ngiometti commited on
Commit
7b3153c
·
verified ·
1 Parent(s): f55925a

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:786
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-l
11
+ widget:
12
+ - source_sentence: How much money was saved through systems automation and process
13
+ improvement efforts?
14
+ sentences:
15
+ - Member","Thought Leadership","E-commerce","Entrepreneurship","Mobile Devices","Product
16
+ Management","Start-ups","Strategic Partnerships","Strategy"]
17
+ - '- URL":"linkedin.com/company/channel-factory","Description":"• Helped scale
18
+ the video advertising startup from 0 to 8-figure revenues and 5 to 40+ employees
19
+ in 2.5 years.\n• Managed the company''s day-to-day operations. Saved $100,000+
20
+ through systems automation and process improvement efforts.\n• Led sales operations
21
+ for a 7-person ad sales team and managed BD partnerships with one of the three
22
+ largest online travel agencies, a major online ad management platform, and rep
23
+ firms in the United Kingdom, India, Brazil, and Australia.\n• Spearheaded company
24
+ recruitment efforts and improved HR budget efficiency to save $350,000+ annually.\n•
25
+ Evaluated, implemented, and managed third party business systems, including Salesforce
26
+ and'
27
+ - and start building trust and camaraderie at work - vital assets in providing psychological
28
+ safety, enabling agility and unleashing growth.\n","Company Size":"11-50","Industries":["Administrative
29
+ Services","Community and Lifestyle","Government and Military","HR and Recruiting","Health","Information
30
+ Technology","Software"],"Title":"Co-Founder and Servant CEO","Departments":["Senior
31
+ Leadership"],"Start Date":"2018-01-01","End Date":null,"Location":"Santa Monica,
32
+ California, United States, United States","Is Current":true,"Job Order":18},{"Company
33
+ Name":"CNCCEF","Specter - Company ID":"5e3b912d137e998b5ae832aa","Domain":"cnccef.org","LinkedIn
34
+ -
35
+ - source_sentence: What skills do you possess that relate to marketing and brand development?
36
+ sentences:
37
+ - 'I have been fortunate to have been a part of the creation and/or growth story
38
+ for brands including ASYSTEM, Formula Fig, Aritzia, Mr Porter to name a few.
39
+
40
+ Skills: ["E-commerce","Advertising","Social Media","Strategy","Marketing","Online
41
+ Advertising","Fashion","Brand Development","Marketing Strategy","Digital Strategy","Media
42
+ Relations","Retail","Business Development","Digital Marketing","Mobile Devices","Digital
43
+ Media","Marketing Communications","Strategic Communications","Branding & Identity","Business
44
+ Strategy","Product Development","Social media","eCommerce","Art Direction","Brand
45
+ Management","Brand Strategy","Consumer Behavior","Creative Strategy","E-Commerce","Media"]'
46
+ - is able to do so in near real time.","Company Size":null,"Industries":null,"Title":"ceo","Departments":["Senior
47
+ Leadership"],"Start Date":"2005-03-01","End Date":"2007-12-01","Location":null,"Is
48
+ Current":false,"Job Order":8},{"Company Name":"SnapNames","Specter - Company ID":"5e3bc17800c8f4c966a8bad6","Domain":"snapnames.com","LinkedIn
49
+ - URL":"linkedin.com/company/snapnames-com","Description":"I served as a strategic
50
+ advisor to the CEO in the capacity of a Board Director, and briefly as Chairman
51
+ of the Board, prior to its acquisition by Oversee","Company Size":"11-50","Industries":["Commerce
52
+ and Shopping","Internet Services"],"Title":"Director Board Of Directors","Departments":["Senior
53
+ Leadership"],"Start Date":"2002-04-01","End
54
+ - "Technology\",\"Software\",\"Transportation\"],\"Title\":\"Co-Founder & CTO\"\
55
+ ,\"Departments\":[\"Senior Leadership\",\"Engineering\"],\"Start Date\":\"2021-08-01\"\
56
+ ,\"End Date\":null,\"Location\":\"Los Altos, California, United States, United\
57
+ \ States\",\"Is Current\":true,\"Job Order\":6},{\"Company Name\":\"XDLINX Space\
58
+ \ Labs\",\"Specter - Company ID\":\"6712477ab8cbb513aaee920e\",\"Domain\":\"xdlinx.space\"\
59
+ ,\"LinkedIn - URL\":\"linkedin.com/company/xdlinx-labs\",\"Description\":null,\"\
60
+ Company Size\":\"51-200\",\"Industries\":[\"Hardware\",\"Transportation\"],\"\
61
+ Title\":\"Co-Founder\",\"Departments\":[\"Senior Leadership\"],\"Start Date\"\
62
+ :\"2022-07-01\",\"End Date\":null,\"Location\":\"HyderÄ\x81bÄ\x81d, Telangana,\
63
+ \ India, Asia\",\"Is Current\":true,\"Job Order\":5},{\"Company Name\":\"Diamanti\"\
64
+ ,\"Specter - Company"
65
+ - source_sentence: In what ways does SignalFire support companies at the seed stage?
