 0.194     | 0.287 | 0.510     |
| E  | 0.500  | 0.162     | 0.245 | 0.442     |
| **AVG** | 48.22% | 21.99% | 29.77% | 48.19% |
| **STD** | 4.46% | 4.50% | 3.82% | 3.57% |

---

## U-Net - MF

| ID | Recall | Precision | F1    | F1 strong |
|----|--------|-----------|-------|-----------|
| A  | 0.603  | 0.153     | 0.243 | 0.451     |
| B  | 0.673  | 0.198     | 0.306 | 0.585     |
| C  | 0.563  | 0.259     | 0.355 | 0.507     |
| D  | 0.625  | 0.173     | 0.271 | 0.558     |
| E  | 0.466  | 0.301     | 0.366 | 0.496     |
| **AVG** | 58.60% | 21.68% | 30.82% | 51.94% |
| **STD** | 6.97% | 5.52% | 4.73% | 4.73% |

---

## U-Net - MAG1C-SAS

| ID | Recall | Precision | F1    | F1 strong |
|----|--------|-----------|-------|-----------|
| A  | 0.587  | 0.456     | 0.513 | 0.668     |
| B  | 0.618  | 0.291     | 0.395 | 0.642     |
| C  | 0.576  | 0.290     | 0.386 | 0.604     |
| D  | 0.613  | 0.414     | 0.495 | 0.686     |
| E  | 0.427  | 0.280     | 0.338 | 0.470     |
| **AVG** | 56.42% | 34.62% | 42.54% | 61.40% |
| **STD** | 7.04% | 7.38% | 6.73% | 7.71% |

---

## U-Net - MAG1C (tile-wise)

| ID | Recall | Precision | F1    | F1 strong |
|----|--------|-----------|-------|-----------|
| A  | 0.643  | 0.218     | 0.325 | 0.599     |
| B  | 0.732  | 0.288     | 0.413 | 0.692     |
| C  | 0.613  | 0.362     | 0.455 | 0.659     |
| D  | 0.669  | 0.242     | 0.355 | 0.633     |
| E  | 0.640  | 0.366     | 0.466 | 0.684     |
| **AVG** | 65.94% | 29.52% | 40.28% | 65.34% |
| **STD** | 4.04% | 6.05% | 5.51% | 3.42% |

---

## LinkNet - CEM

| ID | Recall | Precision | F1    | F1 strong |
|----|--------|-----------|-------|-----------|
| A  | 0.597  | 0.319     | 0.416 | 0.633     |
| B  | 0.539  | 0.274     | 0.363 | 0.603     |
| C  | 0.452  | 0.233     | 0.308 | 0.527     |
| D  | 0.606  | 0.165     | 0.260 | 0.561     |
| E  | 0.442  | 0.144     | 0.217 | 0.455     |
| **AVG** | 52.72% | 22.70% | 31.27% | 55.56% |
| **STD** | 6.96% | 6.54% | 7.09% | 6.20% |

---

## LinkNet - MAG1C-SAS

| ID | Recall | Precision | F1    | F1 strong |
|----|--------|-----------|-------|-----------|
| A  | 0.566  | 0.324     | 0.412 | 0.612     |
| B  | 0.505  | 0.515     | 0.510 | 0.613     |
| C  | 0.381  | 0.422     | 0.400 | 0.507     |
| D  | 0.590  | 0.383     | 0.464 | 0.660     |
| E  | 0.513  | 0.378     | 0.435 | 0.627     |
| **AVG** | 51.10% | 40.44% | 44.42% | 60.38% |
| **STD** | 7.24% | 6.35% | 3.95% | 5.14% |