Add SetFit ABSA model
Browse files- 1_Pooling/config.json +10 -0
- README.md +756 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +9 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,756 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-small-en-v1.5
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- absa
|
10 |
+
- sentence-transformers
|
11 |
+
- text-classification
|
12 |
+
- generated_from_setfit_trainer
|
13 |
+
widget:
|
14 |
+
- text: book:I was hooked!! Garth Nix is a awesome writer and though the book is a
|
15 |
+
little babyish - its definetly worth a read! I thought the whole minute - hand
|
16 |
+
- is - a - key part was a real good idea plus the names are so fun! The only thing
|
17 |
+
I didn't like was that Arthur doesen't take his rightful place as "Monday"
|
18 |
+
- text: book:The lawyer says he tracked Jack from his book and would like Jack to
|
19 |
+
investigate the brutal murders of thirty-seven year old Gina Anderson and her
|
20 |
+
son Joshua in their Seattle home; the house was trashed and the husband a lecturer
|
21 |
+
at the nearby community college vanished
|
22 |
+
- text: beings:Arthur with the lesser key to the lower kingdom of the House in hand,
|
23 |
+
must travel into the House to find a cure for the mysterious plague that is striking
|
24 |
+
the people of his town and his loved ones and find out why there are beings intent
|
25 |
+
on getting the key from him, even if it means killing him
|
26 |
+
- text: figures:But when a fight emerges between the two figures - Mister Monday and
|
27 |
+
Sneezer - they both disappear without any further regard to Arthur
|
28 |
+
- text: book:I could not put this book down if my life depended on it! I have never
|
29 |
+
in my life read a book this fast
|
30 |
+
inference: false
|
31 |
+
---
|
32 |
+
|
33 |
+
# SetFit Aspect Model with BAAI/bge-small-en-v1.5
|
34 |
+
|
35 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
|
36 |
+
|
37 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
38 |
+
|
39 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
40 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
41 |
+
|
42 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
43 |
+
|
44 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
45 |
+
2. **Use this SetFit model to filter these possible aspect span candidates.**
|
46 |
+
3. Use a SetFit model to classify the filtered aspect span candidates.
|
47 |
+
|
48 |
+
## Model Details
|
49 |
+
|
50 |
+
### Model Description
|
51 |
+
- **Model Type:** SetFit
|
52 |
+
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
|
53 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
54 |
+
- **spaCy Model:** en_core_web_lg
|
55 |
+
- **SetFitABSA Aspect Model:** [omymble/books-full-bge-aspect](https://huggingface.co/omymble/books-full-bge-aspect)
|
56 |
+
- **SetFitABSA Polarity Model:** [omymble/books-full-bge-polarity](https://huggingface.co/omymble/books-full-bge-polarity)
|
57 |
+
- **Maximum Sequence Length:** 512 tokens
|
58 |
+
- **Number of Classes:** 2 classes
|
59 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
60 |
+
<!-- - **Language:** Unknown -->
|
61 |
+
<!-- - **License:** Unknown -->
|
62 |
+
|
63 |
+
### Model Sources
|
64 |
+
|
65 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
66 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
67 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
68 |
+
|
69 |
+
### Model Labels
|
70 |
+
| Label | Examples |
|
71 |
+
|:----------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
72 |
+
| aspect | <ul><li>"younger ones:It might be an entertaining point of discussion with a child 12 or older, but it's too dark for younger ones, unless you're ready to talk about true evil, adult motivations, supernatural forces, and fratricide!"</li><li>'Nix:-enjoy the genre of fantasies, of a unknown world, as Nix weaves a wonderful tale of the things that will open your eyes to a different world'</li><li>'mystery:The mystery is secondary to the rest of the story and is only really approached in the remaining 30 pages of the book'</li></ul> |
|
73 |
+
| no aspect | <ul><li>"point:It might be an entertaining point of discussion with a child 12 or older, but it's too dark for younger ones, unless you're ready to talk about true evil, adult motivations, supernatural forces, and fratricide!"</li><li>"discussion:It might be an entertaining point of discussion with a child 12 or older, but it's too dark for younger ones, unless you're ready to talk about true evil, adult motivations, supernatural forces, and fratricide!"</li><li>"child:It might be an entertaining point of discussion with a child 12 or older, but it's too dark for younger ones, unless you're ready to talk about true evil, adult motivations, supernatural forces, and fratricide!"</li></ul> |
|
74 |
+
|
75 |
+
## Uses
|
76 |
+
|
77 |
+
### Direct Use for Inference
|
78 |
+
|
79 |
+
First install the SetFit library:
|
80 |
+
|
81 |
+
```bash
|
82 |
+
pip install setfit
|
83 |
+
```
|
84 |
+
|
85 |
+
Then you can load this model and run inference.