66
+ sentences:
67
+ - '- URL":"linkedin.com/school/%D0%BC%D0%BE%D1%81%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B0%D1%8F-%D0%BC%D0%B5%D0%B6%D0%B4%D1%83%D0%BD%D0%B0%D1%80%D0%BE%D0%B4%D0%BD%D0%B0%D1%8F-%D0%B2%D1%8B%D1%81%D1%88%D0%B0%D1%8F-%D1%88%D0%BA%D0%BE%D0%BB%D0%B0-%D0%B1%D0%B8%D0%B7%D0%BD%D0%B5%D1%81%D0%B0-%C2%AB%D0%BC%D0%B8%D1%80%D0%B1%D0%B8%D1%81%C2%BB-%D0%B8%D0%BD%D1%81%D1%82%D0%B8%D1%82%D1%83%D1%82-","Field
68
+ of Study":"","Degree Title":"Integrated year abroad","Description":null,"Start
69
+ Date":"2006-01-01","End Date":"2006-01-01","Location":"Moscow, Moscow, Russian
70
+ Federation, Russia"},{"Name":"Hochschule Furtwangen University","LinkedIn - URL":"linkedin.com/school/hochschule-furtwangen-university","Field
71
+ of Study":"International Management","Degree Title":"Bachelor'
72
+ - I specialize in driving the data algorithms that can predict venture outcomes
73
+ and target the top 5% of funding rounds at each stage. I have a product mentality
74
+ and a people-first, technology second, point of view. I also have an honorary
75
+ doctorate from the University of Kent, where I studied British Constitution and
76
+ Sociology. I have lived in Palo Alto, California since 1997, and I am passionate
77
+ about anticipating and creating change in the tech industry.
78
+ - 'firepower at the seed stage to solve the biggest entrepreneur pain points. Our
79
+ distributed network approach provides expert advice from some of the world''s
80
+ best entrepreneurs, product & engineering leaders in virtually every key discipline
81
+ and industry. We have developed a first of its kind centralized infrastructure
82
+ to help with recruiting exceptional talent, business development, customer acquisition
83
+ as well as educational & community events. We don’t follow the crowd, and almost
84
+ always lead our investment rounds as the first institutional investors in exceptional
85
+ companies. You can read more about SignalFire at: https://medium.com/signalfire-fund","Company
86
+ Size":"51-200","Industries":["Data and Analytics","Finance","Lending and'
87
+ - source_sentence: What role did the individual hold at the company from 1998 to 2002?
