metadata
license: apache-2.0
datasets:
- unicamp-dl/mmarco
language:
- vi
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- cross-encoder
- rerank
Installation
Install
sentence-transformers
(recommend):pip install sentence-transformers
Install
transformers
(optional):pip install transformers
Install
pyvi
to word segment:pip install pyvi
Usage with transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained('itdainb/vietnamese-cross-encoder')
tokenizer = AutoTokenizer.from_pretrained('itdainb/vietnamese-cross-encoder')
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
scores = model(**features).logits
print(scores)
Usage with sentence-transformers
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import CrossEncoder
model = CrossEncoder('itdainb/vietnamese-cross-encoder', max_length=256)
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])