nm-research commited on
Commit
f8cfa56
·
verified ·
1 Parent(s): 3684090

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +475 -0
README.md CHANGED
@@ -280,3 +280,478 @@ lm_eval \
280
  </tr>
281
  </tbody>
282
  </table>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
  </tr>
281
  </tbody>
282
  </table>
283
+
284
+ ## Inference Performance
285
+
286
+
287
+ This model achieves up to 1.6x speedup in single-stream deployment and up to 1.4x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
288
+ The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm).
289
+
290
+ <details>
291
+ <summary>Benchmarking Command</summary>
292
+
293
+ ```
294
+ guidellm --model neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
295
+ ```
296
+ </details>
297
+
298
+ ### Single-stream performance (measured with vLLM version 0.7.2)
299
+ <table>
300
+ <thead>
301
+ <tr>
302
+ <th></th>
303
+ <th></th>
304
+ <th></th>
305
+ <th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
306
+ <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
307
+ <th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
308
+ <th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
309
+ <th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
310
+ <th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
311
+ <th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
312
+ <th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
313
+ </tr>
314
+ <tr>
315
+ <th>Hardware</th>
316
+ <th>Model</th>
317
+ <th>Average cost reduction</th>
318
+ <th>Latency (s)</th>
319
+ <th>QPD</th>
320
+ <th>Latency (s)</th>
321
+ <th>QPD</th>
322
+ <th>Latency (s)</th>
323
+ <th>QPD</th>
324
+ <th>Latency (s)</th>
325
+ <th>QPD</th>
326
+ <th>Latency (s)</th>
327
+ <th>QPD</th>
328
+ <th>Latency (s)</th>
329
+ <th>QPD</th>
330
+ <th>Latency (s)</th>
331
+ <th>QPD</th>
332
+ <th>Latency (s)</th>
333
+ <th>QPD</th>
334
+ </tr>
335
+ </thead>
336
+ <tbody style="text-align: center" >
337
+ <tr>
338
+ <th rowspan="3" valign="top">A6000x1</th>
339
+ <th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th>
340
+ <td>---</td>
341
+ <td>3.0</td>
342
+ <td>1511</td>
343
+ <td>6.0</td>
344
+ <td>755</td>
345
+ <td>3.0</td>
346
+ <td>1483</td>
347
+ <td>3.1</td>
348
+ <td>1462</td>
349
+ <td>23.6</td>
350
+ <td>191</td>
351
+ <td>24.0</td>
352
+ <td>188</td>
353
+ <td>12.7</td>
354
+ <td>353</td>
355
+ <td>41.1</td>
356
+ <td>110</td>
357
+ </tr>
358
+ <tr>
359
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8</th>
360
+ <td>1.53</td>
361
+ <td>1.9</td>
362
+ <td>2356</td>
363
+ <td>3.8</td>
364
+ <td>1175</td>
365
+ <td>2.0</td>
366
+ <td>2291</td>
367
+ <td>2.0</td>
368
+ <td>2207</td>
369
+ <td>15.2</td>
370
+ <td>297</td>
371
+ <td>15.5</td>
372
+ <td>290</td>
373
+ <td>8.5</td>
374
+ <td>531</td>
375
+ <td>28.6</td>
376
+ <td>157</td>
377
+ </tr>
378
+ <tr>
379