88
+ sentences:
89
+ - Current":true,"Job Order":25},{"Company Name":"BigSpring","Specter - Company ID":"653554dfd1653b1e73051e7c","Domain":"bigspring.ai","LinkedIn
90
+ - URL":"linkedin.com/company/bigspringai","Description":null,"Company Size":"11-50","Industries":["Community
91
+ and Lifestyle","Data and Analytics","DeepTech","Education","HR and Recruiting","Professional
92
+ Services","Software"],"Title":"Advisor","Departments":["Other"],"Start Date":"2019-01-01","End
93
+ Date":null,"Location":"San Francisco, California, United States, United States","Is
94
+ Current":true,"Job Order":24},{"Company Name":"Clockwise","Specter - Company ID":"5e3a8f1e040ca7b0c6f0bd98","Domain":"getclockwise.com","LinkedIn
95
+ - URL":"linkedin.com/company/clockwise-inc.","Description":null,"Company
96
+ - a relationship to VeriSIgn to sell Internet Keywords through its channels.\n\nAn
97
+ IPO filing.\n\nOver 350 employees.","Company Size":"1-10","Industries":["Internet
98
+ Services","Software","Transportation"],"Title":"CEO, President, Chairman","Departments":["Senior
99
+ Leadership"],"Start Date":"1998-01-01","End Date":"2002-06-01","Location":"San
100
+ Carlos, California, United States, United States","Is Current":false,"Job Order":4},{"Company
101
+ Name":"NetNames","Specter - Company ID":"5e3bbde400c8f4c9669d8d4b","Domain":"netnames.com","LinkedIn
102
+ - URL":"linkedin.com/company/netnames","Description":"I seed funded NetNames.
103
+ We sold it to NetBenefit in 2000. I was a board member of the merged entity through
104
+ 2001. NetNames was the world's first domain name
105
+ - '- Company ID":"64f802e6538115f141f4063a","Domain":"trynectar.io","LinkedIn -
106
+ URL":"linkedin.com/company/nectar-ai","Description":null,"Company Size":"11-50","Industries":["Advertising","Commerce
107
+ and Shopping","Data and Analytics","DeepTech","Sales and Marketing","Software"],"Title":"Investor","Departments":["Senior
108
+ Leadership"],"Start Date":"2023-10-01","End Date":null,"Location":"Seattle, Washington,
109
+ United States, United States","Is Current":true,"Job Order":32},{"Company Name":"BinStar","Specter
110
+ - Company ID":"6411d185abe7c1e313b62b4a","Domain":"bin-star.com","LinkedIn - URL":"linkedin.com/company/binstar","Description":null,"Company
111
+ Size":"1-10","Industries":["Commerce and Shopping"],"Title":"Investor","Departments":["Senior'
112
+ - source_sentence: What is the primary focus of Fluence as a continuing education
113
+ organization?
114
+ sentences:
115
+ - Name":"Fluence","Specter - Company ID":"621f973f972ef7e5d69c8085","Domain":"fluencetraining.com","LinkedIn
116
+ - URL":"linkedin.com/company/fluencetraining","Description":"Fluence is a leading
117
+ continuing education organization in psychedelic therapy.","Company Size":"11-50","Industries":["Education","HR
118
+ and Recruiting","Health","Software"],"Title":"Advisor","Departments":["Other"],"Start
119
+ Date":"2023-07-01","End Date":null,"Location":"New York City, New York, United
120
+ States, United States","Is Current":true,"Job Order":17},{"Company Name":"VentureKit","Specter
121
+ - Company ID":null,"Domain":"venturekit.com","LinkedIn - URL":"linkedin.com/company/venturekit","Description":"VentureKit
122
+ publishes free guides to help entrepreneurs get things
123
+ - Order":7},{"Company Name":"Jelastic","Specter - Company ID":"5e3bbee700c8f4c966a06981","Domain":"jelastic.com","LinkedIn
124
+ - URL":"linkedin.com/company/jelastic","Description":"Jelastic is a cloud platform
125
+ that provides multi-cloud Platform as a Service (PaaS) based on container technology.