|
86 |
+
|
87 |
+
```python
|
88 |
+
from setfit import AbsaModel
|
89 |
+
|
90 |
+
# Download from the 🤗 Hub
|
91 |
+
model = AbsaModel.from_pretrained(
|
92 |
+
"omymble/books-full-bge-aspect",
|
93 |
+
"omymble/books-full-bge-polarity",
|
94 |
+
)
|
95 |
+
# Run inference
|
96 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
97 |
+
```
|
98 |
+
|
99 |
+
<!--
|
100 |
+
### Downstream Use
|
101 |
+
|
102 |
+
*List how someone could finetune this model on their own dataset.*
|
103 |
+
-->
|
104 |
+
|
105 |
+
<!--
|
106 |
+
### Out-of-Scope Use
|
107 |
+
|
108 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
109 |
+
-->
|
110 |
+
|
111 |
+
<!--
|
112 |
+
## Bias, Risks and Limitations
|
113 |
+
|
114 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
115 |
+
-->
|
116 |
+
|
117 |
+
<!--
|
118 |
+
### Recommendations
|
119 |
+
|
120 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
121 |
+
-->
|
122 |
+
|
123 |
+
## Training Details
|
124 |
+
|
125 |
+
### Training Set Metrics
|
126 |
+
| Training set | Min | Median | Max |
|
127 |
+
|:-------------|:----|:--------|:----|
|
128 |
+
| Word count | 2 | 25.9648 | 72 |
|
129 |
+
|
130 |
+
| Label | Training Sample Count |
|
131 |
+
|:----------|:----------------------|
|
132 |
+
| no aspect | 572 |
|
133 |
+
| aspect | 167 |
|
134 |
+
|
135 |
+
### Training Hyperparameters
|
136 |
+
- batch_size: (64, 64)
|
137 |
+
- num_epochs: (5, 5)
|
138 |
+
- max_steps: -1
|
139 |
+
- sampling_strategy: oversampling
|
140 |
+
- body_learning_rate: (2e-05, 1e-05)
|
141 |
+
- head_learning_rate: 0.01
|
142 |
+
- loss: CosineSimilarityLoss
|
143 |
+
- distance_metric: cosine_distance
|
144 |
+
- margin: 0.25
|
145 |
+
- end_to_end: False
|
146 |
+
- use_amp: True
|
147 |
+
- warmup_proportion: 0.1
|
148 |
+
- seed: 42
|
149 |
+
- eval_max_steps: -1
|
150 |
+
- load_best_model_at_end: True
|
151 |
+
|
152 |
+
### Training Results
|
153 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
154 |
+
|:----------:|:--------:|:-------------:|:---------------:|
|
155 |
+
| 0.0002 | 1 | 0.2687 | - |
|
156 |
+
| 0.0090 | 50 | 0.2516 | - |
|
157 |
+
| 0.0180 | 100 | 0.2619 | - |
|
158 |
+
| 0.0270 | 150 | 0.2499 | - |
|
159 |
+
| 0.0360 | 200 | 0.2428 | - |
|
160 |
+
| 0.0450 | 250 | 0.2443 | - |
|
161 |
+
| 0.0540 | 300 | 0.246 | - |
|
162 |
+
| 0.0629 | 350 | 0.249 | - |
|
163 |
+
| 0.0719 | 400 | 0.2354 | - |
|
164 |
+
| 0.0809 | 450 | 0.2347 | - |
|
165 |
+
| 0.0899 | 500 | 0.2154 | - |
|
166 |
+
| 0.0989 | 550 | 0.2285 | - |
|
167 |
+
| 0.1079 | 600 | 0.1812 | - |
|
168 |
+
| 0.1169 | 650 | 0.1446 | - |
|
169 |
+
| 0.1259 | 700 | 0.165 | - |
|
170 |
+
| 0.1349 | 750 | 0.1125 | - |
|
171 |
+
| 0.1439 | 800 | 0.0971 | - |
|
172 |
+
| 0.1529 | 850 | 0.1059 | - |
|
173 |
+
| 0.1619 | 900 | 0.0866 | - |
|
174 |
+
| 0.1709 | 950 | 0.0492 | - |
|
175 |
+
| **0.1799** | **1000** | **0.0546** | **0.274** |
|
176 |
+
| 0.1888 | 1050 | 0.037 | - |
|
177 |
+
| 0.1978 | 1100 | 0.0189 | - |
|
178 |
+
| 0.2068 | 1150 | 0.0279 | - |
|
179 |
+
| 0.2158 | 1200 | 0.004 | - |
|
180 |
+
| 0.2248 | 1250 | 0.0309 | - |
|
181 |
+
| 0.2338 | 1300 | 0.0049 | - |
|
182 |
+
| 0.2428 | 1350 | 0.0286 | - |
|
183 |
+
| 0.2518 | 1400 | 0.0234 | - |
|
184 |
+
| 0.2608 | 1450 | 0.0158 | - |
|
185 |
+
| 0.2698 | 1500 | 0.0354 | - |
|
186 |
+
| 0.2788 | 1550 | 0.0062 | - |
|
187 |
+
| 0.2878 | 1600 | 0.0172 | - |
|
188 |
+
| 0.2968 | 1650 | 0.0389 | - |
|
189 |
+
| 0.3058 | 1700 | 0.0221 | - |
|
190 |
+
| 0.3147 | 1750 | 0.0065 | - |
|
191 |
+
| 0.3237 | 1800 | 0.0128 | - |
|
192 |
+
| 0.3327 | 1850 | 0.0225 | - |
|
193 |
+
| 0.3417 | 1900 | 0.0021 | - |
|
194 |
+
| 0.3507 | 1950 | 0.0102 | - |
|
195 |
+
| 0.3597 | 2000 | 0.012 | 0.3429 |
|
196 |
+
| 0.3687 | 2050 | 0.0249 | - |
|
197 |
+
| 0.3777 | 2100 | 0.0054 | - |
|
198 |
+
| 0.3867 | 2150 | 0.0014 | - |
|
199 |
+
| 0.3957 | 2200 | 0.0014 | - |
|
200 |
+
