File size: 2,057 Bytes
b9cd575 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: apache-2.0
base_model: muchad/idt5-base
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: idt5-base-qa-qg-TydiQA-id-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# idt5-base-qa-qg-TydiQA-id-v2
This model is a fine-tuned version of [muchad/idt5-base](https://huggingface.co/muchad/idt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3010
- Rouge1: 0.5204
- Rouge2: 0.3466
- Rougel: 0.5192
- Rougelsum: 0.5195
- Bleu: 0.3202
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:------:|
| 1.9561 | 1.0 | 1141 | 1.4688 | 0.4686 | 0.2873 | 0.4675 | 0.4679 | 0.2691 |
| 1.4909 | 2.0 | 2282 | 1.3699 | 0.4986 | 0.3200 | 0.4971 | 0.4970 | 0.3062 |
| 1.2832 | 3.0 | 3423 | 1.3160 | 0.5138 | 0.3412 | 0.5124 | 0.5125 | 0.3191 |
| 1.1023 | 4.0 | 4564 | 1.3064 | 0.5147 | 0.3366 | 0.5133 | 0.5136 | 0.3169 |
| 1.0171 | 5.0 | 5705 | 1.3010 | 0.5204 | 0.3466 | 0.5192 | 0.5195 | 0.3202 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0a0+f70bd71a48.nv24.06
- Datasets 3.1.0
- Tokenizers 0.20.3
|