126
+ It supports a wide range of programming languages and frameworks, and is easy
127
+ to scale up or down to meet your changing needs. Acquired by Virtoozo in 2021.\n\nRole
128
+ and results:\n- Managed an engineering team\n- Managed R&D projects\n- Jelastic
129
+ won several international startup awards \n- Acquired by Virtozzo","Company Size":"11-50","Industries":["Information
130
+ Technology","Internet Services","Software"],"Title":"Co-Founder","Departments":["Senior
131
+ - 'Education Level: Bachelor''s Degree
132
+
133
+ Current Position Title: CTO, Head of Research
134
+
135
+ Current Position Company Name: Mursion
136
+
137
+ Current Position Company Website: mursion.com
138
+
139
+ Past Position Title: CEO and Co-founder
140
+
141
+ Past Position Company Name: DNABLOCK
142
+
143
+ Past Position Company Website: dnablock.com
144
+
145
+ Current Tenure: 85.0
146
+
147
+ Average Tenure: 34.0
148
+
149
+ Languages: [{"Name":"Spanish","Proficiency Level":"Limited Working Proficiency"},{"Name":"Arabic","Proficiency
150
+ Level":"Limited Working Proficiency"}]
151
+
152
+ LinkedIn - Followers: 5022.0
153
+
154
+ LinkedIn - Connections: 2997.0'
155
+ pipeline_tag: sentence-similarity
156
+ library_name: sentence-transformers
157
+ metrics:
158
+ - cosine_accuracy@1
159
+ - cosine_accuracy@3
160
+ - cosine_accuracy@5
161
+ - cosine_accuracy@10
162
+ - cosine_precision@1
163
+ - cosine_precision@3
164
+ - cosine_precision@5
165
+ - cosine_precision@10
166
+ - cosine_recall@1
167
+ - cosine_recall@3
168
+ - cosine_recall@5
169
+ - cosine_recall@10
170
+ - cosine_ndcg@10
171
+ - cosine_mrr@10
172
+ - cosine_map@100
173
+ model-index:
174
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
175
+ results:
176
+ - task:
177
+ type: information-retrieval
178
+ name: Information Retrieval
179
+ dataset:
180
+ name: Unknown
181
+ type: unknown
182
+ metrics:
183
+ - type: cosine_accuracy@1
184
+ value: 0.7916666666666666
185
+ name: Cosine Accuracy@1
186
+ - type: cosine_accuracy@3
187
+ value: 0.9666666666666667
188
+ name: Cosine Accuracy@3
189
+ - type: cosine_accuracy@5
190
+ value: 0.975
191
+ name: Cosine Accuracy@5
192
+ - type: cosine_accuracy@10
193
+ value: 0.9833333333333333
194
+ name: Cosine Accuracy@10
195
+ - type: cosine_precision@1
196
+ value: 0.7916666666666666
197
+ name: Cosine Precision@1
198
+ - type: cosine_precision@3
199
+ value: 0.32222222222222213
200
+ name: Cosine Precision@3
201
+ - type: cosine_precision@5
202
+ value: 0.19500000000000003
203
+ name: Cosine Precision@5
204
+ - type: cosine_precision@10
205
+ value: 0.09833333333333334
206
+ name: Cosine Precision@10
207
+ - type: cosine_recall@1
208
+ value: 0.7916666666666666
209
+ name: Cosine Recall@1
210
+ - type: cosine_recall@3
211
+ value: 0.9666666666666667
212
+ name: Cosine Recall@3
213
+ - type: cosine_recall@5
214
+ value: 0.975
215
+ name: Cosine Recall@5
216
+ - type: cosine_recall@10
217
+ value: 0.9833333333333333
218
+ name: Cosine Recall@10
219
+ - type: cosine_ndcg@10
220
+ value: 0.901899634958155
221
+ name: Cosine Ndcg@10
222
+ - type: cosine_mrr@10
223
+ value: 0.874107142857143
224
+ name: Cosine Mrr@10
225
+ - type: cosine_map@100
226
+ value: 0.8748790726817042
227
+ name: Cosine Map@100
228
+ ---
229
+
230
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
231
+
232
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
233
+
234
+ ## Model Details
235
+
236
+ ### Model Description
237
+ - **Model Type:** Sentence Transformer
238
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
239
+ - **Maximum Sequence Length:** 512 tokens
240
+ - **Output Dimensionality:** 1024 dimensions
241
+ - **Similarity Function:** Cosine Similarity
242
+ <!-- - **Training Dataset:** Unknown -->
243
+ <!-- - **Language:** Unknown -->
244
+ <!-- - **License:** Unknown -->
245
+
246
+ ### Model Sources
247
+
248
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
249
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
250
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
251
+
252
+ ### Full Model Architecture
253
+
254
+ ```
255
+ SentenceTransformer(
256
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
257
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
258
+ (2): Normalize()
259
+ )
260
+ ```
261
+
262
+ ## Usage
263
+
264
+ ### Direct Usage (Sentence Transformers)
265
+
266
+ First install the Sentence Transformers library:
267
+
268
+ ```bash
269
+ pip install -U sentence-transformers
270
+ ```
271
+
272
+ Then you can load this model and run inference.
