metadata
base_model: BAAI/bge-small-en-v1.5
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
book:I was hooked!! Garth Nix is a awesome writer and though the book is a
little babyish - its definetly worth a read! I thought the whole minute -
hand - is - a - key part was a real good idea plus the names are so fun!
The only thing I didn't like was that Arthur doesen't take his rightful
place as "Monday"
- text: >-
book:The lawyer says he tracked Jack from his book and would like Jack to
investigate the brutal murders of thirty-seven year old Gina Anderson and
her son Joshua in their Seattle home; the house was trashed and the
husband a lecturer at the nearby community college vanished
- text: >-
beings:Arthur with the lesser key to the lower kingdom of the House in
hand, must travel into the House to find a cure for the mysterious plague
that is striking the people of his town and his loved ones and find out
why there are beings intent on getting the key from him, even if it means
killing him
- text: >-
figures:But when a fight emerges between the two figures - Mister Monday
and Sneezer - they both disappear without any further regard to Arthur
- text: >-
book:I could not put this book down if my life depended on it! I have
never in my life read a book this fast
inference: false
SetFit Aspect Model with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use this SetFit model to filter these possible aspect span candidates.
- Use a SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- spaCy Model: en_core_web_lg
- SetFitABSA Aspect Model: omymble/books-full-bge-aspect
- SetFitABSA Polarity Model: omymble/books-full-bge-polarity
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
aspect |
|
no aspect |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"omymble/books-full-bge-aspect",
"omymble/books-full-bge-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 25.9648 | 72 |
Label | Training Sample Count |
---|---|
no aspect | 572 |
aspect | 167 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 0.2687 | - |
0.0090 | 50 | 0.2516 | - |
0.0180 | 100 | 0.2619 | - |
0.0270 | 150 | 0.2499 | - |
0.0360 | 200 | 0.2428 | - |
0.0450 | 250 | 0.2443 | - |
0.0540 | 300 | 0.246 | - |
0.0629 | 350 | 0.249 | - |
0.0719 | 400 | 0.2354 | - |
0.0809 | 450 | 0.2347 | - |
0.0899 | 500 | 0.2154 | - |
