File size: 31,480 Bytes
7b3153c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:786
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: How much money was saved through systems automation and process
    improvement efforts?
  sentences:
  - Member","Thought Leadership","E-commerce","Entrepreneurship","Mobile Devices","Product
    Management","Start-ups","Strategic Partnerships","Strategy"]
  - '- URL":"linkedin.com/company/channel-factory","Description":"• Helped scale
    the video advertising startup from 0 to 8-figure revenues and 5 to 40+ employees
    in 2.5 years.\n• Managed the company''s day-to-day operations. Saved $100,000+
    through systems automation and process improvement efforts.\n• Led sales operations
    for a 7-person ad sales team and managed BD partnerships with one of the three
    largest online travel agencies, a major online ad management platform, and rep
    firms in the United Kingdom, India, Brazil, and Australia.\n• Spearheaded company
    recruitment efforts and improved HR budget efficiency to save $350,000+ annually.\n•
    Evaluated, implemented, and managed third party business systems, including Salesforce
    and'
  - and start building trust and camaraderie at work - vital assets in providing psychological
    safety, enabling agility and unleashing growth.\n","Company Size":"11-50","Industries":["Administrative
    Services","Community and Lifestyle","Government and Military","HR and Recruiting","Health","Information
    Technology","Software"],"Title":"Co-Founder and Servant CEO","Departments":["Senior
    Leadership"],"Start Date":"2018-01-01","End Date":null,"Location":"Santa Monica,
    California, United States, United States","Is Current":true,"Job Order":18},{"Company
    Name":"CNCCEF","Specter - Company ID":"5e3b912d137e998b5ae832aa","Domain":"cnccef.org","LinkedIn
    -
- source_sentence: What skills do you possess that relate to marketing and brand development?
  sentences:
  - 'I have been fortunate to have been a part of the creation and/or growth story
    for brands including ASYSTEM, Formula Fig, Aritzia, Mr Porter to name a few.