273
+ ```python
274
+ from sentence_transformers import SentenceTransformer
275
+
276
+ # Download from the 🤗 Hub
277
+ model = SentenceTransformer("ngiometti/legal-ft-3")
278
+ # Run inference
279
+ sentences = [
280
+ 'What is the primary focus of Fluence as a continuing education organization?',
281
+ 'Name":"Fluence","Specter - Company ID":"621f973f972ef7e5d69c8085","Domain":"fluencetraining.com","LinkedIn - URL":"linkedin.com/company/fluencetraining","Description":"Fluence is a leading continuing education organization in psychedelic therapy.","Company Size":"11-50","Industries":["Education","HR and Recruiting","Health","Software"],"Title":"Advisor","Departments":["Other"],"Start Date":"2023-07-01","End Date":null,"Location":"New York City, New York, United States, United States","Is Current":true,"Job Order":17},{"Company Name":"VentureKit","Specter - Company ID":null,"Domain":"venturekit.com","LinkedIn - URL":"linkedin.com/company/venturekit","Description":"VentureKit publishes free guides to help entrepreneurs get things',
282
+ 'Education Level: Bachelor\'s Degree\nCurrent Position Title: CTO, Head of Research\nCurrent Position Company Name: Mursion\nCurrent Position Company Website: mursion.com\nPast Position Title: CEO and Co-founder\nPast Position Company Name: DNABLOCK\nPast Position Company Website: dnablock.com\nCurrent Tenure: 85.0\nAverage Tenure: 34.0\nLanguages: [{"Name":"Spanish","Proficiency Level":"Limited Working Proficiency"},{"Name":"Arabic","Proficiency Level":"Limited Working Proficiency"}]\nLinkedIn - Followers: 5022.0\nLinkedIn - Connections: 2997.0',
283
+ ]
284
+ embeddings = model.encode(sentences)
285
+ print(embeddings.shape)
286
+ # [3, 1024]
287
+
288
+ # Get the similarity scores for the embeddings
289
+ similarities = model.similarity(embeddings, embeddings)
290
+ print(similarities.shape)
291
+ # [3, 3]
292
+ ```
293
+
294
+ <!--
295
+ ### Direct Usage (Transformers)
296
+
297
+ <details><summary>Click to see the direct usage in Transformers</summary>
298
+
299
+ </details>
300
+ -->
301
+
302
+ <!--
303
+ ### Downstream Usage (Sentence Transformers)
304
+
305
+ You can finetune this model on your own dataset.
306
+
307
+ <details><summary>Click to expand</summary>
308
+
309
+ </details>
310
+ -->
311
+
312
+ <!--
313
+ ### Out-of-Scope Use
314
+
315
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
316
+ -->
317
+
318
+ ## Evaluation
319
+
320
+ ### Metrics
321
+
322
+ #### Information Retrieval
323
+
324
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
325
+
326
+ | Metric | Value |
327
+ |:--------------------|:-----------|
328
+ | cosine_accuracy@1 | 0.7917 |
329
+ | cosine_accuracy@3 | 0.9667 |
330
+ | cosine_accuracy@5 | 0.975 |
331
+ | cosine_accuracy@10 | 0.9833 |
332
+ | cosine_precision@1 | 0.7917 |
333
+ | cosine_precision@3 | 0.3222 |
334
+ | cosine_precision@5 | 0.195 |
335
+ | cosine_precision@10 | 0.0983 |
336
+ | cosine_recall@1 | 0.7917 |
337
+ | cosine_recall@3 | 0.9667 |
338
+ | cosine_recall@5 | 0.975 |
339
+ | cosine_recall@10 | 0.9833 |
340
+ | **cosine_ndcg@10** | **0.9019** |
341
+ | cosine_mrr@10 | 0.8741 |
342
+ | cosine_map@100 | 0.8749 |
343
+
344
+ <!--
345
+ ## Bias, Risks and Limitations
346
+
347
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
348
+ -->
349
+
350
+ <!--
351
+ ### Recommendations
352
+
353
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
354
+ -->
355
+
356
+ ## Training Details
357
+
358
