File size: 3,983 Bytes
da2e2ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
# training
## 单node自动training
scripts/training/node.sh
```
#agent名字,yaml文件名
agent="hydra_pe"
#不管这个
cache="null"
#训练参数
bs=32
lr=0.0002
epoch=20
#navsim有三个split:train val test 这里有两个选项:
1.default_training -- 用navtrain里的train split训,测在navtest(test split)上测
2.competition_training -- 用navtrain里的train+val split训,测在navtest(test split)上测
#hydramdp第一个表小模型resnet34,我都用了default training
#第二个表大模型vov、vitl、。。。,我都用了competition training
config="competition_training"
#最后所有的ckpt,tensorboard log都保存在这里
#完整路径是/zhenxinl_nuplan/navsim_workspace/exp/$dir
dir=${agent}_lr2_ckpt
```
## 多node自动training
```
agent="hydra_pe"
bs=8
lr=0.0002
cache="null"
config="competition_training"
epoch=10
#相比前面多了一个这个,每个replica有8张卡
#前面的bs是单卡的bs,总的bs大小为bs*replicas
#如果要改replicas数量,要按比例改lr,总bs*2那么lr也*2
replicas=8
```
hydra_offset_vov_fixedpading_modify_head0.01_bs8x8_ckpt
## 下载tensorboard 文件
1. 进一个ngc机器:sleep/node/nodes哪个启动的都行
2. cd /zhenxinl_nuplan/navsim_workspace/exp/$dir
3. find . -name event*
4. 可能会给你列很多个event*,得用ls -l看看那个是不是最大的
5. 跳板机起一个新的终端,vscode里就是(ctrl+`),cd到你想保存tensorboard文件的文件夹
6. ngc workspace download ngc workspace download --file ./navsim_workspace/exp/event路径 q-2TlPKESo62ktTxOc8rYg
7. 这样就把tensorboard下到跳板机上了
8. 可以vscode直接ctrl+shift+p打开tensorboard看
## eval
1. sleep一个ngc机器,ngcexe进入
2. tmux一下,防止你断联,再进入ngc机器就tmux attach -t 0回到这个终端
3. 这一步把你文件及里面的乱七八糟的ckpt都统一命名为epoch05.ckpt,...
```
cd ${NAVSIM_EXP_ROOT}/$agent_ckpt;
for file in epoch=*-step=*.ckpt; do
epoch=$(echo $file | sed -n 's/.*epoch=\([0-9][0-9]\).*/\1/p')
new_filename="epoch${epoch}.ckpt"
mv "$file" "$new_filename"
done
cd /navsim_ours;
```
4. 下面这一步,对epoch00到epoch09都进行一遍eval,你如果觉得很慢,可以新创一台机器,一个00到04,一个05到09.
```
epochs=(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19);
ckpts=(
epoch00.ckpt epoch01.ckpt epoch02.ckpt epoch03.ckpt epoch04.ckpt epoch05.ckpt epoch06.ckpt epoch07.ckpt epoch08.ckpt epoch09.ckpt
epoch10.ckpt epoch11.ckpt epoch12.ckpt epoch13.ckpt epoch14.ckpt epoch15.ckpt epoch16.ckpt epoch17.ckpt epoch18.ckpt epoch19.ckpt
)
for i in {0..9}; do
python ${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_pdm_score_gpu.py \
+use_pdm_closed=false \
agent=$agent \
dataloader.params.batch_size=8 \
worker.threads_per_node=64 \
agent.checkpoint_path=${NAVSIM_EXP_ROOT}/${agent_ckpt}/${ckpts[$i]} \
experiment_name=${agent_ckpt}/${epochs[$i]}_xformers \
+cache_path=null \
metric_cache_path=${NAVSIM_EXP_ROOT}/navtest_cache \
split=test \
scene_filter=navtest;
done
```
5. 上面的eval完文件夹会长这样:

xx_xformers里面放了你的eval分数,inference weights使用的是hydra_model_pe 340行的weights先测了一遍。
要看这些初始分数可以用,我一般用这个选最好的epoch:
```
for epoch in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19; do
echo ===================${epoch}===================
cat $(find ./${epoch}_xformers/ -type f -name "*.csv") "end" | tail -n 1
done
```
然后会有一些epochxx.pkl,这个里面放着模型所有的小分,用来grid search
6. grid search,你可以调一调grid search里的参数, 跑完看结果就行了
```
python ${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/grid_search_unlog.py \
--pkl_path ${NAVSIM_EXP_ROOT}/hydra_pe_vov_bs8x8_ckpt/epoch13.pkl
```
|