| 0.4047 | 2250 | 0.0143 | - |
|
201 |
+
| 0.4137 | 2300 | 0.0078 | - |
|
202 |
+
| 0.4227 | 2350 | 0.0195 | - |
|
203 |
+
| 0.4317 | 2400 | 0.0006 | - |
|
204 |
+
| 0.4406 | 2450 | 0.0014 | - |
|
205 |
+
| 0.4496 | 2500 | 0.0083 | - |
|
206 |
+
| 0.4586 | 2550 | 0.0141 | - |
|
207 |
+
| 0.4676 | 2600 | 0.0046 | - |
|
208 |
+
| 0.4766 | 2650 | 0.01 | - |
|
209 |
+
| 0.4856 | 2700 | 0.0268 | - |
|
210 |
+
| 0.4946 | 2750 | 0.0008 | - |
|
211 |
+
| 0.5036 | 2800 | 0.0076 | - |
|
212 |
+
| 0.5126 | 2850 | 0.0004 | - |
|
213 |
+
| 0.5216 | 2900 | 0.0037 | - |
|
214 |
+
| 0.5306 | 2950 | 0.0005 | - |
|
215 |
+
| 0.5396 | 3000 | 0.0065 | 0.3565 |
|
216 |
+
| 0.5486 | 3050 | 0.002 | - |
|
217 |
+
| 0.5576 | 3100 | 0.0072 | - |
|
218 |
+
| 0.5665 | 3150 | 0.0141 | - |
|
219 |
+
| 0.5755 | 3200 | 0.0004 | - |
|
220 |
+
| 0.5845 | 3250 | 0.0086 | - |
|
221 |
+
| 0.5935 | 3300 | 0.0098 | - |
|
222 |
+
| 0.6025 | 3350 | 0.0048 | - |
|
223 |
+
| 0.6115 | 3400 | 0.0013 | - |
|
224 |
+
| 0.6205 | 3450 | 0.007 | - |
|
225 |
+
| 0.6295 | 3500 | 0.0059 | - |
|
226 |
+
| 0.6385 | 3550 | 0.0174 | - |
|
227 |
+
| 0.6475 | 3600 | 0.0003 | - |
|
228 |
+
| 0.6565 | 3650 | 0.0004 | - |
|
229 |
+
| 0.6655 | 3700 | 0.0032 | - |
|
230 |
+
| 0.6745 | 3750 | 0.0004 | - |
|
231 |
+
| 0.6835 | 3800 | 0.0035 | - |
|
232 |
+
| 0.6924 | 3850 | 0.0019 | - |
|
233 |
+
| 0.7014 | 3900 | 0.015 | - |
|
234 |
+
| 0.7104 | 3950 | 0.0204 | - |
|
235 |
+
| 0.7194 | 4000 | 0.0016 | 0.3404 |
|
236 |
+
| 0.7284 | 4050 | 0.0003 | - |
|
237 |
+
| 0.7374 | 4100 | 0.0036 | - |
|
238 |
+
| 0.7464 | 4150 | 0.0016 | - |
|
239 |
+
| 0.7554 | 4200 | 0.0104 | - |
|
240 |
+
| 0.7644 | 4250 | 0.003 | - |
|
241 |
+
| 0.7734 | 4300 | 0.0159 | - |
|
242 |
+
| 0.7824 | 4350 | 0.0029 | - |
|
243 |
+
| 0.7914 | 4400 | 0.0068 | - |
|
244 |
+
| 0.8004 | 4450 | 0.0021 | - |
|
245 |
+
| 0.8094 | 4500 | 0.006 | - |
|
246 |
+
| 0.8183 | 4550 | 0.006 | - |
|
247 |
+
| 0.8273 | 4600 | 0.0038 | - |
|
248 |
+
| 0.8363 | 4650 | 0.008 | - |
|
249 |
+
| 0.8453 | 4700 | 0.0003 | - |
|
250 |
+
| 0.8543 | 4750 | 0.0126 | - |
|
251 |
+
| 0.8633 | 4800 | 0.0002 | - |
|
252 |
+
| 0.8723 | 4850 | 0.0041 | - |
|
253 |
+
| 0.8813 | 4900 | 0.0002 | - |
|
254 |
+
| 0.8903 | 4950 | 0.0137 | - |
|
255 |
+
| 0.8993 | 5000 | 0.0041 | 0.3363 |
|
256 |
+
| 0.9083 | 5050 | 0.0252 | - |
|
257 |
+
| 0.9173 | 5100 | 0.0023 | - |
|
258 |
+
| 0.9263 | 5150 | 0.0062 | - |
|
259 |
+
| 0.9353 | 5200 | 0.0152 | - |
|
260 |
+
| 0.9442 | 5250 | 0.0014 | - |
|
261 |
+
| 0.9532 | 5300 | 0.0224 | - |
|
262 |
+
| 0.9622 | 5350 | 0.0174 | - |
|
263 |
+
| 0.9712 | 5400 | 0.0066 | - |
|
264 |
+
| 0.9802 | 5450 | 0.0002 | - |
|
265 |
+
| 0.9892 | 5500 | 0.0136 | - |
|
266 |
+
| 0.9982 | 5550 | 0.0036 | - |
|
267 |
+
| 1.0072 | 5600 | 0.0102 | - |
|
268 |
+
| 1.0162 | 5650 | 0.011 | - |
|
269 |
+
| 1.0252 | 5700 | 0.0035 | - |
|
270 |
+
| 1.0342 | 5750 | 0.0002 | - |
|
271 |
+
| 1.0432 | 5800 | 0.0002 | - |
|
272 |
+
| 1.0522 | 5850 | 0.0044 | - |
|
273 |
+
| 1.0612 | 5900 | 0.0125 | - |
|
274 |
+
| 1.0701 | 5950 | 0.0061 | - |
|
275 |
+
| 1.0791 | 6000 | 0.0165 | 0.3591 |
|
276 |
+
| 1.0881 | 6050 | 0.006 | - |
|
277 |
+
| 1.0971 | 6100 | 0.0003 | - |
|
278 |
+
| 1.1061 | 6150 | 0.0074 | - |
|
279 |
+
| 1.1151 | 6200 | 0.0019 | - |
|
280 |
+
| 1.1241 | 6250 | 0.0002 | - |
|
281 |
+
| 1.1331 | 6300 | 0.0064 | - |
|
282 |
+
| 1.1421 | 6350 | 0.0127 | - |
|
283 |
+
| 1.1511 | 6400 | 0.0012 | - |
|
284 |
+
| 1.1601 | 6450 | 0.0003 | - |
|
285 |
+
| 1.1691 | 6500 | 0.0251 | - |
|
286 |
+
| 1.1781 | 6550 | 0.0002 | - |
|
287 |
+
| 1.1871 | 6600 | 0.0003 | - |
|
288 |
+
| 1.1960 | 6650 | 0.0002 | - |
|
289 |
+
| 1.2050 | 6700 | 0.0002 | - |
|
290 |
+
| 1.2140 | 6750 | 0.0123 | - |
|
291 |
+
| 1.2230 | 6800 | 0.0055 | - |
|
292 |
+
| 1.2320 | 6850 | 0.0098 | - |
|
293 |
+
| 1.2410 | 6900 | 0.0028 | - |
|
294 |
+
| 1.25 | 6950 | 0.0049 | - |
|
295 |
+
