WebGen-LM-32B / README.md
luzimu's picture
Update README.md
7d10337 verified
---
base_model:
- Qwen/Qwen2.5-Coder-7B-Instruct
datasets:
- luzimu/WebGen-Bench
language:
- en
library_name: transformers
license: mit
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- code-generation
---
# WebGen-LM
WebGen-LM is trained using the Bolt.diy trajectories generated from a subset of the training set of WebGen-Bench (πŸ€— [luzimu/WebGen-Bench](https://huggingface.co/datasets/luzimu/WebGen-Bench)). It has been introduced in the paper [WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch](https://arxiv.org/abs/2505.03733).
Project page: https://webgen-bench.github.io/
The training data and code can be found at [WebGen-Bench (Github)](https://github.com/mnluzimu/WebGen-Bench).
The WebGen-LM family of models are as follows:
|Models | HF Links |
|---|---|
|WebGen-LM-7B | πŸ€— [luzimu/WebGen-LM-7B](https://huggingface.co/luzimu/WebGen-LM-7B) |
|WebGen-LM-14B | πŸ€— [luzimu/WebGen-LM-14B](https://huggingface.co/luzimu/WebGen-LM-14B) |
|WebGen-LM-32B | πŸ€— [luzimu/WebGen-LM-32B](https://huggingface.co/luzimu/WebGen-LM-32B) |
## Sample Usage
You can use this model with the `transformers` library for text generation tasks, specifically for code generation based on instructions.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "luzimu/WebGen-LM-32B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
)
messages = [
{"role": "user", "content": "Write HTML, CSS, and JavaScript for a simple to-do list web application. The list should allow users to add and remove items."},
]
chat_input = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([chat_input], return_tensors="pt").to(model.device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=2048,
do_sample=True,
temperature=0.7,
top_p=0.95
)
# Decode only the newly generated tokens
output_text = tokenizer.decode(generated_ids[0][model_inputs.input_ids.shape[1]:], skip_special_tokens=False)
print(output_text)
```
## Performance on WebGen-Bench
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b0bfef2f2f9c345b87e673/ADt1JdvKw-IZ_xnS17adL.png)
## Citation
If you find our project useful, please cite:
```
@misc{lu2025webgenbenchevaluatingllmsgenerating,
title={WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch},
author={Zimu Lu and Yunqiao Yang and Houxing Ren and Haotian Hou and Han Xiao and Ke Wang and Weikang Shi and Aojun Zhou and Mingjie Zhan and Hongsheng Li},
year={2025},
eprint={2505.03733},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.03733},
}
@misc{lu2025webgenagentenhancinginteractivewebsite,
title={WebGen-Agent: Enhancing Interactive Website Generation with Multi-Level Feedback and Step-Level Reinforcement Learning},
author={Zimu Lu and Houxing Ren and Yunqiao Yang and Ke Wang and Zhuofan Zong and Junting Pan and Mingjie Zhan and Hongsheng Li},
year={2025},
eprint={2509.22644},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2509.22644},
}
```