+ ### Training Dataset
359
+
360
+ #### Unnamed Dataset
361
+
362
+ * Size: 786 training samples
363
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
364
+ * Approximate statistics based on the first 786 samples:
365
+ | | sentence_0 | sentence_1 |
366
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
367
+ | type | string | string |
368
+ | details | <ul><li>min: 9 tokens</li><li>mean: 17.2 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 218.92 tokens</li><li>max: 464 tokens</li></ul> |
369
+ * Samples:
370
+ | sentence_0 | sentence_1 |
371
+ |:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
372
+ | <code>What types of products has the individual built experience in, according to the context?</code> | <code>experience in building world class hardware and software products for consumer electronics, aerospace and enterprise software solutions. Proven track record of building big-data cloud computing software and analytic software platform with AI, Computer Vision and Machine Learning. Progressive, innovative and highly valued for aligning corporate strategies with market opportunities, translating goals into actionable plans, and providing leadership to multi-discipline, cross cultural teams.</code> |
373
+ | <code>How does the individual align corporate strategies with market opportunities?</code> | <code>experience in building world class hardware and software products for consumer electronics, aerospace and enterprise software solutions. Proven track record of building big-data cloud computing software and analytic software platform with AI, Computer Vision and Machine Learning. Progressive, innovative and highly valued for aligning corporate strategies with market opportunities, translating goals into actionable plans, and providing leadership to multi-discipline, cross cultural teams.</code> |
374
+ | <code>What is the company size of Diamanti?</code> | <code>- Company ID":"5e3a8f19040ca7b0c6f031bf","Domain":"diamanti.com","LinkedIn - URL":"linkedin.com/company/diamanti","Description":null,"Company Size":"51-200","Industries":["Consumer Products","Hardware","Information Technology","Internet Services","Software"],"Title":"Chief Operating Officer","Departments":["Senior Leadership","Operations"],"Start Date":"2018-11-01","End Date":"2021-07-01","Location":"San Jose, California, United States, United States","Is Current":false,"Job Order":4},{"Company Name":"Planet","Specter - Company ID":"5e3bc13c00c8f4c966a7da4c","Domain":"planet.com","LinkedIn - URL":"linkedin.com/company/planet-labs","Description":"Planet operates the world's largest fleet of Earth imaging satellites to daily image the entire</code> |
375
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
376
+ ```json
377
+ {
378
+ "loss": "MultipleNegativesRankingLoss",
379
+ "matryoshka_dims": [
380
+ 768,
381
+ 512,
382
+ 256,
383
+ 128,
384
+ 64
385
+ ],
386
+ "matryoshka_weights": [
387
+ 1,
388
+ 1,
389
+ 1,
390
+ 1,
391
+ 1
392
+ ],
393
+ "n_dims_per_step": -1
394
+ }
395
+ ```
396
+
397
+ ### Training Hyperparameters
398
+ #### Non-Default Hyperparameters
399
+
400
+ - `eval_strategy`: steps
401
+ - `per_device_train_batch_size`: 10
402
+ - `per_device_eval_batch_size`: 10
403
+ - `num_train_epochs`: 10
404
+ - `multi_dataset_batch_sampler`: round_robin
405
+
406
+ #### All Hyperparameters
407
+ <details><summary>Click to expand</summary>
408
+
409
+ - `overwrite_output_dir`: False
410
+ - `do_predict`: False
411