    Skills: ["E-commerce","Advertising","Social Media","Strategy","Marketing","Online
    Advertising","Fashion","Brand Development","Marketing Strategy","Digital Strategy","Media
    Relations","Retail","Business Development","Digital Marketing","Mobile Devices","Digital
    Media","Marketing Communications","Strategic Communications","Branding & Identity","Business
    Strategy","Product Development","Social media","eCommerce","Art Direction","Brand
    Management","Brand Strategy","Consumer Behavior","Creative Strategy","E-Commerce","Media"]'
  - is able to do so in near real time.","Company Size":null,"Industries":null,"Title":"ceo","Departments":["Senior
    Leadership"],"Start Date":"2005-03-01","End Date":"2007-12-01","Location":null,"Is
    Current":false,"Job Order":8},{"Company Name":"SnapNames","Specter - Company ID":"5e3bc17800c8f4c966a8bad6","Domain":"snapnames.com","LinkedIn
    - URL":"linkedin.com/company/snapnames-com","Description":"I served as a strategic
    advisor to the CEO in the capacity of a Board Director, and briefly as Chairman
    of the Board, prior to its acquisition by Oversee","Company Size":"11-50","Industries":["Commerce
    and Shopping","Internet Services"],"Title":"Director Board Of Directors","Departments":["Senior
    Leadership"],"Start Date":"2002-04-01","End
  - "Technology\",\"Software\",\"Transportation\"],\"Title\":\"Co-Founder & CTO\"\
    ,\"Departments\":[\"Senior Leadership\",\"Engineering\"],\"Start Date\":\"2021-08-01\"\
    ,\"End Date\":null,\"Location\":\"Los Altos, California, United States, United\
    \ States\",\"Is Current\":true,\"Job Order\":6},{\"Company Name\":\"XDLINX Space\
    \ Labs\",\"Specter - Company ID\":\"6712477ab8cbb513aaee920e\",\"Domain\":\"xdlinx.space\"\
    ,\"LinkedIn - URL\":\"linkedin.com/company/xdlinx-labs\",\"Description\":null,\"\
    Company Size\":\"51-200\",\"Industries\":[\"Hardware\",\"Transportation\"],\"\
    Title\":\"Co-Founder\",\"Departments\":[\"Senior Leadership\"],\"Start Date\"\
    :\"2022-07-01\",\"End Date\":null,\"Location\":\"HyderÄ\x81bÄ\x81d, Telangana,\
    \ India, Asia\",\"Is Current\":true,\"Job Order\":5},{\"Company Name\":\"Diamanti\"\
    ,\"Specter - Company"
- source_sentence: In what ways does SignalFire support companies at the seed stage?
  sentences:
  - '- URL":"linkedin.com/school/%D0%BC%D0%BE%D1%81%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B0%D1%8F-%D0%BC%D0%B5%D0%B6%D0%B4%D1%83%D0%BD%D0%B0%D1%80%D0%BE%D0%B4%D0%BD%D0%B0%D1%8F-%D0%B2%D1%8B%D1%81%D1%88%D0%B0%D1%8F-%D1%88%D0%BA%D0%BE%D0%BB%D0%B0-%D0%B1%D0%B8%D0%B7%D0%BD%D0%B5%D1%81%D0%B0-%C2%AB%D0%BC%D0%B8%D1%80%D0%B1%D0%B8%D1%81%C2%BB-%D0%B8%D0%BD%D1%81%D1%82%D0%B8%D1%82%D1%83%D1%82-","Field
    of Study":"","Degree Title":"Integrated year abroad","Description":null,"Start
    Date":"2006-01-01","End Date":"2006-01-01","Location":"Moscow, Moscow, Russian
    Federation, Russia"},{"Name":"Hochschule Furtwangen University","LinkedIn - URL":"linkedin.com/school/hochschule-furtwangen-university","Field
    of Study":"International Management","Degree Title":"Bachelor'
  - I specialize in driving the data algorithms that can predict venture outcomes
    and target the top 5% of funding rounds at each stage. I have a product mentality
    and a people-first, technology second, point of view. I also have an honorary
    doctorate from the University of Kent, where I studied British Constitution and
    Sociology. I have lived in Palo Alto, California since 1997, and I am passionate
    about anticipating and creating change in the tech industry.
  - 'firepower at the seed stage to solve the biggest entrepreneur pain points.  Our
    distributed network approach provides expert advice from some of the world''s
    best entrepreneurs, product & engineering leaders in virtually every key discipline
    and industry.  We have developed a first of its kind centralized infrastructure
    to help with recruiting exceptional talent, business development, customer acquisition
    as well as educational & community events.  We don’t follow the crowd, and almost
    always lead our investment rounds as the first institutional investors in exceptional
    companies.  You can read more about SignalFire at: https://medium.com/signalfire-fund","Company