0.0989 | 550 | 0.2285 | - |
0.1079 | 600 | 0.1812 | - |
0.1169 | 650 | 0.1446 | - |
0.1259 | 700 | 0.165 | - |
0.1349 | 750 | 0.1125 | - |
0.1439 | 800 | 0.0971 | - |
0.1529 | 850 | 0.1059 | - |
0.1619 | 900 | 0.0866 | - |
0.1709 | 950 | 0.0492 | - |
0.1799 | 1000 | 0.0546 | 0.274 |
0.1888 | 1050 | 0.037 | - |
0.1978 | 1100 | 0.0189 | - |
0.2068 | 1150 | 0.0279 | - |
0.2158 | 1200 | 0.004 | - |
0.2248 | 1250 | 0.0309 | - |
0.2338 | 1300 | 0.0049 | - |
0.2428 | 1350 | 0.0286 | - |
0.2518 | 1400 | 0.0234 | - |
0.2608 | 1450 | 0.0158 | - |
0.2698 | 1500 | 0.0354 | - |
0.2788 | 1550 | 0.0062 | - |
0.2878 | 1600 | 0.0172 | - |
0.2968 | 1650 | 0.0389 | - |
0.3058 | 1700 | 0.0221 | - |
0.3147 | 1750 | 0.0065 | - |
0.3237 | 1800 | 0.0128 | - |
0.3327 | 1850 | 0.0225 | - |
0.3417 | 1900 | 0.0021 | - |
0.3507 | 1950 | 0.0102 | - |
0.3597 | 2000 | 0.012 | 0.3429 |
0.3687 | 2050 | 0.0249 | - |
0.3777 | 2100 | 0.0054 | - |
0.3867 | 2150 | 0.0014 | - |
0.3957 | 2200 | 0.0014 | - |
0.4047 | 2250 | 0.0143 | - |
0.4137 | 2300 | 0.0078 | - |
0.4227 | 2350 | 0.0195 | - |
0.4317 | 2400 | 0.0006 | - |
0.4406 | 2450 | 0.0014 | - |
0.4496 | 2500 | 0.0083 | - |
0.4586 | 2550 | 0.0141 | - |
0.4676 | 2600 | 0.0046 | - |
0.4766 | 2650 | 0.01 | - |
0.4856 | 2700 | 0.0268 | - |
0.4946 | 2750 | 0.0008 | - |
0.5036 | 2800 | 0.0076 | - |
0.5126 | 2850 | 0.0004 | - |
0.5216 | 2900 | 0.0037 | - |
0.5306 | 2950 | 0.0005 | - |
0.5396 | 3000 | 0.0065 | 0.3565 |
0.5486 | 3050 | 0.002 | - |
0.5576 | 3100 | 0.0072 | - |
0.5665 | 3150 | 0.0141 | - |
0.5755 | 3200 | 0.0004 | - |
0.5845 | 3250 | 0.0086 | - |
0.5935 | 3300 | 0.0098 | - |
0.6025 | 3350 | 0.0048 | - |
0.6115 | 3400 | 0.0013 | - |
0.6205 | 3450 | 0.007 | - |
0.6295 | 3500 | 0.0059 | - |
0.6385 | 3550 | 0.0174 | - |
0.6475 | 3600 | 0.0003 | - |
0.6565 | 3650 | 0.0004 | - |
0.6655 | 3700 | 0.0032 | - |
0.6745 | 3750 | 0.0004 | - |
0.6835 | 3800 | 0.0035 | - |
0.6924 | 3850 | 0.0019 | - |
0.7014 | 3900 | 0.015 | - |
0.7104 | 3950 | 0.0204 | - |
0.7194 | 4000 | 0.0016 | 0.3404 |
0.7284 | 4050 | 0.0003 | - |
0.7374 | 4100 | 0.0036 | - |
0.7464 | 4150 | 0.0016 | - |
0.7554 | 4200 | 0.0104 | - |
0.7644 | 4250 | 0.003 | - |
0.7734 | 4300 | 0.0159 | - |
0.7824 | 4350 | 0.0029 | - |
0.7914 | 4400 | 0.0068 | - |
0.8004 | 4450 | 0.0021 | - |
0.8094 | 4500 | 0.006 | - |
0.8183 | 4550 | 0.006 | - |
