|
# training |
|
## 单node自动training |
|
scripts/training/node.sh |
|
|
|
``` |
|
#agent名字,yaml文件名 |
|
agent="hydra_pe" |
|
|
|
#不管这个 |
|
cache="null" |
|
|
|
#训练参数 |
|
bs=32 |
|
lr=0.0002 |
|
epoch=20 |
|
|
|
#navsim有三个split:train val test 这里有两个选项: |
|
1.default_training -- 用navtrain里的train split训,测在navtest(test split)上测 |
|
2.competition_training -- 用navtrain里的train+val split训,测在navtest(test split)上测 |
|
#hydramdp第一个表小模型resnet34,我都用了default training |
|
#第二个表大模型vov、vitl、。。。,我都用了competition training |
|
config="competition_training" |
|
|
|
#最后所有的ckpt,tensorboard log都保存在这里 |
|
#完整路径是/zhenxinl_nuplan/navsim_workspace/exp/$dir |
|
dir=${agent}_lr2_ckpt |
|
``` |
|
## 多node自动training |
|
``` |
|
agent="hydra_pe" |
|
bs=8 |
|
lr=0.0002 |
|
cache="null" |
|
config="competition_training" |
|
epoch=10 |
|
|
|
#相比前面多了一个这个,每个replica有8张卡 |
|
#前面的bs是单卡的bs,总的bs大小为bs*replicas |
|
#如果要改replicas数量,要按比例改lr,总bs*2那么lr也*2 |
|
replicas=8 |
|
``` |
|
hydra_offset_vov_fixedpading_modify_head0.01_bs8x8_ckpt |
|
## 下载tensorboard 文件 |
|
1. 进一个ngc机器:sleep/node/nodes哪个启动的都行 |
|
2. cd /zhenxinl_nuplan/navsim_workspace/exp/$dir |
|
3. find . -name event* |
|
4. 可能会给你列很多个event*,得用ls -l看看那个是不是最大的 |
|
5. 跳板机起一个新的终端,vscode里就是(ctrl+`),cd到你想保存tensorboard文件的文件夹 |
|
6. ngc workspace download ngc workspace download --file ./navsim_workspace/exp/event路径 q-2TlPKESo62ktTxOc8rYg |
|
7. 这样就把tensorboard下到跳板机上了 |
|
8. 可以vscode直接ctrl+shift+p打开tensorboard看 |
|
|
|
## eval |
|
1. sleep一个ngc机器,ngcexe进入 |
|
2. tmux一下,防止你断联,再进入ngc机器就tmux attach -t 0回到这个终端 |
|
3. 这一步把你文件及里面的乱七八糟的ckpt都统一命名为epoch05.ckpt,... |
|
``` |
|
cd ${NAVSIM_EXP_ROOT}/$agent_ckpt; |
|
for file in epoch=*-step=*.ckpt; do |
|
epoch=$(echo $file | sed -n 's/.*epoch=\([0-9][0-9]\).*/\1/p') |
|
new_filename="epoch${epoch}.ckpt" |
|
mv "$file" "$new_filename" |
|
done |
|
cd /navsim_ours; |
|
``` |
|
4. 下面这一步,对epoch00到epoch09都进行一遍eval,你如果觉得很慢,可以新创一台机器,一个00到04,一个05到09. |
|
``` |
|
epochs=(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19); |
|
ckpts=( |
|
epoch00.ckpt epoch01.ckpt epoch02.ckpt epoch03.ckpt epoch04.ckpt epoch05.ckpt epoch06.ckpt epoch07.ckpt epoch08.ckpt epoch09.ckpt |
|
epoch10.ckpt epoch11.ckpt epoch12.ckpt epoch13.ckpt epoch14.ckpt epoch15.ckpt epoch16.ckpt epoch17.ckpt epoch18.ckpt epoch19.ckpt |
|
) |
|
|
|
|
|
for i in {0..9}; do |
|
python ${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_pdm_score_gpu.py \ |
|
+use_pdm_closed=false \ |
|
agent=$agent \ |
|
dataloader.params.batch_size=8 \ |
|
worker.threads_per_node=64 \ |
|
agent.checkpoint_path=${NAVSIM_EXP_ROOT}/${agent_ckpt}/${ckpts[$i]} \ |
|
experiment_name=${agent_ckpt}/${epochs[$i]}_xformers \ |
|
+cache_path=null \ |
|
metric_cache_path=${NAVSIM_EXP_ROOT}/navtest_cache \ |
|
split=test \ |
|
scene_filter=navtest; |
|
done |
|
``` |
|
5. 上面的eval完文件夹会长这样: |
|
 |
|
xx_xformers里面放了你的eval分数,inference weights使用的是hydra_model_pe 340行的weights先测了一遍。 |
|
|
|
要看这些初始分数可以用,我一般用这个选最好的epoch: |
|
``` |
|
for epoch in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19; do |
|
|
|
echo ===================${epoch}=================== |
|
cat $(find ./${epoch}_xformers/ -type f -name "*.csv") "end" | tail -n 1 |
|
done |
|
|
|
``` |
|
|
|
然后会有一些epochxx.pkl,这个里面放着模型所有的小分,用来grid search |
|
6. grid search,你可以调一调grid search里的参数, 跑完看结果就行了 |
|
``` |
|
python ${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/grid_search_unlog.py \ |
|
--pkl_path ${NAVSIM_EXP_ROOT}/hydra_pe_vov_bs8x8_ckpt/epoch13.pkl |
|
``` |
|
|