|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: muchad/idt5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- bleu |
|
model-index: |
|
- name: idt5-base-qa-qg-TydiQA-id-v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# idt5-base-qa-qg-TydiQA-id-v2 |
|
|
|
This model is a fine-tuned version of [muchad/idt5-base](https://huggingface.co/muchad/idt5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3010 |
|
- Rouge1: 0.5204 |
|
- Rouge2: 0.3466 |
|
- Rougel: 0.5192 |
|
- Rougelsum: 0.5195 |
|
- Bleu: 0.3202 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:------:| |
|
| 1.9561 | 1.0 | 1141 | 1.4688 | 0.4686 | 0.2873 | 0.4675 | 0.4679 | 0.2691 | |
|
| 1.4909 | 2.0 | 2282 | 1.3699 | 0.4986 | 0.3200 | 0.4971 | 0.4970 | 0.3062 | |
|
| 1.2832 | 3.0 | 3423 | 1.3160 | 0.5138 | 0.3412 | 0.5124 | 0.5125 | 0.3191 | |
|
| 1.1023 | 4.0 | 4564 | 1.3064 | 0.5147 | 0.3366 | 0.5133 | 0.5136 | 0.3169 | |
|
| 1.0171 | 5.0 | 5705 | 1.3010 | 0.5204 | 0.3466 | 0.5192 | 0.5195 | 0.3202 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.4.0a0+f70bd71a48.nv24.06 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|