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16</th>
380
+ <td>2.35</td>
381
+ <td>1.2</td>
382
+ <td>3870</td>
383
+ <td>2.3</td>
384
+ <td>1918</td>
385
+ <td>1.3</td>
386
+ <td>3492</td>
387
+ <td>1.3</td>
388
+ <td>3335</td>
389
+ <td>9.1</td>
390
+ <td>492</td>
391
+ <td>9.5</td>
392
+ <td>472</td>
393
+ <td>5.8</td>
394
+ <td>771</td>
395
+ <td>22.7</td>
396
+ <td>198</td>
397
+ </tr>
398
+ <tr>
399
+ <th rowspan="3" valign="top">A100x1</th>
400
+ <th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th>
401
+ <td>---</td>
402
+ <td>1.5</td>
403
+ <td>1308</td>
404
+ <td>3.1</td>
405
+ <td>657</td>
406
+ <td>1.6</td>
407
+ <td>1274</td>
408
+ <td>1.6</td>
409
+ <td>1263</td>
410
+ <td>12.1</td>
411
+ <td>166</td>
412
+ <td>12.4</td>
413
+ <td>162</td>
414
+ <td>6.5</td>
415
+ <td>308</td>
416
+ <td>25.6</td>
417
+ <td>78</td>
418
+ </tr>
419
+ <tr>
420
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8</th>
421
+ <td>1.30</td>
422
+ <td>1.1</td>
423
+ <td>1763</td>
424
+ <td>2.3</td>
425
+ <td>882</td>
426
+ <td>1.2</td>
427
+ <td>1716</td>
428
+ <td>1.2</td>
429
+ <td>1698</td>
430
+ <td>9.0</td>
431
+ <td>223</td>
432
+ <td>9.2</td>
433
+ <td>218</td>
434
+ <td>4.9</td>
435
+ <td>409</td>
436
+ <td>25.7</td>
437
+ <td>78</td>
438
+ </tr>
439
+ <tr>
440
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16</th>
441
+ <td>1.76</td>
442
+ <td>0.8</td>
443
+ <td>2501</td>
444
+ <td>1.6</td>
445
+ <td>1236</td>
446
+ <td>0.9</td>
447
+ <td>2350</td>
448
+ <td>0.9</td>
449
+ <td>2287</td>
450
+ <td>6.4</td>
451
+ <td>316</td>
452
+ <td>6.6</td>
453
+ <td>306</td>
454
+ <td>3.7</td>
455
+ <td>544</td>
456
+ <td>24.7</td>
457
+ <td>82</td>
458
+ </tr>
459
+ <tr>
460
+ <th rowspan="3" valign="top">H100x1</th>
461
+ <th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th>
462
+ <td>---</td>
463
+ <td>1.0</td>
464
+ <td>1146</td>
465
+ <td>1.9</td>
466
+ <td>574</td>
467
+ <td>1.0</td>
468
+ <td>1128</td>
469
+ <td>1.0</td>
470
+ <td>1111</td>
471
+ <td>7.6</td>
472
+ <td>144</td>
473
+ <td>7.7</td>
474
+ <td>142</td>
475
+ <td>4.1</td>
476
+ <td>266</td>
477
+ <td>16.3</td>
478
+ <td>67</td>
479
+ </tr>
480
+ <tr>
481
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-FP8-dynamic</th>
482
+ <td>1.25</td>
483
+ <td>0.7</td>
484
+ <td>1567</td>
485
+ <td>1.4</td>
486
+ <td>758</td>
487
+ <td>0.7</td>
488
+ <td>1484</td>
489
+ <td>0.7</td>
490
+ <td>1462</td>
491
+ <td>5.7</td>
492
+ <td>191</td>
493
+ <td>5.8</td>
494
+ <td>189</td>
495
+ <td>3.2</td>
496
+ <td>347</td>
497
+ <td>22.5</td>
498
+ <td>49</td>
499
+ </tr>
500
+ <tr>
501
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16</th>
502
+ <td>1.30</td>
503
+ <td>0.7</td>
504
+ <td>1527</td>
505
+ <td>1.4</td>
506
+ <td>768</td>
507
+ <td>0.7</td>
508
+ <td>1495</td>
509
+ <td>0.7</td>
510
+ <td>1463</td>
511
+ <td>5.6</td>
512
+ <td>194</td>
513
+ <td>5.7</td>
