--- license: mit base_model: m3rg-iitd/matscibert tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: MatSciBERT_BIOMAT_NER2 results: [] --- # MatSciBERT_BIOMAT_NER2 This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5936 - Precision: 0.9555 - Recall: 0.9490 - F1: 0.9523 - Accuracy: 0.9426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0537 | 1.0 | 1171 | 0.3242 | 0.9568 | 0.9456 | 0.9512 | 0.9406 | | 0.0163 | 2.0 | 2342 | 0.3726 | 0.9578 | 0.9499 | 0.9538 | 0.9447 | | 0.0054 | 3.0 | 3513 | 0.4411 | 0.9565 | 0.9496 | 0.9530 | 0.9432 | | 0.0029 | 4.0 | 4684 | 0.4982 | 0.9562 | 0.9480 | 0.9521 | 0.9420 | | 0.0017 | 5.0 | 5855 | 0.5276 | 0.9548 | 0.9472 | 0.9510 | 0.9404 | | 0.001 | 6.0 | 7026 | 0.5463 | 0.9562 | 0.9494 | 0.9528 | 0.9429 | | 0.0005 | 7.0 | 8197 | 0.5741 | 0.9567 | 0.9500 | 0.9533 | 0.9437 | | 0.0004 | 8.0 | 9368 | 0.5979 | 0.9557 | 0.9494 | 0.9526 | 0.9428 | | 0.0003 | 9.0 | 10539 | 0.6028 | 0.9558 | 0.9496 | 0.9527 | 0.9428 | | 0.0004 | 10.0 | 11710 | 0.5936 | 0.9555 | 0.9490 | 0.9523 | 0.9426 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1