gokuls's picture
End of training
b23bfba
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: mobilebert_sa_GLUE_Experiment_logit_kd_mrpc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE MRPC
          type: glue
          config: mrpc
          split: validation
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6740196078431373
          - name: F1
            type: f1
            value: 0.7772194304857621

mobilebert_sa_GLUE_Experiment_logit_kd_mrpc

This model is a fine-tuned version of google/mobilebert-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5133
  • Accuracy: 0.6740
  • F1: 0.7772
  • Combined Score: 0.7256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.6228 1.0 29 0.5556 0.6838 0.8122 0.7480
0.611 2.0 58 0.5551 0.6838 0.8122 0.7480
0.6095 3.0 87 0.5538 0.6838 0.8122 0.7480
0.6062 4.0 116 0.5503 0.6838 0.8122 0.7480
0.5825 5.0 145 0.5262 0.6985 0.8167 0.7576
0.4981 6.0 174 0.5197 0.6936 0.8038 0.7487
0.468 7.0 203 0.5133 0.6740 0.7772 0.7256
0.3901 8.0 232 0.5382 0.6838 0.7757 0.7297
0.323 9.0 261 0.6140 0.6789 0.7657 0.7223
0.2674 10.0 290 0.5512 0.6740 0.7687 0.7214
0.2396 11.0 319 0.6467 0.6667 0.7631 0.7149
0.2127 12.0 348 0.7811 0.6716 0.7690 0.7203

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.9.0
  • Tokenizers 0.13.2