514
+ <td>190</td>
515
+ <td>3.1</td>
516
+ <td>350</td>
517
+ <td>14.7</td>
518
+ <td>74</td>
519
+ </tr>
520
+ </tbody>
521
+ </table>
522
+
523
+ **Use case profiles: prompt tokens / generation tokens
524
+
525
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
526
+
527
+
528
+ ### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
529
+ <table>
530
+ <thead>
531
+ <tr>
532
+ <th></th>
533
+ <th></th>
534
+ <th></th>
535
+ <th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
536
+ <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
537
+ <th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
538
+ <th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
539
+ <th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
540
+ <th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
541
+ <th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
542
+ <th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
543
+ </tr>
544
+ <tr>
545
+ <th>Hardware</th>
546
+ <th>Model</th>
547
+ <th>Average cost reduction</th>
548
+ <th>Maximum throughput (QPS)</th>
549
+ <th>QPD</th>
550
+ <th>Maximum throughput (QPS)</th>
551
+ <th>QPD</th>
552
+ <th>Maximum throughput (QPS)</th>
553
+ <th>QPD</th>
554
+ <th>Maximum throughput (QPS)</th>
555
+ <th>QPD</th>
556
+ <th>Maximum throughput (QPS)</th>
557
+ <th>QPD</th>
558
+ <th>Maximum throughput (QPS)</th>
559
+ <th>QPD</th>
560
+ <th>Maximum throughput (QPS)</th>
561
+ <th>QPD</th>
562
+ <th>Maximum throughput (QPS)</th>
563
+ <th>QPD</th>
564
+ </tr>
565
+ </thead>
566
+ <tbody style="text-align: center" >
567
+ <tr>
568
+ <th rowspan="3" valign="top">A6000x1</th>
569
+ <th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th>
570
+ <td>---</td>
571
+ <td>12.6</td>
572
+ <td>56742</td>
573
+ <td>5.7</td>
574
+ <td>25687</td>
575
+ <td>6.5</td>
576
+ <td>29349</td>
577
+ <td>5.2</td>
578
+ <td>23259</td>
579
+ <td>1.6</td>
580
+ <td>7250</td>
581
+ <td>1.2</td>
582
+ <td>5181</td>
583
+ <td>0.8</td>
584
+ <td>3445</td>
585
+ <td>0.1</td>
586
+ <td>616</td>
587
+ </tr>
588
+ <tr>
589
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8</th>
590
+ <td>1.34</td>
591
+ <td>17.4</td>
592
+ <td>78101</td>
593
+ <td>7.6</td>
594
+ <td>34351</td>
595
+ <td>8.8</td>
596
+ <td>39790</td>
597
+ <td>7.0</td>
598
+ <td>31532</td>
599
+ <td>2.3</td>
600
+ <td>10405</td>
601
+ <td>1.5</td>
602
+ <td>6960</td>
603
+ <td>1.0</td>
604
+ <td>4355</td>
605
+ <td>0.2</td>
606
+ <td>785</td>
607
+ </tr>
608
+ <tr>
609
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16</th>
610
+ <td>0.91</td>
611
+ <td>10.9</td>
612
+ <td>48964</td>
613
+ <td>5.1</td>
614
+ <td>22989</td>
615
+ <td>4.8</td>
616
+ <td>21791</td>
617
+ <td>3.8</td>
618
+ <td>17039</td>
619
+ <td>2.2</td>
620
+ <td>9726</td>
621
+ <td>1.2</td>
622
+ <td>5434</td>
623
+ <td>0.6</td>
624
+ <td>2544</td>
625
+ <td>0.1</td>
626
+ <td>578</td>
