File size: 1,198 Bytes
ab962c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
base_model: ContactDoctor/Bio-Medical-3B-CoT-012025
datasets:
- collaiborateorg/BioMedData
library_name: transformers
license: other
tags:
- generated_from_trainer
- medical
- Healthcare & Lifesciences
- BioMed
- chain-of-thought
- mlx
thumbnail: https://collaiborate.com/logo/logo-blue-bg-1.png
model-index:
- name: Bio-Medical-3B-CoT-012025
results: []
---
# mlx-community/Bio-Medical-3B-CoT-012025
The Model [mlx-community/Bio-Medical-3B-CoT-012025](https://huggingface.co/mlx-community/Bio-Medical-3B-CoT-012025) was
converted to MLX format from [ContactDoctor/Bio-Medical-3B-CoT-012025](https://huggingface.co/ContactDoctor/Bio-Medical-3B-CoT-012025)
using mlx-lm version **0.20.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Bio-Medical-3B-CoT-012025")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|