metadata
base_model: ContactDoctor/Bio-Medical-3B-CoT-012025
datasets:
- collaiborateorg/BioMedData
library_name: transformers
license: other
tags:
- generated_from_trainer
- medical
- Healthcare & Lifesciences
- BioMed
- chain-of-thought
- mlx
thumbnail: https://collaiborate.com/logo/logo-blue-bg-1.png
model-index:
- name: Bio-Medical-3B-CoT-012025
results: []
mlx-community/Bio-Medical-3B-CoT-012025
The Model mlx-community/Bio-Medical-3B-CoT-012025 was converted to MLX format from ContactDoctor/Bio-Medical-3B-CoT-012025 using mlx-lm version 0.20.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Bio-Medical-3B-CoT-012025")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)