results / README.md
izaitova's picture
Training in progress, step 500
44bf796 verified
|
raw
history blame
3.36 kB
metadata
license: apache-2.0
base_model: google/mt5-large
tags:
  - generated_from_trainer
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of google/mt5-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9627
  • Loc: {'precision': 0.07002967359050445, 'recall': 0.13817330210772832, 'f1': 0.09294998030720757, 'number': 854}
  • Org: {'precision': 0.06141439205955335, 'recall': 0.1523076923076923, 'f1': 0.08753315649867373, 'number': 650}
  • Per: {'precision': 0.030874785591766724, 'recall': 0.07741935483870968, 'f1': 0.04414469650521153, 'number': 465}
  • Overall Precision: 0.0567
  • Overall Recall: 0.1285
  • Overall F1: 0.0787
  • Overall Accuracy: 0.3287

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Loc Org Per Overall Precision Overall Recall Overall F1 Overall Accuracy
3.8187 2.0 10 3.1219 {'precision': 0.06360022714366836, 'recall': 0.13114754098360656, 'f1': 0.08565965583173997, 'number': 854} {'precision': 0.05763688760806916, 'recall': 0.15384615384615385, 'f1': 0.08385744234800839, 'number': 650} {'precision': 0.027879677182685254, 'recall': 0.08172043010752689, 'f1': 0.04157549234135668, 'number': 465} 0.0515 0.1270 0.0732 0.2983
3.2942 4.0 20 2.9627 {'precision': 0.07002967359050445, 'recall': 0.13817330210772832, 'f1': 0.09294998030720757, 'number': 854} {'precision': 0.06141439205955335, 'recall': 0.1523076923076923, 'f1': 0.08753315649867373, 'number': 650} {'precision': 0.030874785591766724, 'recall': 0.07741935483870968, 'f1': 0.04414469650521153, 'number': 465} 0.0567 0.1285 0.0787 0.3287

Framework versions

  • Transformers 4.39.3
  • Pytorch 1.11.0a0+17540c5
  • Datasets 2.20.0
  • Tokenizers 0.15.2