| 1.2590 | 7000 | 0.0021 | 0.3537 |
|
296 |
+
| 1.2680 | 7050 | 0.0147 | - |
|
297 |
+
| 1.2770 | 7100 | 0.003 | - |
|
298 |
+
| 1.2860 | 7150 | 0.0002 | - |
|
299 |
+
| 1.2950 | 7200 | 0.0049 | - |
|
300 |
+
| 1.3040 | 7250 | 0.0033 | - |
|
301 |
+
| 1.3129 | 7300 | 0.0002 | - |
|
302 |
+
| 1.3219 | 7350 | 0.0065 | - |
|
303 |
+
| 1.3309 | 7400 | 0.0043 | - |
|
304 |
+
| 1.3399 | 7450 | 0.0107 | - |
|
305 |
+
| 1.3489 | 7500 | 0.0184 | - |
|
306 |
+
| 1.3579 | 7550 | 0.0116 | - |
|
307 |
+
| 1.3669 | 7600 | 0.0041 | - |
|
308 |
+
| 1.3759 | 7650 | 0.0001 | - |
|
309 |
+
| 1.3849 | 7700 | 0.0001 | - |
|
310 |
+
| 1.3939 | 7750 | 0.0074 | - |
|
311 |
+
| 1.4029 | 7800 | 0.0002 | - |
|
312 |
+
| 1.4119 | 7850 | 0.0087 | - |
|
313 |
+
| 1.4209 | 7900 | 0.0014 | - |
|
314 |
+
| 1.4299 | 7950 | 0.0045 | - |
|
315 |
+
| 1.4388 | 8000 | 0.0018 | 0.3439 |
|
316 |
+
| 1.4478 | 8050 | 0.0039 | - |
|
317 |
+
| 1.4568 | 8100 | 0.007 | - |
|
318 |
+
| 1.4658 | 8150 | 0.0066 | - |
|
319 |
+
| 1.4748 | 8200 | 0.0101 | - |
|
320 |
+
| 1.4838 | 8250 | 0.0047 | - |
|
321 |
+
| 1.4928 | 8300 | 0.0021 | - |
|
322 |
+
| 1.5018 | 8350 | 0.0002 | - |
|
323 |
+
| 1.5108 | 8400 | 0.0116 | - |
|
324 |
+
| 1.5198 | 8450 | 0.0017 | - |
|
325 |
+
| 1.5288 | 8500 | 0.0032 | - |
|
326 |
+
| 1.5378 | 8550 | 0.0053 | - |
|
327 |
+
| 1.5468 | 8600 | 0.0038 | - |
|
328 |
+
| 1.5558 | 8650 | 0.0001 | - |
|
329 |
+
| 1.5647 | 8700 | 0.002 | - |
|
330 |
+
| 1.5737 | 8750 | 0.0065 | - |
|
331 |
+
| 1.5827 | 8800 | 0.0064 | - |
|
332 |
+
| 1.5917 | 8850 | 0.0001 | - |
|
333 |
+
| 1.6007 | 8900 | 0.0049 | - |
|
334 |
+
| 1.6097 | 8950 | 0.0002 | - |
|
335 |
+
| 1.6187 | 9000 | 0.0083 | 0.3486 |
|
336 |
+
| 1.6277 | 9050 | 0.0105 | - |
|
337 |
+
| 1.6367 | 9100 | 0.0019 | - |
|
338 |
+
| 1.6457 | 9150 | 0.0002 | - |
|
339 |
+
| 1.6547 | 9200 | 0.0049 | - |
|
340 |
+
| 1.6637 | 9250 | 0.0001 | - |
|
341 |
+
| 1.6727 | 9300 | 0.0097 | - |
|
342 |
+
| 1.6817 | 9350 | 0.0098 | - |
|
343 |
+
| 1.6906 | 9400 | 0.0022 | - |
|
344 |
+
| 1.6996 | 9450 | 0.0142 | - |
|
345 |
+
| 1.7086 | 9500 | 0.0025 | - |
|
346 |
+
| 1.7176 | 9550 | 0.0147 | - |
|
347 |
+
| 1.7266 | 9600 | 0.0086 | - |
|
348 |
+
| 1.7356 | 9650 | 0.0062 | - |
|
349 |
+
| 1.7446 | 9700 | 0.0002 | - |
|
350 |
+
| 1.7536 | 9750 | 0.0103 | - |
|
351 |
+
| 1.7626 | 9800 | 0.0186 | - |
|
352 |
+
| 1.7716 | 9850 | 0.0112 | - |
|
353 |
+
| 1.7806 | 9900 | 0.0042 | - |
|
354 |
+
| 1.7896 | 9950 | 0.0166 | - |
|
355 |
+
| 1.7986 | 10000 | 0.0002 | 0.3571 |
|
356 |
+
| 1.8076 | 10050 | 0.0029 | - |
|
357 |
+
| 1.8165 | 10100 | 0.0055 | - |
|
358 |
+
| 1.8255 | 10150 | 0.0057 | - |
|
359 |
+
| 1.8345 | 10200 | 0.0163 | - |
|
360 |
+
| 1.8435 | 10250 | 0.0093 | - |
|
361 |
+
| 1.8525 | 10300 | 0.0083 | - |
|
362 |
+
| 1.8615 | 10350 | 0.0073 | - |
|
363 |
+
| 1.8705 | 10400 | 0.0089 | - |
|
364 |
+
| 1.8795 | 10450 | 0.0068 | - |
|
365 |
+
| 1.8885 | 10500 | 0.0001 | - |
|
366 |
+
| 1.8975 | 10550 | 0.0232 | - |
|
367 |
+
| 1.9065 | 10600 | 0.0161 | - |
|
368 |
+
| 1.9155 | 10650 | 0.0088 | - |
|
369 |
+
| 1.9245 | 10700 | 0.0002 | - |
|
370 |
+
| 1.9335 | 10750 | 0.0093 | - |
|
371 |
+
| 1.9424 | 10800 | 0.0103 | - |
|
372 |
+
| 1.9514 | 10850 | 0.002 | - |
|
373 |
+
| 1.9604 | 10900 | 0.0113 | - |
|
374 |
+
| 1.9694 | 10950 | 0.0055 | - |
|
375 |
+
| 1.9784 | 11000 | 0.0148 | 0.3461 |
|
376 |
+
| 1.9874 | 11050 | 0.0001 | - |
|
377 |
+
| 1.9964 | 11100 | 0.0017 | - |
|
378 |
+
| 2.0054 | 11150 | 0.0001 | - |
|
379 |
+
| 2.0144 | 11200 | 0.0204 | - |
|
380 |
+
| 2.0234 | 11250 | 0.0032 | - |
|
381 |
+
| 2.0324 | 11300 | 0.0029 | - |
|
382 |
+
| 2.0414 | 11350 | 0.002 | - |
|
383 |
+
| 2.0504 | 11400 | 0.0001 | - |
|
384 |
+
| 2.0594 | 11450 | 0.005 | - |
|
385 |
+
| 2.0683 | 11500 | 0.0001 | - |
|
386 |
+
| 2.0773 | 11550 | 0.0051 | - |
|
387 |
+
| 2.0863 | 11600 | 0.0095 | - |
|
388 |
+
| 2.0953 | 11650 | 0.0093 | - |
|
389 |
+