627
+ </tr>
628
+ <tr>
629
+ <th rowspan="3" valign="top">A100x1</th>
630
+ <th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th>
631
+ <td>---</td>
632
+ <td>24.5</td>
633
+ <td>49296</td>
634
+ <td>11.3</td>
635
+ <td>22657</td>
636
+ <td>13.0</td>
637
+ <td>26047</td>
638
+ <td>10.5</td>
639
+ <td>21020</td>
640
+ <td>3.5</td>
641
+ <td>7029</td>
642
+ <td>2.5</td>
643
+ <td>4995</td>
644
+ <td>1.7</td>
645
+ <td>3503</td>
646
+ <td>0.3</td>
647
+ <td>659</td>
648
+ </tr>
649
+ <tr>
650
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w8a8</th>
651
+ <td>1.27</td>
652
+ <td>30.8</td>
653
+ <td>62042</td>
654
+ <td>14.1</td>
655
+ <td>28419</td>
656
+ <td>17.2</td>
657
+ <td>34554</td>
658
+ <td>13.8</td>
659
+ <td>27719</td>
660
+ <td>4.6</td>
661
+ <td>9299</td>
662
+ <td>3.1</td>
663
+ <td>6215</td>
664
+ <td>2.2</td>
665
+ <td>4331</td>
666
+ <td>0.4</td>
667
+ <td>807</td>
668
+ </tr>
669
+ <tr>
670
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16</th>
671
+ <td>0.97</td>
672
+ <td>22.7</td>
673
+ <td>45708</td>
674
+ <td>10.5</td>
675
+ <td>21216</td>
676
+ <td>11.1</td>
677
+ <td>22353</td>
678
+ <td>8.9</td>
679
+ <td>17939</td>
680
+ <td>3.9</td>
681
+ <td>7758</td>
682
+ <td>2.6</td>
683
+ <td>5241</td>
684
+ <td>1.6</td>
685
+ <td>3196</td>
686
+ <td>0.4</td>
687
+ <td>718</td>
688
+ </tr>
689
+ <tr>
690
+ <th rowspan="3" valign="top">H100x1</th>
691
+ <th>deepseek-ai/DeepSeek-R1-Distill-Llama-8B</th>
692
+ <td>---</td>
693
+ <td>49.0</td>
694
+ <td>53593</td>
695
+ <td>22.6</td>
696
+ <td>24750</td>
697
+ <td>28.3</td>
698
+ <td>30971</td>
699
+ <td>22.9</td>
700
+ <td>25035</td>
701
+ <td>7.2</td>
702
+ <td>7912</td>
703
+ <td>5.1</td>
704
+ <td>5561</td>
705
+ <td>3.6</td>
706
+ <td>3939</td>
707
+ <td>0.6</td>
708
+ <td>703</td>
709
+ </tr>
710
+ <tr>
711
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-FP8-dynamic</th>
712
+ <td>1.14</td>
713
+ <td>57.1</td>
714
+ <td>62517</td>
715
+ <td>26.0</td>
716
+ <td>28440</td>
717
+ <td>34.5</td>
718
+ <td>37781</td>
719
+ <td>28.7</td>
720
+ <td>31360</td>
721
+ <td>7.2</td>
722
+ <td>7877</td>
723
+ <td>5.4</td>
724
+ <td>5923</td>
725
+ <td>4.3</td>
726
+ <td>4697</td>
727
+ <td>0.7</td>
728
+ <td>782</td>
729
+ </tr>
730
+ <tr>
731
+ <th>neuralmagic/DeepSeek-R1-Distill-Llama-8B-quantized.w4a16</th>
732
+ <td>1.01</td>
733
+ <td>49.8</td>
734
+ <td>54452</td>
735
+ <td>22.9</td>
736
+ <td>25035</td>
737
+ <td>28.5</td>
738
+ <td>31162</td>
739
+ <td>23.0</td>
740
+ <td>25200</td>
741
+ <td>6.8</td>
742
+ <td>7493</td>
743
+ <td>5.0</td>
744
+ <td>5431</td>
745
+ <td>3.7</td>
746
+ <td>4079</td>
747
+ <td>0.7</td>
748
+ <td>787</td>
749
+ </tr>
750
+ </tbody>
751
+ </table>
752
+
753
+ **Use case profiles: prompt tokens / generation tokens
754
+
755
+ **QPS: Queries per second.
756
+
757
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).