+ - `eval_strategy`: steps
412
+ - `prediction_loss_only`: True
413
+ - `per_device_train_batch_size`: 10
414
+ - `per_device_eval_batch_size`: 10
415
+ - `per_gpu_train_batch_size`: None
416
+ - `per_gpu_eval_batch_size`: None
417
+ - `gradient_accumulation_steps`: 1
418
+ - `eval_accumulation_steps`: None
419
+ - `torch_empty_cache_steps`: None
420
+ - `learning_rate`: 5e-05
421
+ - `weight_decay`: 0.0
422
+ - `adam_beta1`: 0.9
423
+ - `adam_beta2`: 0.999
424
+ - `adam_epsilon`: 1e-08
425
+ - `max_grad_norm`: 1
426
+ - `num_train_epochs`: 10
427
+ - `max_steps`: -1
428
+ - `lr_scheduler_type`: linear
429
+ - `lr_scheduler_kwargs`: {}
430
+ - `warmup_ratio`: 0.0
431
+ - `warmup_steps`: 0
432
+ - `log_level`: passive
433
+ - `log_level_replica`: warning
434
+ - `log_on_each_node`: True
435
+ - `logging_nan_inf_filter`: True
436
+ - `save_safetensors`: True
437
+ - `save_on_each_node`: False
438
+ - `save_only_model`: False
439
+ - `restore_callback_states_from_checkpoint`: False
440
+ - `no_cuda`: False
441
+ - `use_cpu`: False
442
+ - `use_mps_device`: False
443
+ - `seed`: 42
444
+ - `data_seed`: None
445
+ - `jit_mode_eval`: False
446
+ - `use_ipex`: False
447
+ - `bf16`: False
448
+ - `fp16`: False
449
+ - `fp16_opt_level`: O1
450
+ - `half_precision_backend`: auto
451
+ - `bf16_full_eval`: False
452
+ - `fp16_full_eval`: False
453
+ - `tf32`: None
454
+ - `local_rank`: 0
455
+ - `ddp_backend`: None
456
+ - `tpu_num_cores`: None
457
+ - `tpu_metrics_debug`: False
458
+ - `debug`: []
459
+ - `dataloader_drop_last`: False
460
+ - `dataloader_num_workers`: 0
461
+ - `dataloader_prefetch_factor`: None
462
+ - `past_index`: -1
463
+ - `disable_tqdm`: False
464
+ - `remove_unused_columns`: True
465
+ - `label_names`: None
466
+ - `load_best_model_at_end`: False
467
+ - `ignore_data_skip`: False
468
+ - `fsdp`: []
469
+ - `fsdp_min_num_params`: 0
470
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
471
+ - `fsdp_transformer_layer_cls_to_wrap`: None
472
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
473
+ - `deepspeed`: None
474
+ - `label_smoothing_factor`: 0.0
475
+ - `optim`: adamw_torch
476
+ - `optim_args`: None
477
+ - `adafactor`: False
478
+ - `group_by_length`: False
479
+ - `length_column_name`: length
480
+ - `ddp_find_unused_parameters`: None
481
+ - `ddp_bucket_cap_mb`: None
482
+ - `ddp_broadcast_buffers`: False
483
+ - `dataloader_pin_memory`: True
484
+ - `dataloader_persistent_workers`: False
485
+ - `skip_memory_metrics`: True
486
+ - `use_legacy_prediction_loop`: False
487
+ - `push_to_hub`: False
488
+ - `resume_from_checkpoint`: None
489
+ - `hub_model_id`: None
490
+ - `hub_strategy`: every_save
491
+ - `hub_private_repo`: None
492
+ - `hub_always_push`: False
493
+ - `gradient_checkpointing`: False
494
+ - `gradient_checkpointing_kwargs`: None
495
+ - `include_inputs_for_metrics`: False
496
+ - `include_for_metrics`: []
497
+ - `eval_do_concat_batches`: True
498
+ - `fp16_backend`: auto
499
+ - `push_to_hub_model_id`: None
500
+ - `push_to_hub_organization`: None
501
+ - `mp_parameters`:
502
+ - `auto_find_batch_size`: False
503
+ - `full_determinism`: False
504
+ - `torchdynamo`: None
505
+ - `ray_scope`: last
506
+ - `ddp_timeout`: 1800
507
+ - `torch_compile`: False
508
+ - `torch_compile_backend`: None
509
+ - `torch_compile_mode`: None
510
+ - `dispatch_batches`: None
511
+ - `split_batches`: None
512
+ - `include_tokens_per_second`: False
513
+ - `include_num_input_tokens_seen`: False