| 2.1043 | 11700 | 0.0171 | - |
|
390 |
+
| 2.1133 | 11750 | 0.0059 | - |
|
391 |
+
| 2.1223 | 11800 | 0.0026 | - |
|
392 |
+
| 2.1313 | 11850 | 0.0092 | - |
|
393 |
+
| 2.1403 | 11900 | 0.0002 | - |
|
394 |
+
| 2.1493 | 11950 | 0.0069 | - |
|
395 |
+
| 2.1583 | 12000 | 0.006 | 0.3572 |
|
396 |
+
| 2.1673 | 12050 | 0.009 | - |
|
397 |
+
| 2.1763 | 12100 | 0.008 | - |
|
398 |
+
| 2.1853 | 12150 | 0.0001 | - |
|
399 |
+
| 2.1942 | 12200 | 0.0062 | - |
|
400 |
+
| 2.2032 | 12250 | 0.0086 | - |
|
401 |
+
| 2.2122 | 12300 | 0.0001 | - |
|
402 |
+
| 2.2212 | 12350 | 0.0001 | - |
|
403 |
+
| 2.2302 | 12400 | 0.0001 | - |
|
404 |
+
| 2.2392 | 12450 | 0.0001 | - |
|
405 |
+
| 2.2482 | 12500 | 0.0022 | - |
|
406 |
+
| 2.2572 | 12550 | 0.0014 | - |
|
407 |
+
| 2.2662 | 12600 | 0.0014 | - |
|
408 |
+
| 2.2752 | 12650 | 0.009 | - |
|
409 |
+
| 2.2842 | 12700 | 0.0001 | - |
|
410 |
+
| 2.2932 | 12750 | 0.0081 | - |
|
411 |
+
| 2.3022 | 12800 | 0.0127 | - |
|
412 |
+
| 2.3112 | 12850 | 0.0001 | - |
|
413 |
+
| 2.3201 | 12900 | 0.0028 | - |
|
414 |
+
| 2.3291 | 12950 | 0.0016 | - |
|
415 |
+
| 2.3381 | 13000 | 0.0051 | 0.3587 |
|
416 |
+
| 2.3471 | 13050 | 0.0044 | - |
|
417 |
+
| 2.3561 | 13100 | 0.0133 | - |
|
418 |
+
| 2.3651 | 13150 | 0.0043 | - |
|
419 |
+
| 2.3741 | 13200 | 0.0001 | - |
|
420 |
+
| 2.3831 | 13250 | 0.0017 | - |
|
421 |
+
| 2.3921 | 13300 | 0.0095 | - |
|
422 |
+
| 2.4011 | 13350 | 0.008 | - |
|
423 |
+
| 2.4101 | 13400 | 0.0074 | - |
|
424 |
+
| 2.4191 | 13450 | 0.0181 | - |
|
425 |
+
| 2.4281 | 13500 | 0.0141 | - |
|
426 |
+
| 2.4371 | 13550 | 0.0114 | - |
|
427 |
+
| 2.4460 | 13600 | 0.0046 | - |
|
428 |
+
| 2.4550 | 13650 | 0.0053 | - |
|
429 |
+
| 2.4640 | 13700 | 0.0001 | - |
|
430 |
+
| 2.4730 | 13750 | 0.0001 | - |
|
431 |
+
| 2.4820 | 13800 | 0.0114 | - |
|
432 |
+
| 2.4910 | 13850 | 0.0001 | - |
|
433 |
+
| 2.5 | 13900 | 0.0075 | - |
|
434 |
+
| 2.5090 | 13950 | 0.0016 | - |
|
435 |
+
| 2.5180 | 14000 | 0.0014 | 0.3376 |
|
436 |
+
| 2.5270 | 14050 | 0.0075 | - |
|
437 |
+
| 2.5360 | 14100 | 0.0001 | - |
|
438 |
+
| 2.5450 | 14150 | 0.0001 | - |
|
439 |
+
| 2.5540 | 14200 | 0.0013 | - |
|
440 |
+
| 2.5629 | 14250 | 0.0001 | - |
|
441 |
+
| 2.5719 | 14300 | 0.0082 | - |
|
442 |
+
| 2.5809 | 14350 | 0.0021 | - |
|
443 |
+
| 2.5899 | 14400 | 0.0001 | - |
|
444 |
+
| 2.5989 | 14450 | 0.0001 | - |
|
445 |
+
| 2.6079 | 14500 | 0.0016 | - |
|
446 |
+
| 2.6169 | 14550 | 0.0001 | - |
|
447 |
+
| 2.6259 | 14600 | 0.0001 | - |
|
448 |
+
| 2.6349 | 14650 | 0.0058 | - |
|
449 |
+
| 2.6439 | 14700 | 0.0223 | - |
|
450 |
+
| 2.6529 | 14750 | 0.0001 | - |
|
451 |
+
| 2.6619 | 14800 | 0.0001 | - |
|
452 |
+
| 2.6709 | 14850 | 0.0249 | - |
|
453 |
+
| 2.6799 | 14900 | 0.008 | - |
|
454 |
+
| 2.6888 | 14950 | 0.0071 | - |
|
455 |
+
| 2.6978 | 15000 | 0.0237 | 0.3769 |
|
456 |
+
| 2.7068 | 15050 | 0.0001 | - |
|
457 |
+
| 2.7158 | 15100 | 0.0016 | - |
|
458 |
+
| 2.7248 | 15150 | 0.0031 | - |
|
459 |
+
| 2.7338 | 15200 | 0.0063 | - |
|
460 |
+
| 2.7428 | 15250 | 0.0001 | - |
|
461 |
+
| 2.7518 | 15300 | 0.0127 | - |
|
462 |
+
| 2.7608 | 15350 | 0.0001 | - |
|
463 |
+
| 2.7698 | 15400 | 0.0114 | - |
|
464 |
+
| 2.7788 | 15450 | 0.0106 | - |
|
465 |
+
| 2.7878 | 15500 | 0.0086 | - |
|
466 |
+
| 2.7968 | 15550 | 0.0083 | - |
|
467 |
+
| 2.8058 | 15600 | 0.0001 | - |
|
468 |
+
| 2.8147 | 15650 | 0.0001 | - |
|
469 |
+
| 2.8237 | 15700 | 0.0035 | - |
|
470 |
+
| 2.8327 | 15750 | 0.0095 | - |
|
471 |
+
| 2.8417 | 15800 | 0.0041 | - |
|
472 |
+
| 2.8507 | 15850 | 0.0001 | - |
|
473 |
+
| 2.8597 | 15900 | 0.0001 | - |
|
474 |
+
| 2.8687 | 15950 | 0.0001 | - |
|
475 |
+
| 2.8777 | 16000 | 0.0001 | 0.3509 |
|
476 |
+
| 2.8867 | 16050 | 0.0001 | - |
|
477 |
+
| 2.8957 | 16100 | 0.0124 | - |
|
478 |
+
| 2.9047 | 16150 | 0.0083 | - |
|
479 |
+
| 2.9137 | 16200 | 0.0017 | - |
|
480 |
+
| 2.9227 | 16250 | 0.0001 | - |
|
481 |
+
| 2.9317 | 16300 | 0.0042 | - |
