itdainb commited on
Commit
7d29d04
·
verified ·
1 Parent(s): 9137e16

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -3
README.md CHANGED
@@ -1,3 +1,59 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - unicamp-dl/mmarco
5
+ language:
6
+ - vi
7
+ library_name: sentence-transformers
8
+ pipeline_tag: sentence-similarity
9
+ tags:
10
+ - cross-encoder
11
+ - rerank
12
+ ---
13
+
14
+ ## Installation
15
+ - Install `sentence-transformers` (recommend):
16
+
17
+ - `pip install sentence-transformers`
18
+
19
+ - Install `transformers` (optional):
20
+
21
+ - `pip install transformers`
22
+
23
+ - Install `pyvi` to word segment:
24
+
25
+ - `pip install pyvi`
26
+
27
+
28
+ ## Usage with transformers
29
+
30
+ ```python
31
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
32
+ import torch
33
+
34
+ model = AutoModelForSequenceClassification.from_pretrained('itdainb/vietnamese-cross-encoder')
35
+ tokenizer = AutoTokenizer.from_pretrained('itdainb/vietnamese-cross-encoder')
36
+
37
+ features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], padding=True, truncation=True, return_tensors="pt")
38
+
39
+ model.eval()
40
+ with torch.no_grad():
41
+ scores = model(**features).logits
42
+ print(scores)
43
+ ```
44
+
45
+ ## Usage with sentence-transformers
46
+
47
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
48
+
49
+ ```
50
+ pip install -U sentence-transformers
51
+ ```
52
+
53
+ Then you can use the model like this:
54
+
55
+ ```python
56
+ from sentence_transformers import CrossEncoder
57
+ model = CrossEncoder('itdainb/vietnamese-cross-encoder', max_length=256)
58
+ scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')])
59
+ ```