|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-large |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: results |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results |
|
|
|
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.9627 |
|
- Loc: {'precision': 0.07002967359050445, 'recall': 0.13817330210772832, 'f1': 0.09294998030720757, 'number': 854} |
|
- Org: {'precision': 0.06141439205955335, 'recall': 0.1523076923076923, 'f1': 0.08753315649867373, 'number': 650} |
|
- Per: {'precision': 0.030874785591766724, 'recall': 0.07741935483870968, 'f1': 0.04414469650521153, 'number': 465} |
|
- Overall Precision: 0.0567 |
|
- Overall Recall: 0.1285 |
|
- Overall F1: 0.0787 |
|
- Overall Accuracy: 0.3287 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Loc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| |
|
| 3.8187 | 2.0 | 10 | 3.1219 | {'precision': 0.06360022714366836, 'recall': 0.13114754098360656, 'f1': 0.08565965583173997, 'number': 854} | {'precision': 0.05763688760806916, 'recall': 0.15384615384615385, 'f1': 0.08385744234800839, 'number': 650} | {'precision': 0.027879677182685254, 'recall': 0.08172043010752689, 'f1': 0.04157549234135668, 'number': 465} | 0.0515 | 0.1270 | 0.0732 | 0.2983 | |
|
| 3.2942 | 4.0 | 20 | 2.9627 | {'precision': 0.07002967359050445, 'recall': 0.13817330210772832, 'f1': 0.09294998030720757, 'number': 854} | {'precision': 0.06141439205955335, 'recall': 0.1523076923076923, 'f1': 0.08753315649867373, 'number': 650} | {'precision': 0.030874785591766724, 'recall': 0.07741935483870968, 'f1': 0.04414469650521153, 'number': 465} | 0.0567 | 0.1285 | 0.0787 | 0.3287 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 1.11.0a0+17540c5 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.15.2 |
|
|