|
482 |
+
| 2.9406 | 16350 | 0.0058 | - |
|
483 |
+
| 2.9496 | 16400 | 0.0001 | - |
|
484 |
+
| 2.9586 | 16450 | 0.0001 | - |
|
485 |
+
| 2.9676 | 16500 | 0.0021 | - |
|
486 |
+
| 2.9766 | 16550 | 0.0025 | - |
|
487 |
+
| 2.9856 | 16600 | 0.0068 | - |
|
488 |
+
| 2.9946 | 16650 | 0.0099 | - |
|
489 |
+
| 3.0036 | 16700 | 0.0015 | - |
|
490 |
+
| 3.0126 | 16750 | 0.0086 | - |
|
491 |
+
| 3.0216 | 16800 | 0.0162 | - |
|
492 |
+
| 3.0306 | 16850 | 0.0001 | - |
|
493 |
+
| 3.0396 | 16900 | 0.0181 | - |
|
494 |
+
| 3.0486 | 16950 | 0.0083 | - |
|
495 |
+
| 3.0576 | 17000 | 0.0045 | 0.346 |
|
496 |
+
| 3.0665 | 17050 | 0.0072 | - |
|
497 |
+
| 3.0755 | 17100 | 0.0045 | - |
|
498 |
+
| 3.0845 | 17150 | 0.005 | - |
|
499 |
+
| 3.0935 | 17200 | 0.003 | - |
|
500 |
+
| 3.1025 | 17250 | 0.0069 | - |
|
501 |
+
| 3.1115 | 17300 | 0.0001 | - |
|
502 |
+
| 3.1205 | 17350 | 0.003 | - |
|
503 |
+
| 3.1295 | 17400 | 0.0077 | - |
|
504 |
+
| 3.1385 | 17450 | 0.0001 | - |
|
505 |
+
| 3.1475 | 17500 | 0.0001 | - |
|
506 |
+
| 3.1565 | 17550 | 0.0166 | - |
|
507 |
+
| 3.1655 | 17600 | 0.0001 | - |
|
508 |
+
| 3.1745 | 17650 | 0.0001 | - |
|
509 |
+
| 3.1835 | 17700 | 0.0084 | - |
|
510 |
+
| 3.1924 | 17750 | 0.0106 | - |
|
511 |
+
| 3.2014 | 17800 | 0.0027 | - |
|
512 |
+
| 3.2104 | 17850 | 0.0092 | - |
|
513 |
+
| 3.2194 | 17900 | 0.0001 | - |
|
514 |
+
| 3.2284 | 17950 | 0.0001 | - |
|
515 |
+
| 3.2374 | 18000 | 0.0066 | 0.3501 |
|
516 |
+
| 3.2464 | 18050 | 0.0037 | - |
|
517 |
+
| 3.2554 | 18100 | 0.0035 | - |
|
518 |
+
| 3.2644 | 18150 | 0.0029 | - |
|
519 |
+
| 3.2734 | 18200 | 0.0017 | - |
|
520 |
+
| 3.2824 | 18250 | 0.0001 | - |
|
521 |
+
| 3.2914 | 18300 | 0.0034 | - |
|
522 |
+
| 3.3004 | 18350 | 0.0121 | - |
|
523 |
+
| 3.3094 | 18400 | 0.0051 | - |
|
524 |
+
| 3.3183 | 18450 | 0.0024 | - |
|
525 |
+
| 3.3273 | 18500 | 0.0019 | - |
|
526 |
+
| 3.3363 | 18550 | 0.0014 | - |
|
527 |
+
| 3.3453 | 18600 | 0.0167 | - |
|
528 |
+
| 3.3543 | 18650 | 0.0097 | - |
|
529 |
+
| 3.3633 | 18700 | 0.0025 | - |
|
530 |
+
| 3.3723 | 18750 | 0.0065 | - |
|
531 |
+
| 3.3813 | 18800 | 0.011 | - |
|
532 |
+
| 3.3903 | 18850 | 0.0001 | - |
|
533 |
+
| 3.3993 | 18900 | 0.0001 | - |
|
534 |
+
| 3.4083 | 18950 | 0.0072 | - |
|
535 |
+
| 3.4173 | 19000 | 0.0132 | 0.3511 |
|
536 |
+
| 3.4263 | 19050 | 0.0084 | - |
|
537 |
+
| 3.4353 | 19100 | 0.0015 | - |
|
538 |
+
| 3.4442 | 19150 | 0.0014 | - |
|
539 |
+
| 3.4532 | 19200 | 0.011 | - |
|
540 |
+
| 3.4622 | 19250 | 0.0083 | - |
|
541 |
+
| 3.4712 | 19300 | 0.0073 | - |
|
542 |
+
| 3.4802 | 19350 | 0.0024 | - |
|
543 |
+
| 3.4892 | 19400 | 0.002 | - |
|
544 |
+
| 3.4982 | 19450 | 0.0155 | - |
|
545 |
+
| 3.5072 | 19500 | 0.0042 | - |
|
546 |
+
| 3.5162 | 19550 | 0.0001 | - |
|
547 |
+
| 3.5252 | 19600 | 0.0043 | - |
|
548 |
+
| 3.5342 | 19650 | 0.0026 | - |
|
549 |
+
| 3.5432 | 19700 | 0.0022 | - |
|
550 |
+
| 3.5522 | 19750 | 0.002 | - |
|
551 |
+
| 3.5612 | 19800 | 0.0018 | - |
|
552 |
+
| 3.5701 | 19850 | 0.0001 | - |
|
553 |
+
| 3.5791 | 19900 | 0.0012 | - |
|
554 |
+
| 3.5881 | 19950 | 0.002 | - |
|
555 |
+
| 3.5971 | 20000 | 0.0089 | 0.3516 |
|
556 |
+
| 3.6061 | 20050 | 0.003 | - |
|
557 |
+
| 3.6151 | 20100 | 0.0036 | - |
|
558 |
+
| 3.6241 | 20150 | 0.0001 | - |
|
559 |
+
| 3.6331 | 20200 | 0.0001 | - |
|
560 |
+
| 3.6421 | 20250 | 0.0156 | - |
|
561 |
+
| 3.6511 | 20300 | 0.0001 | - |
|
562 |
+
| 3.6601 | 20350 | 0.0174 | - |
|
563 |
+
| 3.6691 | 20400 | 0.0001 | - |
|
564 |
+
| 3.6781 | 20450 | 0.011 | - |
|
565 |
+
| 3.6871 | 20500 | 0.0001 | - |
|
566 |
+
| 3.6960 | 20550 | 0.0047 | - |
|
567 |
+
| 3.7050 | 20600 | 0.0132 | - |
|
568 |
+
| 3.7140 | 20650 | 0.007 | - |
|
569 |
+
| 3.7230 | 20700 | 0.0001 | - |
|
570 |
+
| 3.7320 | 20750 | 0.0025 | - |
|
571 |
+
| 3.7410 | 20800 | 0.0049 | - |
|
572 |
+
| 3.75 | 20850 | 0.0074 | - |
|
573 |
+
| 3.7590 | 20900 | 0.002 | - |
|
574 |
+
| 3.7680 | 20950 | 0.0112 | - |