0.8273 | 4600 | 0.0038 | - |
0.8363 | 4650 | 0.008 | - |
0.8453 | 4700 | 0.0003 | - |
0.8543 | 4750 | 0.0126 | - |
0.8633 | 4800 | 0.0002 | - |
0.8723 | 4850 | 0.0041 | - |
0.8813 | 4900 | 0.0002 | - |
0.8903 | 4950 | 0.0137 | - |
0.8993 | 5000 | 0.0041 | 0.3363 |
0.9083 | 5050 | 0.0252 | - |
0.9173 | 5100 | 0.0023 | - |
0.9263 | 5150 | 0.0062 | - |
0.9353 | 5200 | 0.0152 | - |
0.9442 | 5250 | 0.0014 | - |
0.9532 | 5300 | 0.0224 | - |
0.9622 | 5350 | 0.0174 | - |
0.9712 | 5400 | 0.0066 | - |
0.9802 | 5450 | 0.0002 | - |
0.9892 | 5500 | 0.0136 | - |
0.9982 | 5550 | 0.0036 | - |
1.0072 | 5600 | 0.0102 | - |
1.0162 | 5650 | 0.011 | - |
1.0252 | 5700 | 0.0035 | - |
1.0342 | 5750 | 0.0002 | - |
1.0432 | 5800 | 0.0002 | - |
1.0522 | 5850 | 0.0044 | - |
1.0612 | 5900 | 0.0125 | - |
1.0701 | 5950 | 0.0061 | - |
1.0791 | 6000 | 0.0165 | 0.3591 |
1.0881 | 6050 | 0.006 | - |
1.0971 | 6100 | 0.0003 | - |
1.1061 | 6150 | 0.0074 | - |
1.1151 | 6200 | 0.0019 | - |
1.1241 | 6250 | 0.0002 | - |
1.1331 | 6300 | 0.0064 | - |
1.1421 | 6350 | 0.0127 | - |
1.1511 | 6400 | 0.0012 | - |
1.1601 | 6450 | 0.0003 | - |
1.1691 | 6500 | 0.0251 | - |
1.1781 | 6550 | 0.0002 | - |
1.1871 | 6600 | 0.0003 | - |
1.1960 | 6650 | 0.0002 | - |
1.2050 | 6700 | 0.0002 | - |
1.2140 | 6750 | 0.0123 | - |
1.2230 | 6800 | 0.0055 | - |
1.2320 | 6850 | 0.0098 | - |
1.2410 | 6900 | 0.0028 | - |
1.25 | 6950 | 0.0049 | - |
1.2590 | 7000 | 0.0021 | 0.3537 |
1.2680 | 7050 | 0.0147 | - |
1.2770 | 7100 | 0.003 | - |
1.2860 | 7150 | 0.0002 | - |
1.2950 | 7200 | 0.0049 | - |
1.3040 | 7250 | 0.0033 | - |
1.3129 | 7300 | 0.0002 | - |
1.3219 | 7350 | 0.0065 | - |
1.3309 | 7400 | 0.0043 | - |
1.3399 | 7450 | 0.0107 | - |
1.3489 | 7500 | 0.0184 | - |
1.3579 | 7550 | 0.0116 | - |
1.3669 | 7600 | 0.0041 | - |
1.3759 | 7650 | 0.0001 | - |
1.3849 | 7700 | 0.0001 | - |
1.3939 | 7750 | 0.0074 | - |
1.4029 | 7800 | 0.0002 | - |
1.4119 | 7850 | 0.0087 | - |
1.4209 | 7900 | 0.0014 | - |
1.4299 | 7950 | 0.0045 | - |
1.4388 | 8000 | 0.0018 | 0.3439 |
1.4478 | 8050 | 0.0039 | - |
1.4568 | 8100 | 0.007 | - |
1.4658 | 8150 | 0.0066 | - |
1.4748 | 8200 | 0.0101 | - |
1.4838 | 8250 | 0.0047 | - |
1.4928 | 8300 | 0.0021 | - |
1.5018 | 8350 | 0.0002 | - |
1.5108 | 8400 | 0.0116 | - |
1.5198 | 8450 | 0.0017 | - |
1.5288 | 8500 | 0.0032 | - |
1.5378 | 8550 | 0.0053 | - |
