mobilebert_sa_GLUE_Experiment_logit_kd_mrpc
This model is a fine-tuned version of google/mobilebert-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.5133
- Accuracy: 0.6740
- F1: 0.7772
- Combined Score: 0.7256
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.6228 | 1.0 | 29 | 0.5556 | 0.6838 | 0.8122 | 0.7480 |
0.611 | 2.0 | 58 | 0.5551 | 0.6838 | 0.8122 | 0.7480 |
0.6095 | 3.0 | 87 | 0.5538 | 0.6838 | 0.8122 | 0.7480 |
0.6062 | 4.0 | 116 | 0.5503 | 0.6838 | 0.8122 | 0.7480 |
0.5825 | 5.0 | 145 | 0.5262 | 0.6985 | 0.8167 | 0.7576 |
0.4981 | 6.0 | 174 | 0.5197 | 0.6936 | 0.8038 | 0.7487 |
0.468 | 7.0 | 203 | 0.5133 | 0.6740 | 0.7772 | 0.7256 |
0.3901 | 8.0 | 232 | 0.5382 | 0.6838 | 0.7757 | 0.7297 |
0.323 | 9.0 | 261 | 0.6140 | 0.6789 | 0.7657 | 0.7223 |
0.2674 | 10.0 | 290 | 0.5512 | 0.6740 | 0.7687 | 0.7214 |
0.2396 | 11.0 | 319 | 0.6467 | 0.6667 | 0.7631 | 0.7149 |
0.2127 | 12.0 | 348 | 0.7811 | 0.6716 | 0.7690 | 0.7203 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_mrpc
Evaluation results
- Accuracy on GLUE MRPCvalidation set self-reported0.674
- F1 on GLUE MRPCvalidation set self-reported0.777