514
+ - `neftune_noise_alpha`: None
515
+ - `optim_target_modules`: None
516
+ - `batch_eval_metrics`: False
517
+ - `eval_on_start`: False
518
+ - `use_liger_kernel`: False
519
+ - `eval_use_gather_object`: False
520
+ - `average_tokens_across_devices`: False
521
+ - `prompts`: None
522
+ - `batch_sampler`: batch_sampler
523
+ - `multi_dataset_batch_sampler`: round_robin
524
+
525
+ </details>
526
+
527
+ ### Training Logs
528
+ | Epoch | Step | Training Loss | cosine_ndcg@10 |
529
+ |:------:|:----:|:-------------:|:--------------:|
530
+ | 0.6329 | 50 | - | 0.8917 |
531
+ | 1.0 | 79 | - | 0.9080 |
532
+ | 1.2658 | 100 | - | 0.9265 |
533
+ | 1.8987 | 150 | - | 0.9091 |
534
+ | 2.0 | 158 | - | 0.9100 |
535
+ | 2.5316 | 200 | - | 0.9214 |
536
+ | 3.0 | 237 | - | 0.9110 |
537
+ | 3.1646 | 250 | - | 0.9161 |
538
+ | 3.7975 | 300 | - | 0.9108 |
539
+ | 4.0 | 316 | - | 0.9145 |
540
+ | 4.4304 | 350 | - | 0.8955 |
541
+ | 5.0 | 395 | - | 0.9019 |
542
+ | 5.0633 | 400 | - | 0.9008 |
543
+ | 5.6962 | 450 | - | 0.8980 |
544
+ | 6.0 | 474 | - | 0.9036 |
545
+ | 6.3291 | 500 | 0.7603 | 0.9021 |
546
+ | 6.9620 | 550 | - | 0.8977 |
547
+ | 7.0 | 553 | - | 0.8976 |
548
+ | 7.5949 | 600 | - | 0.9059 |
549
+ | 8.0 | 632 | - | 0.9005 |
550
+ | 8.2278 | 650 | - | 0.9039 |
551
+ | 8.8608 | 700 | - | 0.9050 |
552
+ | 9.0 | 711 | - | 0.9052 |
553
+ | 9.4937 | 750 | - | 0.9021 |
554
+ | 10.0 | 790 | - | 0.9019 |
555
+
556
+
557
+ ### Framework Versions
558
+ - Python: 3.13.1
559
+ - Sentence Transformers: 3.4.1
560
+ - Transformers: 4.49.0
561
+ - PyTorch: 2.6.0+cu124
562
+ - Accelerate: 1.4.0
563
+ - Datasets: 3.3.2
564
+ - Tokenizers: 0.21.0
565
+
566
+ ## Citation
567
+
568
+ ### BibTeX
569
+
570
+ #### Sentence Transformers
571
+ ```bibtex
572
+ @inproceedings{reimers-2019-sentence-bert,
573
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
574
+ author = "Reimers, Nils and Gurevych, Iryna",
575
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
576
+ month = "11",
577
+ year = "2019",
578
+ publisher = "Association for Computational Linguistics",
579
+ url = "https://arxiv.org/abs/1908.10084",
580
+ }
581
+ ```
582
+
583
+ #### MatryoshkaLoss
584
+ ```bibtex
585
+ @misc{kusupati2024matryoshka,
586
+ title={Matryoshka Representation Learning},
587
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
588
+ year={2024},
589
+ eprint={2205.13147},
590
+ archivePrefix={arXiv},
591
+ primaryClass={cs.LG}
592
+ }
593
+ ```
594
+
595
+ #### MultipleNegativesRankingLoss
596
+ ```bibtex
597
+ @misc{henderson2017efficient,
598
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
599
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
600
+ year={2017},
601
+ eprint={1705.00652},
602
+ archivePrefix={arXiv},
603
+ primaryClass={cs.CL}
604
+ }
605
+ ```
606
+
607
+ <!--
608
+ ## Glossary
609
+
610
+ *Clearly define terms in order to be accessible across audiences.*
611
+ -->
612
+
613
+ <!--
614
+ ## Model Card Authors
615
+
616
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
617
+ -->
618
+
619
+ <!--
620
+ ## Model Card Contact
621
+
622
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
623
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-l",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.49.0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6ba56d84ae47eb51384ecf500b52d0ba4191a67665884bce78bf8d5980e8150
3
+ size 1336413848
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff