|
--- |
|
license: mit |
|
base_model: m3rg-iitd/matscibert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: MatSciBERT_BIOMAT_NER2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MatSciBERT_BIOMAT_NER2 |
|
|
|
This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5936 |
|
- Precision: 0.9555 |
|
- Recall: 0.9490 |
|
- F1: 0.9523 |
|
- Accuracy: 0.9426 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0537 | 1.0 | 1171 | 0.3242 | 0.9568 | 0.9456 | 0.9512 | 0.9406 | |
|
| 0.0163 | 2.0 | 2342 | 0.3726 | 0.9578 | 0.9499 | 0.9538 | 0.9447 | |
|
| 0.0054 | 3.0 | 3513 | 0.4411 | 0.9565 | 0.9496 | 0.9530 | 0.9432 | |
|
| 0.0029 | 4.0 | 4684 | 0.4982 | 0.9562 | 0.9480 | 0.9521 | 0.9420 | |
|
| 0.0017 | 5.0 | 5855 | 0.5276 | 0.9548 | 0.9472 | 0.9510 | 0.9404 | |
|
| 0.001 | 6.0 | 7026 | 0.5463 | 0.9562 | 0.9494 | 0.9528 | 0.9429 | |
|
| 0.0005 | 7.0 | 8197 | 0.5741 | 0.9567 | 0.9500 | 0.9533 | 0.9437 | |
|
| 0.0004 | 8.0 | 9368 | 0.5979 | 0.9557 | 0.9494 | 0.9526 | 0.9428 | |
|
| 0.0003 | 9.0 | 10539 | 0.6028 | 0.9558 | 0.9496 | 0.9527 | 0.9428 | |
|
| 0.0004 | 10.0 | 11710 | 0.5936 | 0.9555 | 0.9490 | 0.9523 | 0.9426 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|