    Size":"51-200","Industries":["Data and Analytics","Finance","Lending and'
- source_sentence: What role did the individual hold at the company from 1998 to 2002?
  sentences:
  - Current":true,"Job Order":25},{"Company Name":"BigSpring","Specter - Company ID":"653554dfd1653b1e73051e7c","Domain":"bigspring.ai","LinkedIn
    - URL":"linkedin.com/company/bigspringai","Description":null,"Company Size":"11-50","Industries":["Community
    and Lifestyle","Data and Analytics","DeepTech","Education","HR and Recruiting","Professional
    Services","Software"],"Title":"Advisor","Departments":["Other"],"Start Date":"2019-01-01","End
    Date":null,"Location":"San Francisco, California, United States, United States","Is
    Current":true,"Job Order":24},{"Company Name":"Clockwise","Specter - Company ID":"5e3a8f1e040ca7b0c6f0bd98","Domain":"getclockwise.com","LinkedIn
    - URL":"linkedin.com/company/clockwise-inc.","Description":null,"Company
  - a relationship to VeriSIgn to sell Internet Keywords through its channels.\n\nAn
    IPO filing.\n\nOver 350 employees.","Company Size":"1-10","Industries":["Internet
    Services","Software","Transportation"],"Title":"CEO, President, Chairman","Departments":["Senior
    Leadership"],"Start Date":"1998-01-01","End Date":"2002-06-01","Location":"San
    Carlos, California, United States, United States","Is Current":false,"Job Order":4},{"Company
    Name":"NetNames","Specter - Company ID":"5e3bbde400c8f4c9669d8d4b","Domain":"netnames.com","LinkedIn
    - URL":"linkedin.com/company/netnames","Description":"I seed funded NetNames.
    We sold it to NetBenefit in 2000. I was a board member of the merged entity through
    2001. NetNames was the world's first domain name
  - '- Company ID":"64f802e6538115f141f4063a","Domain":"trynectar.io","LinkedIn -
    URL":"linkedin.com/company/nectar-ai","Description":null,"Company Size":"11-50","Industries":["Advertising","Commerce
    and Shopping","Data and Analytics","DeepTech","Sales and Marketing","Software"],"Title":"Investor","Departments":["Senior
    Leadership"],"Start Date":"2023-10-01","End Date":null,"Location":"Seattle, Washington,
    United States, United States","Is Current":true,"Job Order":32},{"Company Name":"BinStar","Specter
    - Company ID":"6411d185abe7c1e313b62b4a","Domain":"bin-star.com","LinkedIn - URL":"linkedin.com/company/binstar","Description":null,"Company
    Size":"1-10","Industries":["Commerce and Shopping"],"Title":"Investor","Departments":["Senior'
- source_sentence: What is the primary focus of Fluence as a continuing education
    organization?
  sentences:
  - Name":"Fluence","Specter - Company ID":"621f973f972ef7e5d69c8085","Domain":"fluencetraining.com","LinkedIn
    - URL":"linkedin.com/company/fluencetraining","Description":"Fluence is a leading
    continuing education organization in psychedelic therapy.","Company Size":"11-50","Industries":["Education","HR
    and Recruiting","Health","Software"],"Title":"Advisor","Departments":["Other"],"Start
    Date":"2023-07-01","End Date":null,"Location":"New York City, New York, United
    States, United States","Is Current":true,"Job Order":17},{"Company Name":"VentureKit","Specter
    - Company ID":null,"Domain":"venturekit.com","LinkedIn - URL":"linkedin.com/company/venturekit","Description":"VentureKit
    publishes free guides to help entrepreneurs get things
  - Order":7},{"Company Name":"Jelastic","Specter - Company ID":"5e3bbee700c8f4c966a06981","Domain":"jelastic.com","LinkedIn
    - URL":"linkedin.com/company/jelastic","Description":"Jelastic is a cloud platform
    that provides multi-cloud Platform as a Service (PaaS) based on container technology.
    It supports a wide range of programming languages and frameworks, and is easy
    to scale up or down to meet your changing needs. Acquired by Virtoozo in 2021.\n\nRole
    and results:\n- Managed an engineering team\n- Managed R&D projects\n- Jelastic
    won several international startup awards \n- Acquired by Virtozzo","Company Size":"11-50","Industries":["Information
    Technology","Internet Services","Software"],"Title":"Co-Founder","Departments":["Senior
  - 'Education Level: Bachelor''s Degree