|
575 |
+
| 3.7770 | 21000 | 0.0001 | 0.3483 |
|
576 |
+
| 3.7860 | 21050 | 0.0001 | - |
|
577 |
+
| 3.7950 | 21100 | 0.0064 | - |
|
578 |
+
| 3.8040 | 21150 | 0.0133 | - |
|
579 |
+
| 3.8129 | 21200 | 0.0001 | - |
|
580 |
+
| 3.8219 | 21250 | 0.0112 | - |
|
581 |
+
| 3.8309 | 21300 | 0.0001 | - |
|
582 |
+
| 3.8399 | 21350 | 0.0001 | - |
|
583 |
+
| 3.8489 | 21400 | 0.0001 | - |
|
584 |
+
| 3.8579 | 21450 | 0.0025 | - |
|
585 |
+
| 3.8669 | 21500 | 0.0047 | - |
|
586 |
+
| 3.8759 | 21550 | 0.0001 | - |
|
587 |
+
| 3.8849 | 21600 | 0.0062 | - |
|
588 |
+
| 3.8939 | 21650 | 0.0001 | - |
|
589 |
+
| 3.9029 | 21700 | 0.0315 | - |
|
590 |
+
| 3.9119 | 21750 | 0.002 | - |
|
591 |
+
| 3.9209 | 21800 | 0.0034 | - |
|
592 |
+
| 3.9299 | 21850 | 0.004 | - |
|
593 |
+
| 3.9388 | 21900 | 0.0046 | - |
|
594 |
+
| 3.9478 | 21950 | 0.008 | - |
|
595 |
+
| 3.9568 | 22000 | 0.0103 | 0.3474 |
|
596 |
+
| 3.9658 | 22050 | 0.0142 | - |
|
597 |
+
| 3.9748 | 22100 | 0.0207 | - |
|
598 |
+
| 3.9838 | 22150 | 0.0105 | - |
|
599 |
+
| 3.9928 | 22200 | 0.0114 | - |
|
600 |
+
| 4.0018 | 22250 | 0.002 | - |
|
601 |
+
| 4.0108 | 22300 | 0.0121 | - |
|
602 |
+
| 4.0198 | 22350 | 0.0001 | - |
|
603 |
+
| 4.0288 | 22400 | 0.0058 | - |
|
604 |
+
| 4.0378 | 22450 | 0.0045 | - |
|
605 |
+
| 4.0468 | 22500 | 0.0001 | - |
|
606 |
+
| 4.0558 | 22550 | 0.0086 | - |
|
607 |
+
| 4.0647 | 22600 | 0.0121 | - |
|
608 |
+
| 4.0737 | 22650 | 0.0045 | - |
|
609 |
+
| 4.0827 | 22700 | 0.0001 | - |
|
610 |
+
| 4.0917 | 22750 | 0.0046 | - |
|
611 |
+
| 4.1007 | 22800 | 0.0076 | - |
|
612 |
+
| 4.1097 | 22850 | 0.0001 | - |
|
613 |
+
| 4.1187 | 22900 | 0.0154 | - |
|
614 |
+
| 4.1277 | 22950 | 0.0108 | - |
|
615 |
+
| 4.1367 | 23000 | 0.0058 | 0.3575 |
|
616 |
+
| 4.1457 | 23050 | 0.0088 | - |
|
617 |
+
| 4.1547 | 23100 | 0.0019 | - |
|
618 |
+
| 4.1637 | 23150 | 0.0055 | - |
|
619 |
+
| 4.1727 | 23200 | 0.0299 | - |
|
620 |
+
| 4.1817 | 23250 | 0.0085 | - |
|
621 |
+
| 4.1906 | 23300 | 0.0016 | - |
|
622 |
+
| 4.1996 | 23350 | 0.0001 | - |
|
623 |
+
| 4.2086 | 23400 | 0.0001 | - |
|
624 |
+
| 4.2176 | 23450 | 0.0072 | - |
|
625 |
+
| 4.2266 | 23500 | 0.0092 | - |
|
626 |
+
| 4.2356 | 23550 | 0.0001 | - |
|
627 |
+
| 4.2446 | 23600 | 0.0064 | - |
|
628 |
+
| 4.2536 | 23650 | 0.0065 | - |
|
629 |
+
| 4.2626 | 23700 | 0.0001 | - |
|
630 |
+
| 4.2716 | 23750 | 0.0017 | - |
|
631 |
+
| 4.2806 | 23800 | 0.0083 | - |
|
632 |
+
| 4.2896 | 23850 | 0.0001 | - |
|
633 |
+
| 4.2986 | 23900 | 0.0039 | - |
|
634 |
+
| 4.3076 | 23950 | 0.002 | - |
|
635 |
+
| 4.3165 | 24000 | 0.0037 | 0.357 |
|
636 |
+
| 4.3255 | 24050 | 0.0095 | - |
|
637 |
+
| 4.3345 | 24100 | 0.002 | - |
|
638 |
+
| 4.3435 | 24150 | 0.017 | - |
|
639 |
+
| 4.3525 | 24200 | 0.0086 | - |
|
640 |
+
| 4.3615 | 24250 | 0.007 | - |
|
641 |
+
| 4.3705 | 24300 | 0.0023 | - |
|
642 |
+
| 4.3795 | 24350 | 0.0122 | - |
|
643 |
+
| 4.3885 | 24400 | 0.0097 | - |
|
644 |
+
| 4.3975 | 24450 | 0.0027 | - |
|
645 |
+
| 4.4065 | 24500 | 0.0081 | - |
|
646 |
+
| 4.4155 | 24550 | 0.0043 | - |
|
647 |
+
| 4.4245 | 24600 | 0.0055 | - |
|
648 |
+
| 4.4335 | 24650 | 0.0001 | - |
|
649 |
+
| 4.4424 | 24700 | 0.0014 | - |
|
650 |
+
| 4.4514 | 24750 | 0.0001 | - |
|
651 |
+
| 4.4604 | 24800 | 0.0091 | - |
|
652 |
+
| 4.4694 | 24850 | 0.0087 | - |
|
653 |
+
| 4.4784 | 24900 | 0.0101 | - |
|
654 |
+
| 4.4874 | 24950 | 0.0001 | - |
|
655 |
+
| 4.4964 | 25000 | 0.013 | 0.3566 |
|
656 |
+
| 4.5054 | 25050 | 0.013 | - |
|
657 |
+
| 4.5144 | 25100 | 0.0082 | - |
|
658 |
+
| 4.5234 | 25150 | 0.0063 | - |
|
659 |
+
| 4.5324 | 25200 | 0.0046 | - |
|
660 |
+
| 4.5414 | 25250 | 0.0087 | - |
|
661 |
+
| 4.5504 | 25300 | 0.0063 | - |
|
662 |
+
| 4.5594 | 25350 | 0.0019 | - |
|
663 |
+
| 4.5683 | 25400 | 0.0061 | - |
|
664 |
+
| 4.5773 | 25450 | 0.004 | - |
|
665 |
+
| 4.5863 | 25500 | 0.0001 | - |
|
666 |
+
| 4.5953 | 25550 | 0.0001 | - |
|
667 |
+
