fine_tuned_mBERT / README.md
morten-j's picture
mehdie/fine_tuned_mBERT
96050ff verified
|
raw
history blame
2.33 kB
metadata
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - f1
  - precision
  - recall
model-index:
  - name: fine_tuned_mBERT
    results: []

fine_tuned_mBERT

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0788
  • F1: 0.8387
  • F5: 0.8492
  • Precision: 0.8125
  • Recall: 0.8667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 9
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 F5 Precision Recall
No log 1.0 11 0.2709 0.0 0.0 0.0 0.0
No log 2.0 22 0.2130 0.1333 0.1002 1.0 0.0714
No log 3.0 33 0.1537 0.6207 0.6290 0.6 0.6429
No log 4.0 44 0.0986 0.7200 0.6884 0.8182 0.6429
No log 5.0 55 0.1376 0.7333 0.7525 0.6875 0.7857
No log 6.0 66 0.1490 0.6207 0.6290 0.6 0.6429
No log 7.0 77 0.1969 0.64 0.6120 0.7273 0.5714
No log 8.0 88 0.2131 0.6897 0.6989 0.6667 0.7143
No log 9.0 99 0.2097 0.6154 0.5978 0.6667 0.5714

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0a0+ebedce2
  • Datasets 2.17.1
  • Tokenizers 0.15.2