|
--- |
|
license: mit |
|
tags: |
|
- deepseek |
|
- int8 |
|
- vllm |
|
- llmcompressor |
|
base_model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B |
|
library_name: transformers |
|
--- |
|
|
|
# DeepSeek-R1-Distill-Llama-8B-quantized.w8a8 |
|
|
|
## Model Overview |
|
- **Model Architecture:** LlamaForCausalLM |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** INT8 |
|
- **Activation quantization:** INT8 |
|
- **Release Date:** 2/1/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B). |
|
|
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights and activations of [DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) to INT8 data type. |
|
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). |
|
Weight quantization also reduces disk size requirements by approximately 50%. |
|
|
|
Only the weights and activations of the linear operators within transformers blocks are quantized. |
|
Weights are quantized using a symmetric per-channel scheme, whereas quantizations are quantized using a symmetric per-token scheme. |
|
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. |
|
|
|
|
|
## Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
number_gpus = 1 |
|
model_name = "neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
sampling_params = SamplingParams(temperature=0.6, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) |
|
llm = LLM(model=model_name, tensor_parallel_size=number_gpus, trust_remote_code=True) |
|
|
|
messages_list = [ |
|
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], |
|
] |
|
|
|
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] |
|
|
|
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) |
|
|
|
generated_text = [output.outputs[0].text for output in outputs] |
|
print(generated_text) |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. |
|
|
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier |
|
from llmcompressor.transformers import oneshot |
|
|
|
# Load model |
|
model_stub = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" |
|
model_name = model_stub.split("/")[-1] |
|
|
|
num_samples = 1024 |
|
max_seq_len = 8192 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_stub) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_stub, |
|
device_map=device_map, |
|
torch_dtype="auto", |
|
) |
|
|
|
def preprocess_fn(example): |
|
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} |
|
|
|
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") |
|
ds = ds.map(preprocess_fn) |
|
|
|
# Configure the quantization algorithm and scheme |
|
recipe = [ |
|
SmoothQuantModifier(smoothing_strength=0.8), |
|
QuantizationModifier( |
|
targets="Linear", |
|
scheme="W8A8", |
|
ignore=["lm_head"], |
|
dampening_frac=0.1, |
|
), |
|
] |
|
|
|
# Apply quantization |
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=max_seq_len, |
|
num_calibration_samples=num_samples, |
|
) |
|
|
|
# Save to disk in compressed-tensors format |
|
save_path = model_name + "-quantized.w8a8 |
|
model.save_pretrained(save_path) |
|
tokenizer.save_pretrained(save_path) |
|
print(f"Model and tokenizer saved to: {save_path}") |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands: |
|
|
|
OpenLLM Leaderboard V1: |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \ |
|
--tasks openllm \ |
|
--write_out \ |
|
--batch_size auto \ |
|
--output_path output_dir \ |
|
--show_config |
|
``` |
|
|
|
OpenLLM Leaderboard V2: |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn \ |
|
--tasks leaderboard \ |
|
--write_out \ |
|
--batch_size auto \ |
|
--output_path output_dir \ |
|
--show_config |
|
``` |
|
|
|
### Accuracy |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th>Category</th> |
|
<th>Metric</th> |
|
<th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th> |
|
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8</th> |
|
<th>Recovery</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="7"><b>OpenLLM V1</b></td> |
|
<td>ARC-Challenge (Acc-Norm, 25-shot)</td> |
|
<td>45.05</td> |
|
<td>45.22</td> |
|
<td>100.4%</td> |
|
</tr> |
|
<tr> |
|
<td>GSM8K (Strict-Match, 5-shot)</td> |
|
<td>62.77</td> |
|
<td>62.09</td> |
|
<td>98.9%</td> |
|
</tr> |
|
<tr> |
|
<td>HellaSwag (Acc-Norm, 10-shot)</td> |
|
<td>76.78</td> |
|
<td>76.80</td> |
|
<td>100.0%</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU (Acc, 5-shot)</td> |
|
<td>55.65</td> |
|
<td>55.53</td> |
|
<td>99.8%</td> |
|
</tr> |
|
<tr> |
|
<td>TruthfulQA (MC2, 0-shot)</td> |
|
<td>50.55</td> |
|
<td>49.89</td> |
|
<td>98.7%</td> |
|
</tr> |
|
<tr> |
|
<td>Winogrande (Acc, 5-shot)</td> |
|
<td>68.51</td> |
|
<td>67.40</td> |
|
<td>98.4%</td> |
|
</tr> |
|
<tr> |
|
<td><b>Average Score</b></td> |
|
<td><b>59.88</b></td> |
|
<td><b>59.49</b></td> |
|
<td><b>99.3%</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="7"><b>OpenLLM V2</b></td> |
|
<td>IFEval (Inst Level Strict Acc, 0-shot)</td> |
|
<td>38.34</td> |
|
<td>39.07</td> |
|
<td>101.9%</td> |
|
</tr> |
|
<tr> |
|
<td>BBH (Acc-Norm, 3-shot)</td> |
|
<td>38.19</td> |
|
<td>39.57</td> |
|
<td>103.6%</td> |
|
</tr> |
|
<tr> |
|
<td>Math-Hard (Exact-Match, 4-shot)</td> |
|
<td>0.00</td> |
|
<td>0.00</td> |
|
<td>---</td> |
|
</tr> |
|
<tr> |
|
<td>GPQA (Acc-Norm, 0-shot)</td> |
|
<td>28.87</td> |
|
<td>27.28</td> |
|
<td>94.5%</td> |
|
</tr> |
|
<tr> |
|
<td>MUSR (Acc-Norm, 0-shot)</td> |
|
<td>33.31</td> |
|
<td>34.50</td> |
|
<td>103.6%</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU-Pro (Acc, 5-shot)</td> |
|
<td>20.10</td> |
|
<td>20.60</td> |
|
<td>102.4%</td> |
|
</tr> |
|
<tr> |
|
<td><b>Average Score</b></td> |
|
<td><b>26.47</b></td> |
|
<td><b>26.84</b></td> |
|
<td><b>101.4%</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="4"><b>Coding</b></td> |
|
<td>HumanEval (pass@1)</td> |
|
<td>49.90</td> |
|
<td>50.90</td> |
|
<td><b>102.0%</b></td> |
|
</tr> |
|
<tr> |
|
<td>HumanEval (pass@10)</td> |
|
<td>68.90</td> |
|
<td>68.70</td> |
|
<td>99.7%</td> |
|
</tr> |
|
<tr> |
|
<td>HumanEval+ (pass@10)</td> |
|
<td>44.10</td> |
|
<td>46.70</td> |
|
<td>105.9%</td> |
|
</tr> |
|
<tr> |
|
<td>HumanEval+ (pass@10)</td> |
|
<td>62.90</td> |
|
<td>64.30</td> |
|
<td>102.2%</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
## Inference Performance |
|
|
|
|
|
This model achieves up to 1.6x speedup in single-stream deployment and up to 1.4x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. |
|
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm). |
|
|
|
<details> |
|
<summary>Benchmarking Command</summary> |
|
|
|
``` |
|
guidellm --model neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server |
|
``` |
|
</details> |
|
|
|
### Single-stream performance (measured with vLLM version 0.7.2) |
|
<table> |
|
<thead> |
|
<tr> |
|
<th></th> |
|
<th></th> |
|
<th></th> |
|
<th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th> |
|
<th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th> |
|
<th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th> |
|
<th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th> |
|
<th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th> |
|
<th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th> |
|
<th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th> |
|
<th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th> |
|
</tr> |
|
<tr> |
|
<th>Hardware</th> |
|
<th>Model</th> |
|
<th>Average cost reduction</th> |
|
<th>Latency (s)</th> |
|
<th>QPD</th> |
|
<th>Latency (s)</th> |
|
<th>QPD</th> |
|
<th>Latency (s)</th> |
|
<th>QPD</th> |
|
<th>Latency (s)</th> |
|
<th>QPD</th> |
|
<th>Latency (s)</th> |
|
<th>QPD</th> |
|
<th>Latency (s)</th> |
|
<th>QPD</th> |
|
<th>Latency (s)</th> |
|
<th>QPD</th> |
|
<th>Latency (s)</th> |
|
<th>QPD</th> |
|
</tr> |
|
</thead> |
|
<tbody style="text-align: center" > |
|
<tr> |
|
<th rowspan="3" valign="top">A6000x1</th> |
|
<th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th> |
|
<td>---</td> |
|
<td>3.0</td> |
|
<td>1511</td> |
|
<td>6.0</td> |
|
<td>755</td> |
|
<td>3.0</td> |
|
<td>1483</td> |
|
<td>3.1</td> |
|
<td>1462</td> |
|
<td>23.6</td> |
|
<td>191</td> |
|
<td>24.0</td> |
|
<td>188</td> |
|
<td>12.7</td> |
|
<td>353</td> |
|
<td>41.1</td> |
|
<td>110</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8</th> |
|
<td>1.53</td> |
|
<td>1.9</td> |
|
<td>2356</td> |
|
<td>3.8</td> |
|
<td>1175</td> |
|
<td>2.0</td> |
|
<td>2291</td> |
|
<td>2.0</td> |
|
<td>2207</td> |
|
<td>15.2</td> |
|
<td>297</td> |
|
<td>15.5</td> |
|
<td>290</td> |
|
<td>8.5</td> |
|
<td>531</td> |
|
<td>28.6</td> |
|
<td>157</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16</th> |
|
<td>2.35</td> |
|
<td>1.2</td> |
|
<td>3870</td> |
|
<td>2.3</td> |
|
<td>1918</td> |
|
<td>1.3</td> |
|
<td>3492</td> |
|
<td>1.3</td> |
|
<td>3335</td> |
|
<td>9.1</td> |
|
<td>492</td> |
|
<td>9.5</td> |
|
<td>472</td> |
|
<td>5.8</td> |
|
<td>771</td> |
|
<td>22.7</td> |
|
<td>198</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">A100x1</th> |
|
<th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th> |
|
<td>---</td> |
|
<td>1.5</td> |
|
<td>1308</td> |
|
<td>3.1</td> |
|
<td>657</td> |
|
<td>1.6</td> |
|
<td>1274</td> |
|
<td>1.6</td> |
|
<td>1263</td> |
|
<td>12.1</td> |
|
<td>166</td> |
|
<td>12.4</td> |
|
<td>162</td> |
|
<td>6.5</td> |
|
<td>308</td> |
|
<td>25.6</td> |
|
<td>78</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8</th> |
|
<td>1.30</td> |
|
<td>1.1</td> |
|
<td>1763</td> |
|
<td>2.3</td> |
|
<td>882</td> |
|
<td>1.2</td> |
|
<td>1716</td> |
|
<td>1.2</td> |
|
<td>1698</td> |
|
<td>9.0</td> |
|
<td>223</td> |
|
<td>9.2</td> |
|
<td>218</td> |
|
<td>4.9</td> |
|
<td>409</td> |
|
<td>25.7</td> |
|
<td>78</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16</th> |
|
<td>1.76</td> |
|
<td>0.8</td> |
|
<td>2501</td> |
|
<td>1.6</td> |
|
<td>1236</td> |
|
<td>0.9</td> |
|
<td>2350</td> |
|
<td>0.9</td> |
|
<td>2287</td> |
|
<td>6.4</td> |
|
<td>316</td> |
|
<td>6.6</td> |
|
<td>306</td> |
|
<td>3.7</td> |
|
<td>544</td> |
|
<td>24.7</td> |
|
<td>82</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">H100x1</th> |
|
<th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th> |
|
<td>---</td> |
|
<td>1.0</td> |
|
<td>1146</td> |
|
<td>1.9</td> |
|
<td>574</td> |
|
<td>1.0</td> |
|
<td>1128</td> |
|
<td>1.0</td> |
|
<td>1111</td> |
|
<td>7.6</td> |
|
<td>144</td> |
|
<td>7.7</td> |
|
<td>142</td> |
|
<td>4.1</td> |
|
<td>266</td> |
|
<td>16.3</td> |
|
<td>67</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-FP8-dynamic</th> |
|
<td>1.25</td> |
|
<td>0.7</td> |
|
<td>1567</td> |
|
<td>1.4</td> |
|
<td>758</td> |
|
<td>0.7</td> |
|
<td>1484</td> |
|
<td>0.7</td> |
|
<td>1462</td> |
|
<td>5.7</td> |
|
<td>191</td> |
|
<td>5.8</td> |
|
<td>189</td> |
|
<td>3.2</td> |
|
<td>347</td> |
|
<td>22.5</td> |
|
<td>49</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16</th> |
|
<td>1.30</td> |
|
<td>0.7</td> |
|
<td>1527</td> |
|
<td>1.4</td> |
|
<td>768</td> |
|
<td>0.7</td> |
|
<td>1495</td> |
|
<td>0.7</td> |
|
<td>1463</td> |
|
<td>5.6</td> |
|
<td>194</td> |
|
<td>5.7</td> |
|
<td>190</td> |
|
<td>3.1</td> |
|
<td>350</td> |
|
<td>14.7</td> |
|
<td>74</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
**Use case profiles: prompt tokens / generation tokens |
|
|
|
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025). |
|
|
|
|
|
### Multi-stream asynchronous performance (measured with vLLM version 0.7.2) |
|
<table> |
|
<thead> |
|
<tr> |
|
<th></th> |
|
<th></th> |
|
<th></th> |
|
<th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th> |
|
<th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th> |
|
<th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th> |
|
<th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th> |
|
<th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th> |
|
<th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th> |
|
<th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th> |
|
<th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th> |
|
</tr> |
|
<tr> |
|
<th>Hardware</th> |
|
<th>Model</th> |
|
<th>Average cost reduction</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
</tr> |
|
</thead> |
|
<tbody style="text-align: center" > |
|
<tr> |
|
<th rowspan="3" valign="top">A6000x1</th> |
|
<th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th> |
|
<td>---</td> |
|
<td>12.6</td> |
|
<td>56742</td> |
|
<td>5.7</td> |
|
<td>25687</td> |
|
<td>6.5</td> |
|
<td>29349</td> |
|
<td>5.2</td> |
|
<td>23259</td> |
|
<td>1.6</td> |
|
<td>7250</td> |
|
<td>1.2</td> |
|
<td>5181</td> |
|
<td>0.8</td> |
|
<td>3445</td> |
|
<td>0.1</td> |
|
<td>616</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8</th> |
|
<td>1.34</td> |
|
<td>17.4</td> |
|
<td>78101</td> |
|
<td>7.6</td> |
|
<td>34351</td> |
|
<td>8.8</td> |
|
<td>39790</td> |
|
<td>7.0</td> |
|
<td>31532</td> |
|
<td>2.3</td> |
|
<td>10405</td> |
|
<td>1.5</td> |
|
<td>6960</td> |
|
<td>1.0</td> |
|
<td>4355</td> |
|
<td>0.2</td> |
|
<td>785</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16</th> |
|
<td>0.91</td> |
|
<td>10.9</td> |
|
<td>48964</td> |
|
<td>5.1</td> |
|
<td>22989</td> |
|
<td>4.8</td> |
|
<td>21791</td> |
|
<td>3.8</td> |
|
<td>17039</td> |
|
<td>2.2</td> |
|
<td>9726</td> |
|
<td>1.2</td> |
|
<td>5434</td> |
|
<td>0.6</td> |
|
<td>2544</td> |
|
<td>0.1</td> |
|
<td>578</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">A100x1</th> |
|
<th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th> |
|
<td>---</td> |
|
<td>24.5</td> |
|
<td>49296</td> |
|
<td>11.3</td> |
|
<td>22657</td> |
|
<td>13.0</td> |
|
<td>26047</td> |
|
<td>10.5</td> |
|
<td>21020</td> |
|
<td>3.5</td> |
|
<td>7029</td> |
|
<td>2.5</td> |
|
<td>4995</td> |
|
<td>1.7</td> |
|
<td>3503</td> |
|
<td>0.3</td> |
|
<td>659</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8</th> |
|
<td>1.27</td> |
|
<td>30.8</td> |
|
<td>62042</td> |
|
<td>14.1</td> |
|
<td>28419</td> |
|
<td>17.2</td> |
|
<td>34554</td> |
|
<td>13.8</td> |
|
<td>27719</td> |
|
<td>4.6</td> |
|
<td>9299</td> |
|
<td>3.1</td> |
|
<td>6215</td> |
|
<td>2.2</td> |
|
<td>4331</td> |
|
<td>0.4</td> |
|
<td>807</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16</th> |
|
<td>0.97</td> |
|
<td>22.7</td> |
|
<td>45708</td> |
|
<td>10.5</td> |
|
<td>21216</td> |
|
<td>11.1</td> |
|
<td>22353</td> |
|
<td>8.9</td> |
|
<td>17939</td> |
|
<td>3.9</td> |
|
<td>7758</td> |
|
<td>2.6</td> |
|
<td>5241</td> |
|
<td>1.6</td> |
|
<td>3196</td> |
|
<td>0.4</td> |
|
<td>718</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">H100x1</th> |
|
<th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th> |
|
<td>---</td> |
|
<td>49.0</td> |
|
<td>53593</td> |
|
<td>22.6</td> |
|
<td>24750</td> |
|
<td>28.3</td> |
|
<td>30971</td> |
|
<td>22.9</td> |
|
<td>25035</td> |
|
<td>7.2</td> |
|
<td>7912</td> |
|
<td>5.1</td> |
|
<td>5561</td> |
|
<td>3.6</td> |
|
<td>3939</td> |
|
<td>0.6</td> |
|
<td>703</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-FP8-dynamic</th> |
|
<td>1.14</td> |
|
<td>57.1</td> |
|
<td>62517</td> |
|
<td>26.0</td> |
|
<td>28440</td> |
|
<td>34.5</td> |
|
<td>37781</td> |
|
<td>28.7</td> |
|
<td>31360</td> |
|
<td>7.2</td> |
|
<td>7877</td> |
|
<td>5.4</td> |
|
<td>5923</td> |
|
<td>4.3</td> |
|
<td>4697</td> |
|
<td>0.7</td> |
|
<td>782</td> |
|
</tr> |
|
<tr> |
|
<th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16</th> |
|
<td>1.01</td> |
|
<td>49.8</td> |
|
<td>54452</td> |
|
<td>22.9</td> |
|
<td>25035</td> |
|
<td>28.5</td> |
|
<td>31162</td> |
|
<td>23.0</td> |
|
<td>25200</td> |
|
<td>6.8</td> |
|
<td>7493</td> |
|
<td>5.0</td> |
|
<td>5431</td> |
|
<td>3.7</td> |
|
<td>4079</td> |
|
<td>0.7</td> |
|
<td>787</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
**Use case profiles: prompt tokens / generation tokens |
|
|
|
**QPS: Queries per second. |
|
|
|
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025). |