| 4.6043 | 25600 | 0.0088 | - |
|
668 |
+
| 4.6133 | 25650 | 0.0191 | - |
|
669 |
+
| 4.6223 | 25700 | 0.0124 | - |
|
670 |
+
| 4.6313 | 25750 | 0.0001 | - |
|
671 |
+
| 4.6403 | 25800 | 0.0023 | - |
|
672 |
+
| 4.6493 | 25850 | 0.0001 | - |
|
673 |
+
| 4.6583 | 25900 | 0.0068 | - |
|
674 |
+
| 4.6673 | 25950 | 0.0001 | - |
|
675 |
+
| 4.6763 | 26000 | 0.0034 | 0.3563 |
|
676 |
+
| 4.6853 | 26050 | 0.0138 | - |
|
677 |
+
| 4.6942 | 26100 | 0.0001 | - |
|
678 |
+
| 4.7032 | 26150 | 0.0068 | - |
|
679 |
+
| 4.7122 | 26200 | 0.0091 | - |
|
680 |
+
| 4.7212 | 26250 | 0.0001 | - |
|
681 |
+
| 4.7302 | 26300 | 0.0152 | - |
|
682 |
+
| 4.7392 | 26350 | 0.0064 | - |
|
683 |
+
| 4.7482 | 26400 | 0.0021 | - |
|
684 |
+
| 4.7572 | 26450 | 0.0088 | - |
|
685 |
+
| 4.7662 | 26500 | 0.0001 | - |
|
686 |
+
| 4.7752 | 26550 | 0.0042 | - |
|
687 |
+
| 4.7842 | 26600 | 0.0022 | - |
|
688 |
+
| 4.7932 | 26650 | 0.0065 | - |
|
689 |
+
| 4.8022 | 26700 | 0.0039 | - |
|
690 |
+
| 4.8112 | 26750 | 0.0039 | - |
|
691 |
+
| 4.8201 | 26800 | 0.0001 | - |
|
692 |
+
| 4.8291 | 26850 | 0.0155 | - |
|
693 |
+
| 4.8381 | 26900 | 0.0021 | - |
|
694 |
+
| 4.8471 | 26950 | 0.0039 | - |
|
695 |
+
| 4.8561 | 27000 | 0.002 | 0.3555 |
|
696 |
+
| 4.8651 | 27050 | 0.0092 | - |
|
697 |
+
| 4.8741 | 27100 | 0.0001 | - |
|
698 |
+
| 4.8831 | 27150 | 0.0081 | - |
|
699 |
+
| 4.8921 | 27200 | 0.0081 | - |
|
700 |
+
| 4.9011 | 27250 | 0.0037 | - |
|
701 |
+
| 4.9101 | 27300 | 0.0104 | - |
|
702 |
+
| 4.9191 | 27350 | 0.0022 | - |
|
703 |
+
| 4.9281 | 27400 | 0.004 | - |
|
704 |
+
| 4.9371 | 27450 | 0.0076 | - |
|
705 |
+
| 4.9460 | 27500 | 0.0043 | - |
|
706 |
+
| 4.9550 | 27550 | 0.0142 | - |
|
707 |
+
| 4.9640 | 27600 | 0.0126 | - |
|
708 |
+
| 4.9730 | 27650 | 0.0038 | - |
|
709 |
+
| 4.9820 | 27700 | 0.0107 | - |
|
710 |
+
| 4.9910 | 27750 | 0.0019 | - |
|
711 |
+
| 5.0 | 27800 | 0.0104 | - |
|
712 |
+
|
713 |
+
* The bold row denotes the saved checkpoint.
|
714 |
+
### Framework Versions
|
715 |
+
- Python: 3.10.12
|
716 |
+
- SetFit: 1.0.3
|
717 |
+
- Sentence Transformers: 3.0.1
|
718 |
+
- spaCy: 3.7.4
|
719 |
+
- Transformers: 4.39.0
|
720 |
+
- PyTorch: 2.3.1+cu121
|
721 |
+
- Datasets: 2.20.0
|
722 |
+
- Tokenizers: 0.15.2
|
723 |
+
|
724 |
+
## Citation
|
725 |
+
|
726 |
+
### BibTeX
|
727 |
+
```bibtex
|
728 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
729 |
+
doi = {10.48550/ARXIV.2209.11055},
|
730 |
+
url = {https://arxiv.org/abs/2209.11055},
|
731 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
732 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
733 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
734 |
+
publisher = {arXiv},
|
735 |
+
year = {2022},
|
736 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
737 |
+
}
|
738 |
+
```
|
739 |
+
|
740 |
+
<!--
|
741 |
+
## Glossary
|
742 |
+
|
743 |
+
*Clearly define terms in order to be accessible across audiences.*
|
744 |
+
-->
|
745 |
+
|
746 |
+
<!--
|
747 |
+
## Model Card Authors
|
748 |
+
|
749 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
750 |
+
-->
|
751 |
+
|
752 |
+
<!--
|
753 |
+
## Model Card Contact
|
754 |
+
|
755 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
756 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "models/step_1000",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.39.0",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.39.0",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"spacy_model": "en_core_web_lg",
|
4 |
+
"span_context": 0,
|
5 |
+
"labels": [
|
6 |
+
"no aspect",
|
7 |
+
"aspect"
|
8 |
+
]
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:063f6d2fef174e744b84336cc7a0640b0a32c82e1ec54de23bc704f794401ee2
|
3 |
+
size 133462128
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a70ada5286051f718ca072fa3ab7a4e2fae2ad69378389e5f1a07fb71b526032
|
3 |
+
size 3919
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|