1.5468 | 8600 | 0.0038 | - |
1.5558 | 8650 | 0.0001 | - |
1.5647 | 8700 | 0.002 | - |
1.5737 | 8750 | 0.0065 | - |
1.5827 | 8800 | 0.0064 | - |
1.5917 | 8850 | 0.0001 | - |
1.6007 | 8900 | 0.0049 | - |
1.6097 | 8950 | 0.0002 | - |
1.6187 | 9000 | 0.0083 | 0.3486 |
1.6277 | 9050 | 0.0105 | - |
1.6367 | 9100 | 0.0019 | - |
1.6457 | 9150 | 0.0002 | - |
1.6547 | 9200 | 0.0049 | - |
1.6637 | 9250 | 0.0001 | - |
1.6727 | 9300 | 0.0097 | - |
1.6817 | 9350 | 0.0098 | - |
1.6906 | 9400 | 0.0022 | - |
1.6996 | 9450 | 0.0142 | - |
1.7086 | 9500 | 0.0025 | - |
1.7176 | 9550 | 0.0147 | - |
1.7266 | 9600 | 0.0086 | - |
1.7356 | 9650 | 0.0062 | - |
1.7446 | 9700 | 0.0002 | - |
1.7536 | 9750 | 0.0103 | - |
1.7626 | 9800 | 0.0186 | - |
1.7716 | 9850 | 0.0112 | - |
1.7806 | 9900 | 0.0042 | - |
1.7896 | 9950 | 0.0166 | - |
1.7986 | 10000 | 0.0002 | 0.3571 |
1.8076 | 10050 | 0.0029 | - |
1.8165 | 10100 | 0.0055 | - |
1.8255 | 10150 | 0.0057 | - |
1.8345 | 10200 | 0.0163 | - |
1.8435 | 10250 | 0.0093 | - |
1.8525 | 10300 | 0.0083 | - |
1.8615 | 10350 | 0.0073 | - |
1.8705 | 10400 | 0.0089 | - |
1.8795 | 10450 | 0.0068 | - |
1.8885 | 10500 | 0.0001 | - |
1.8975 | 10550 | 0.0232 | - |
1.9065 | 10600 | 0.0161 | - |
1.9155 | 10650 | 0.0088 | - |
1.9245 | 10700 | 0.0002 | - |
1.9335 | 10750 | 0.0093 | - |
1.9424 | 10800 | 0.0103 | - |
1.9514 | 10850 | 0.002 | - |
1.9604 | 10900 | 0.0113 | - |
1.9694 | 10950 | 0.0055 | - |
1.9784 | 11000 | 0.0148 | 0.3461 |
1.9874 | 11050 | 0.0001 | - |
1.9964 | 11100 | 0.0017 | - |
2.0054 | 11150 | 0.0001 | - |
2.0144 | 11200 | 0.0204 | - |
2.0234 | 11250 | 0.0032 | - |
2.0324 | 11300 | 0.0029 | - |
2.0414 | 11350 | 0.002 | - |
2.0504 | 11400 | 0.0001 | - |
2.0594 | 11450 | 0.005 | - |
2.0683 | 11500 | 0.0001 | - |
2.0773 | 11550 | 0.0051 | - |
2.0863 | 11600 | 0.0095 | - |
2.0953 | 11650 | 0.0093 | - |
2.1043 | 11700 | 0.0171 | - |
2.1133 | 11750 | 0.0059 | - |
2.1223 | 11800 | 0.0026 | - |
2.1313 | 11850 | 0.0092 | - |
2.1403 | 11900 | 0.0002 | - |
2.1493 | 11950 | 0.0069 | - |
2.1583 | 12000 | 0.006 | 0.3572 |
2.1673 | 12050 | 0.009 | - |
2.1763 | 12100 | 0.008 | - |
2.1853 | 12150 | 0.0001 | - |
2.1942 | 12200 | 0.0062 | - |
2.2032 | 12250 | 0.0086 | - |
2.2122 | 12300 | 0.0001 | - |
2.2212 | 12350 | 0.0001 | - |
2.2302 | 12400 | 0.0001 | - |
2.2392 | 12450 | 0.0001 | - |
2.2482 | 12500 | 0.0022 | - |
2.2572 | 12550 | 0.0014 | - |
2.2662 | 12600 | 0.0014 | - |
2.2752 | 12650 | 0.009 | - |
2.2842 | 12700 | 0.0001 | - |
2.2932 | 12750 | 0.0081 | - |
2.3022 | 12800 | 0.0127 | - |
2.3112 | 12850 | 0.0001 | - |
2.3201 | 12900 | 0.0028 | - |
2.3291 | 12950 | 0.0016 | - |
2.3381 | 13000 | 0.0051 | 0.3587 |
2.3471 | 13050 | 0.0044 | - |
2.3561 | 13100 | 0.0133 | - |
2.3651 | 13150 | 0.0043 | - |
2.3741 | 13200 | 0.0001 | - |
2.3831 | 13250 | 0.0017 | - |
2.3921 | 13300 | 0.0095 | - |
2.4011 | 13350 | 0.008 | - |
2.4101 | 13400 | 0.0074 | - |
2.4191 | 13450 | 0.0181 | - |
2.4281 | 13500 | 0.0141 | - |
2.4371 | 13550 | 0.0114 | - |
2.4460 | 13600 | 0.0046 | - |
2.4550 | 13650 | 0.0053 | - |
2.4640 | 13700 | 0.0001 | - |
2.4730 | 13750 | 0.0001 | - |
2.4820 | 13800 | 0.0114 | - |
2.4910 | 13850 | 0.0001 | - |
2.5 | 13900 | 0.0075 | - |
2.5090 | 13950 | 0.0016 | - |
2.5180 | 14000 | 0.0014 | 0.3376 |
2.5270 | 14050 | 0.0075 | - |
2.5360 | 14100 | 0.0001 | - |
2.5450 | 14150 | 0.0001 | - |
2.5540 | 14200 | 0.0013 | - |
2.5629 | 14250 | 0.0001 | - |
2.5719 | 14300 | 0.0082 | - |
2.5809 | 14350 | 0.0021 | - |
2.5899 | 14400 | 0.0001 | - |
2.5989 | 14450 | 0.0001 | - |
2.6079 | 14500 | 0.0016 | - |
2.6169 | 14550 | 0.0001 | - |
2.6259 | 14600 | 0.0001 | - |
2.6349 | 14650 | 0.0058 | - |
2.6439 | 14700 | 0.0223 | - |
2.6529 | 14750 | 0.0001 | - |
2.6619 | 14800 | 0.0001 | - |
2.6709 | 14850 | 0.0249 | - |
2.6799 | 14900 | 0.008 | - |
2.6888 | 14950 | 0.0071 | - |
2.6978 | 15000 | 0.0237 | 0.3769 |
2.7068 | 15050 | 0.0001 | - |
2.7158 | 15100 | 0.0016 | - |
2.7248 | 15150 | 0.0031 | - |
2.7338 | 15200 | 0.0063 | - |
2.7428 | 15250 | 0.0001 | - |
2.7518 | 15300 | 0.0127 | - |
2.7608 | 15350 | 0.0001 | - |
2.7698 | 15400 | 0.0114 | - |
2.7788 | 15450 | 0.0106 | - |
2.7878 | 15500 | 0.0086 | - |
2.7968 | 15550 | 0.0083 | - |
2.8058 | 15600 | 0.0001 | - |
2.8147 | 15650 | 0.0001 | - |
2.8237 | 15700 | 0.0035 | - |
2.8327 | 15750 | 0.0095 | - |
2.8417 | 15800 | 0.0041 | - |
2.8507 | 15850 | 0.0001 | - |
2.8597 | 15900 | 0.0001 | - |
2.8687 | 15950 | 0.0001 | - |
2.8777 | 16000 | 0.0001 | 0.3509 |
2.8867 | 16050 | 0.0001 | - |
2.8957 | 16100 | 0.0124 | - |
2.9047 | 16150 | 0.0083 | - |
2.9137 | 16200 | 0.0017 | - |
2.9227 | 16250 | 0.0001 | - |
2.9317 | 16300 | 0.0042 | - |
2.9406 | 16350 | 0.0058 | - |
2.9496 | 16400 | 0.0001 | - |
2.9586 | 16450 | 0.0001 | - |
2.9676 | 16500 | 0.0021 | - |
2.9766 | 16550 | 0.0025 | - |
2.9856 | 16600 | 0.0068 | - |
2.9946 | 16650 | 0.0099 | - |
3.0036 | 16700 | 0.0015 | - |
3.0126 | 16750 | 0.0086 | - |
3.0216 | 16800 | 0.0162 | - |
3.0306 | 16850 | 0.0001 | - |
3.0396 | 16900 | 0.0181 | - |
3.0486 | 16950 | 0.0083 | - |
3.0576 | 17000 | 0.0045 | 0.346 |
3.0665 | 17050 | 0.0072 | - |
3.0755 | 17100 | 0.0045 | - |
3.0845 | 17150 | 0.005 | - |
3.0935 | 17200 | 0.003 | - |
3.1025 | 17250 | 0.0069 | - |
3.1115 | 17300 | 0.0001 | - |
3.1205 | 17350 | 0.003 | - |
3.1295 | 17400 | 0.0077 | - |
3.1385 | 17450 | 0.0001 | - |
3.1475 | 17500 | 0.0001 | - |
3.1565 | 17550 | 0.0166 | - |
3.1655 | 17600 | 0.0001 | - |
3.1745 | 17650 | 0.0001 | - |
3.1835 | 17700 | 0.0084 | - |
3.1924 | 17750 | 0.0106 | - |
3.2014 | 17800 | 0.0027 | - |
3.2104 | 17850 | 0.0092 | - |
3.2194 | 17900 | 0.0001 | - |
3.2284 | 17950 | 0.0001 | - |
3.2374 | 18000 | 0.0066 | 0.3501 |
3.2464 | 18050 | 0.0037 | - |
3.2554 | 18100 | 0.0035 | - |
3.2644 | 18150 | 0.0029 | - |
3.2734 | 18200 | 0.0017 | - |
3.2824 | 18250 | 0.0001 | - |
3.2914 | 18300 | 0.0034 | - |
3.3004 | 18350 | 0.0121 | - |
3.3094 | 18400 | 0.0051 | - |
3.3183 | 18450 | 0.0024 | - |
3.3273 | 18500 | 0.0019 | - |
3.3363 | 18550 | 0.0014 | - |
3.3453 | 18600 | 0.0167 | - |
3.3543 | 18650 | 0.0097 | - |
3.3633 | 18700 | 0.0025 | - |
3.3723 | 18750 | 0.0065 | - |
3.3813 | 18800 | 0.011 | - |
3.3903 | 18850 | 0.0001 | - |
3.3993 | 18900 | 0.0001 | - |
3.4083 | 18950 | 0.0072 | - |
3.4173 | 19000 | 0.0132 | 0.3511 |
3.4263 | 19050 | 0.0084 | - |
3.4353 | 19100 | 0.0015 | - |
3.4442 | 19150 | 0.0014 | - |
3.4532 | 19200 | 0.011 | - |
3.4622 | 19250 | 0.0083 | - |
3.4712 | 19300 | 0.0073 | - |
3.4802 | 19350 | 0.0024 | - |
3.4892 | 19400 | 0.002 | - |
3.4982 | 19450 | 0.0155 | - |
3.5072 | 19500 | 0.0042 | - |
3.5162 | 19550 | 0.0001 | - |
3.5252 | 19600 | 0.0043 | - |
3.5342 | 19650 | 0.0026 | - |
3.5432 | 19700 | 0.0022 | - |
3.5522 | 19750 | 0.002 | - |
3.5612 | 19800 | 0.0018 | - |
3.5701 | 19850 | 0.0001 | - |
3.5791 | 19900 | 0.0012 | - |
3.5881 | 19950 | 0.002 | - |
3.5971 | 20000 | 0.0089 | 0.3516 |
3.6061 | 20050 | 0.003 | - |
3.6151 | 20100 | 0.0036 | - |
3.6241 | 20150 | 0.0001 | - |
3.6331 | 20200 | 0.0001 | - |
3.6421 | 20250 | 0.0156 | - |
3.6511 | 20300 | 0.0001 | - |
3.6601 | 20350 | 0.0174 | - |
3.6691 | 20400 | 0.0001 | - |
3.6781 | 20450 | 0.011 | - |
3.6871 | 20500 | 0.0001 | - |
3.6960 | 20550 | 0.0047 | - |
3.7050 | 20600 | 0.0132 | - |
3.7140 | 20650 | 0.007 | - |
3.7230 | 20700 | 0.0001 | - |
3.7320 | 20750 | 0.0025 | - |
3.7410 | 20800 | 0.0049 | - |
3.75 | 20850 | 0.0074 | - |
3.7590 | 20900 | 0.002 | - |
3.7680 | 20950 | 0.0112 | - |
3.7770 | 21000 | 0.0001 | 0.3483 |
3.7860 | 21050 | 0.0001 | - |
3.7950 | 21100 | 0.0064 | - |
3.8040 | 21150 | 0.0133 | - |
3.8129 | 21200 | 0.0001 | - |
3.8219 | 21250 | 0.0112 | - |
3.8309 | 21300 | 0.0001 | - |
3.8399 | 21350 | 0.0001 | - |
3.8489 | 21400 | 0.0001 | - |
3.8579 | 21450 | 0.0025 | - |
3.8669 | 21500 | 0.0047 | - |
3.8759 | 21550 | 0.0001 | - |
3.8849 | 21600 | 0.0062 | - |
3.8939 | 21650 | 0.0001 | - |
3.9029 | 21700 | 0.0315 | - |
3.9119 | 21750 | 0.002 | - |
3.9209 | 21800 | 0.0034 | - |
3.9299 | 21850 | 0.004 | - |
3.9388 | 21900 | 0.0046 | - |
3.9478 | 21950 | 0.008 | - |
3.9568 | 22000 | 0.0103 | 0.3474 |
3.9658 | 22050 | 0.0142 | - |
3.9748 | 22100 | 0.0207 | - |
3.9838 | 22150 | 0.0105 | - |
3.9928 | 22200 | 0.0114 | - |
4.0018 | 22250 | 0.002 | - |
4.0108 | 22300 | 0.0121 | - |
4.0198 | 22350 | 0.0001 | - |
4.0288 | 22400 | 0.0058 | - |
4.0378 | 22450 | 0.0045 | - |
4.0468 | 22500 | 0.0001 | - |
4.0558 | 22550 | 0.0086 | - |
4.0647 | 22600 | 0.0121 | - |
4.0737 | 22650 | 0.0045 | - |
4.0827 | 22700 | 0.0001 | - |
4.0917 | 22750 | 0.0046 | - |
4.1007 | 22800 | 0.0076 | - |
4.1097 | 22850 | 0.0001 | - |
4.1187 | 22900 | 0.0154 | - |
4.1277 | 22950 | 0.0108 | - |
4.1367 | 23000 | 0.0058 | 0.3575 |
4.1457 | 23050 | 0.0088 | - |
4.1547 | 23100 | 0.0019 | - |
4.1637 | 23150 | 0.0055 | - |
4.1727 | 23200 | 0.0299 | - |
4.1817 | 23250 | 0.0085 | - |
4.1906 | 23300 | 0.0016 | - |
4.1996 | 23350 | 0.0001 | - |
4.2086 | 23400 | 0.0001 | - |
4.2176 | 23450 | 0.0072 | - |
4.2266 | 23500 | 0.0092 | - |
4.2356 | 23550 | 0.0001 | - |
4.2446 | 23600 | 0.0064 | - |
4.2536 | 23650 | 0.0065 | - |
4.2626 | 23700 | 0.0001 | - |
4.2716 | 23750 | 0.0017 | - |
4.2806 | 23800 | 0.0083 | - |
4.2896 | 23850 | 0.0001 | - |
4.2986 | 23900 | 0.0039 | - |
4.3076 | 23950 | 0.002 | - |
4.3165 | 24000 | 0.0037 | 0.357 |
4.3255 | 24050 | 0.0095 | - |
4.3345 | 24100 | 0.002 | - |
4.3435 | 24150 | 0.017 | - |
4.3525 | 24200 | 0.0086 | - |
4.3615 | 24250 | 0.007 | - |
4.3705 | 24300 | 0.0023 | - |
4.3795 | 24350 | 0.0122 | - |
4.3885 | 24400 | 0.0097 | - |
4.3975 | 24450 | 0.0027 | - |
4.4065 | 24500 | 0.0081 | - |
4.4155 | 24550 | 0.0043 | - |
4.4245 | 24600 | 0.0055 | - |
4.4335 | 24650 | 0.0001 | - |
4.4424 | 24700 | 0.0014 | - |
4.4514 | 24750 | 0.0001 | - |
4.4604 | 24800 | 0.0091 | - |
4.4694 | 24850 | 0.0087 | - |
4.4784 | 24900 | 0.0101 | - |
4.4874 | 24950 | 0.0001 | - |
4.4964 | 25000 | 0.013 | 0.3566 |
4.5054 | 25050 | 0.013 | - |
4.5144 | 25100 | 0.0082 | - |
4.5234 | 25150 | 0.0063 | - |
4.5324 | 25200 | 0.0046 | - |
4.5414 | 25250 | 0.0087 | - |
4.5504 | 25300 | 0.0063 | - |
4.5594 | 25350 | 0.0019 | - |
4.5683 | 25400 | 0.0061 | - |
4.5773 | 25450 | 0.004 | - |
4.5863 | 25500 | 0.0001 | - |
4.5953 | 25550 | 0.0001 | - |
4.6043 | 25600 | 0.0088 | - |
4.6133 | 25650 | 0.0191 | - |
4.6223 | 25700 | 0.0124 | - |
4.6313 | 25750 | 0.0001 | - |
4.6403 | 25800 | 0.0023 | - |
4.6493 | 25850 | 0.0001 | - |
4.6583 | 25900 | 0.0068 | - |
4.6673 | 25950 | 0.0001 | - |
4.6763 | 26000 | 0.0034 | 0.3563 |
4.6853 | 26050 | 0.0138 | - |
4.6942 | 26100 | 0.0001 | - |
4.7032 | 26150 | 0.0068 | - |
4.7122 | 26200 | 0.0091 | - |
4.7212 | 26250 | 0.0001 | - |
4.7302 | 26300 | 0.0152 | - |
4.7392 | 26350 | 0.0064 | - |
4.7482 | 26400 | 0.0021 | - |
4.7572 | 26450 | 0.0088 | - |
4.7662 | 26500 | 0.0001 | - |
4.7752 | 26550 | 0.0042 | - |
4.7842 | 26600 | 0.0022 | - |
4.7932 | 26650 | 0.0065 | - |
4.8022 | 26700 | 0.0039 | - |
4.8112 | 26750 | 0.0039 | - |
4.8201 | 26800 | 0.0001 | - |
4.8291 | 26850 | 0.0155 | - |
4.8381 | 26900 | 0.0021 | - |
4.8471 | 26950 | 0.0039 | - |
4.8561 | 27000 | 0.002 | 0.3555 |
4.8651 | 27050 | 0.0092 | - |
4.8741 | 27100 | 0.0001 | - |
4.8831 | 27150 | 0.0081 | - |
4.8921 | 27200 | 0.0081 | - |
4.9011 | 27250 | 0.0037 | - |
4.9101 | 27300 | 0.0104 | - |
4.9191 | 27350 | 0.0022 | - |
4.9281 | 27400 | 0.004 | - |
4.9371 | 27450 | 0.0076 | - |
4.9460 | 27500 | 0.0043 | - |
4.9550 | 27550 | 0.0142 | - |
4.9640 | 27600 | 0.0126 | - |
4.9730 | 27650 | 0.0038 | - |
4.9820 | 27700 | 0.0107 | - |
4.9910 | 27750 | 0.0019 | - |
5.0 | 27800 | 0.0104 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- spaCy: 3.7.4
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}