|
--- |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-multilingual-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: fine_tuned_mBERT |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fine_tuned_mBERT |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0788 |
|
- F1: 0.8387 |
|
- F5: 0.8492 |
|
- Precision: 0.8125 |
|
- Recall: 0.8667 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 9 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | F5 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:|:------:| |
|
| No log | 1.0 | 11 | 0.2709 | 0.0 | 0.0 | 0.0 | 0.0 | |
|
| No log | 2.0 | 22 | 0.2130 | 0.1333 | 0.1002 | 1.0 | 0.0714 | |
|
| No log | 3.0 | 33 | 0.1537 | 0.6207 | 0.6290 | 0.6 | 0.6429 | |
|
| No log | 4.0 | 44 | 0.0986 | 0.7200 | 0.6884 | 0.8182 | 0.6429 | |
|
| No log | 5.0 | 55 | 0.1376 | 0.7333 | 0.7525 | 0.6875 | 0.7857 | |
|
| No log | 6.0 | 66 | 0.1490 | 0.6207 | 0.6290 | 0.6 | 0.6429 | |
|
| No log | 7.0 | 77 | 0.1969 | 0.64 | 0.6120 | 0.7273 | 0.5714 | |
|
| No log | 8.0 | 88 | 0.2131 | 0.6897 | 0.6989 | 0.6667 | 0.7143 | |
|
| No log | 9.0 | 99 | 0.2097 | 0.6154 | 0.5978 | 0.6667 | 0.5714 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.3.0a0+ebedce2 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|