    Current Position Title: CTO, Head of Research

    Current Position Company Name: Mursion

    Current Position Company Website: mursion.com

    Past Position Title: CEO and Co-founder

    Past Position Company Name: DNABLOCK

    Past Position Company Website: dnablock.com

    Current Tenure: 85.0

    Average Tenure: 34.0

    Languages: [{"Name":"Spanish","Proficiency Level":"Limited Working Proficiency"},{"Name":"Arabic","Proficiency
    Level":"Limited Working Proficiency"}]

    LinkedIn - Followers: 5022.0

    LinkedIn - Connections: 2997.0'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.7916666666666666
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9666666666666667
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.975
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9833333333333333
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7916666666666666
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.32222222222222213
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19500000000000003
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09833333333333334
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7916666666666666
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9666666666666667
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.975
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9833333333333333
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.901899634958155
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.874107142857143
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8748790726817042
      name: Cosine Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ngiometti/legal-ft-3")
# Run inference
sentences = [
    'What is the primary focus of Fluence as a continuing education organization?',
    'Name":"Fluence","Specter - Company ID":"621f973f972ef7e5d69c8085","Domain":"fluencetraining.com","LinkedIn - URL":"linkedin.com/company/fluencetraining","Description":"Fluence is a leading continuing education organization in psychedelic therapy.","Company Size":"11-50","Industries":["Education","HR and Recruiting","Health","Software"],"Title":"Advisor","Departments":["Other"],"Start Date":"2023-07-01","End Date":null,"Location":"New York City, New York, United States, United States","Is Current":true,"Job Order":17},{"Company Name":"VentureKit","Specter - Company ID":null,"Domain":"venturekit.com","LinkedIn - URL":"linkedin.com/company/venturekit","Description":"VentureKit publishes free guides to help entrepreneurs get things',
    'Education Level: Bachelor\'s Degree\nCurrent Position Title: CTO, Head of Research\nCurrent Position Company Name: Mursion\nCurrent Position Company Website: mursion.com\nPast Position Title: CEO and Co-founder\nPast Position Company Name: DNABLOCK\nPast Position Company Website: dnablock.com\nCurrent Tenure: 85.0\nAverage Tenure: 34.0\nLanguages: [{"Name":"Spanish","Proficiency Level":"Limited Working Proficiency"},{"Name":"Arabic","Proficiency Level":"Limited Working Proficiency"}]\nLinkedIn - Followers: 5022.0\nLinkedIn - Connections: 2997.0',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7917     |
| cosine_accuracy@3   | 0.9667     |
| cosine_accuracy@5   | 0.975      |
| cosine_accuracy@10  | 0.9833     |
| cosine_precision@1  | 0.7917     |
| cosine_precision@3  | 0.3222     |
| cosine_precision@5  | 0.195      |
| cosine_precision@10 | 0.0983     |
| cosine_recall@1     | 0.7917     |
| cosine_recall@3     | 0.9667     |
| cosine_recall@5     | 0.975      |
| cosine_recall@10    | 0.9833     |
| **cosine_ndcg@10**  | **0.9019** |
| cosine_mrr@10       | 0.8741     |
| cosine_map@100      | 0.8749     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 786 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 786 samples:
  |         | sentence_0                                                                       | sentence_1                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                               |
  | details | <ul><li>min: 9 tokens</li><li>mean: 17.2 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 218.92 tokens</li><li>max: 464 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                            | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  |:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What types of products has the individual built experience in, according to the context?</code> | <code>experience in building world class hardware and software products for consumer electronics, aerospace and enterprise software solutions. Proven track record of building big-data cloud computing software and analytic software platform with AI, Computer Vision and Machine Learning. Progressive, innovative and highly valued for aligning corporate strategies with market opportunities, translating goals into actionable plans, and providing leadership to multi-discipline, cross cultural teams.</code>                                                                                                                                                                                                                                                                  |
  | <code>How does the individual align corporate strategies with market opportunities?</code>            | <code>experience in building world class hardware and software products for consumer electronics, aerospace and enterprise software solutions. Proven track record of building big-data cloud computing software and analytic software platform with AI, Computer Vision and Machine Learning. Progressive, innovative and highly valued for aligning corporate strategies with market opportunities, translating goals into actionable plans, and providing leadership to multi-discipline, cross cultural teams.</code>                                                                                                                                                                                                                                                                  |
  | <code>What is the company size of Diamanti?</code>                                                    | <code>- Company ID":"5e3a8f19040ca7b0c6f031bf","Domain":"diamanti.com","LinkedIn - URL":"linkedin.com/company/diamanti","Description":null,"Company Size":"51-200","Industries":["Consumer Products","Hardware","Information Technology","Internet Services","Software"],"Title":"Chief Operating Officer","Departments":["Senior Leadership","Operations"],"Start Date":"2018-11-01","End Date":"2021-07-01","Location":"San Jose, California, United States, United States","Is Current":false,"Job Order":4},{"Company Name":"Planet","Specter - Company ID":"5e3bc13c00c8f4c966a7da4c","Domain":"planet.com","LinkedIn - URL":"linkedin.com/company/planet-labs","Description":"Planet operates the world's largest fleet of Earth imaging satellites to daily image the entire</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | Training Loss | cosine_ndcg@10 |
|:------:|:----:|:-------------:|:--------------:|
| 0.6329 | 50   | -             | 0.8917         |
| 1.0    | 79   | -             | 0.9080         |
| 1.2658 | 100  | -             | 0.9265         |
| 1.8987 | 150  | -             | 0.9091         |
| 2.0    | 158  | -             | 0.9100         |
| 2.5316 | 200  | -             | 0.9214         |
| 3.0    | 237  | -             | 0.9110         |
| 3.1646 | 250  | -             | 0.9161         |
| 3.7975 | 300  | -             | 0.9108         |
| 4.0    | 316  | -             | 0.9145         |
| 4.4304 | 350  | -             | 0.8955         |
| 5.0    | 395  | -             | 0.9019         |
| 5.0633 | 400  | -             | 0.9008         |
| 5.6962 | 450  | -             | 0.8980         |
| 6.0    | 474  | -             | 0.9036         |
| 6.3291 | 500  | 0.7603        | 0.9021         |
| 6.9620 | 550  | -             | 0.8977         |
| 7.0    | 553  | -             | 0.8976         |
| 7.5949 | 600  | -             | 0.9059         |
| 8.0    | 632  | -             | 0.9005         |
| 8.2278 | 650  | -             | 0.9039         |
| 8.8608 | 700  | -             | 0.9050         |
| 9.0    | 711  | -             | 0.9052         |
| 9.4937 | 750  | -             | 0.9021         |
| 10.0   | 790  | -             | 0.9019         |


### Framework Versions
- Python: 3.13.1
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->