WebGen-Bench
Collection
Datasets and models introduced in the paper "WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch".
•
11 items
•
Updated
•
1
WebGen-LM is trained using the Bolt.diy trajectories generated from a subset of the training set of WebGen-Bench (🤗 luzimu/WebGen-Bench). It has been introduced in the paper WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch.
Project page: https://webgen-bench.github.io/ The training data and code can be found at WebGen-Bench (Github).
The WebGen-LM family of models are as follows:
Models | HF Links |
---|---|
WebGen-LM-7B | 🤗 luzimu/WebGen-LM-7B |
WebGen-LM-14B | 🤗 luzimu/WebGen-LM-14B |
WebGen-LM-32B | 🤗 luzimu/WebGen-LM-32B |
You can use this model with the transformers
library for text generation tasks, specifically for code generation based on instructions.
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "luzimu/WebGen-LM-32B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
)
messages = [
{"role": "user", "content": "Write HTML, CSS, and JavaScript for a simple to-do list web application. The list should allow users to add and remove items."},
]
chat_input = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([chat_input], return_tensors="pt").to(model.device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=2048,
do_sample=True,
temperature=0.7,
top_p=0.95
)
# Decode only the newly generated tokens
output_text = tokenizer.decode(generated_ids[0][model_inputs.input_ids.shape[1]:], skip_special_tokens=False)
print(output_text)
If you find our project useful, please cite:
@misc{lu2025webgenbenchevaluatingllmsgenerating,
title={WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch},
author={Zimu Lu and Yunqiao Yang and Houxing Ren and Haotian Hou and Han Xiao and Ke Wang and Weikang Shi and Aojun Zhou and Mingjie Zhan and Hongsheng Li},
year={2025},
eprint={2505.03733},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.03733},
}