|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:6552 |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: BAAI/bge-small-en-v1.5 |
|
widget: |
|
- source_sentence: What problem can reconfigurable intelligent surfaces mitigate in |
|
light fidelity systems? |
|
sentences: |
|
- The document mentions that blind channel estimation requires a large number of |
|
data symbols to improve accuracy, which may not be feasible in practice. |
|
- Empirical evidence suggests that the power decay can even be exponential with |
|
distance. |
|
- Reconfigurable intelligent surface-enabled environments can enhance light fidelity |
|
coverage by mitigating the dead-zone problem for users at the edge of the cell, |
|
improving link quality. |
|
- source_sentence: What is the advantage of conformal arrays in UAV (Unmanned Aerial |
|
Vehicle) communication systems? |
|
sentences: |
|
- Overfitting occurs when a model fits the training data too well and fails to generalize |
|
to unseen data, while underfitting occurs when a model does not fit the training |
|
data well enough to capture the underlying patterns. |
|
- A point-to-multipoint service is a service type in which data is sent to all service |
|
subscribers or a pre-defined subset of all subscribers within an area defined |
|
by the Service Requester. |
|
- Conformal arrays offer good aerodynamic performance, enable full-space beam scanning, |
|
and provide more DoFs for geometry design. |
|
- source_sentence: What is a Virtual Home Environment? |
|
sentences: |
|
- Compressive spectrum sensing utilizes the sparsity property of signals to enable |
|
sub-Nyquist sampling. |
|
- A Virtual Home Environment is a concept that allows for the portability of personal |
|
service environments across network boundaries and between terminals. |
|
- In the Client Server model, a Client application waits passively on contact while |
|
a Server starts the communication actively. |
|
- source_sentence: What is multi-agent RL (Reinforcement learning) concerned with? |
|
sentences: |
|
- Data centers account for about 1% of global electricity demand, as stated in the |
|
document. |
|
- Fog Computing and Communication in the Frugal 5G network architecture brings intelligence |
|
to the edge and enables more efficient communication with reduced resource usage. |
|
- Multi-agent RL is concerned with learning in presence of multiple agents and encompasses |
|
unique problem formulation that draws from game theoretical concepts. |
|
- source_sentence: What is the trade-off between privacy and convergence performance |
|
when using artificial noise obscuring in federated learning? |
|
sentences: |
|
- The 'decrypt_error' alert indicates a handshake cryptographic operation failed, |
|
including being unable to verify a signature, decrypt a key exchange, or validate |
|
a finished message. |
|
- The trade-off between privacy and convergence performance when using artificial |
|
noise obscuring in federated learning is that increasing the noise variance improves |
|
privacy but degrades convergence. |
|
- The design rules for sub-carrier allocations to users in cellular systems are |
|
to allocate the sub-carriers as spread out as possible and hop the sub-carriers |
|
every OFDM symbol time. |
|
datasets: |
|
- dinho1597/Telecom-QA-MultipleChoice |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_recall@1 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
model-index: |
|
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5 |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: telecom ir eval |
|
type: telecom-ir-eval |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.9679633867276888 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9916094584286804 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9916094584286804 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.992372234935164 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.9679633867276888 |
|
name: Cosine Precision@1 |
|
- type: cosine_recall@1 |
|
value: 0.9679633867276888 |
|
name: Cosine Recall@1 |
|
- type: cosine_ndcg@10 |
|
value: 0.9823240649953693 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9788647342995168 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9791402442094453 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on BAAI/bge-small-en-v1.5 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 384 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'What is the trade-off between privacy and convergence performance when using artificial noise obscuring in federated learning?', |
|
'The trade-off between privacy and convergence performance when using artificial noise obscuring in federated learning is that increasing the noise variance improves privacy but degrades convergence.', |
|
"The 'decrypt_error' alert indicates a handshake cryptographic operation failed, including being unable to verify a signature, decrypt a key exchange, or validate a finished message.", |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Dataset: `telecom-ir-eval` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy@1 | 0.968 | |
|
| cosine_accuracy@3 | 0.9916 | |
|
| cosine_accuracy@5 | 0.9916 | |
|
| cosine_accuracy@10 | 0.9924 | |
|
| cosine_precision@1 | 0.968 | |
|
| cosine_recall@1 | 0.968 | |
|
| **cosine_ndcg@10** | **0.9823** | |
|
| cosine_mrr@10 | 0.9789 | |
|
| cosine_map@100 | 0.9791 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### telecom-qa-multiple_choice |
|
|
|
* Dataset: [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice) at [73aebbb](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice/tree/73aebbb16651212e4b1947ac0d64fc80a6bc9398) |
|
* Size: 6,552 training samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 18.8 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 29.27 tokens</li><li>max: 92 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:---------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>What is multi-user multiple input, multiple output (MU-MIMO) in IEEE 802.11-2020?</code> | <code>MU-MIMO is a technique by which multiple stations (STAs) either simultaneously transmit to a single STA or simultaneously receive from a single STA independent data streams over the same radio frequencies.</code> | |
|
| <code>What is the purpose of wireless network virtualization?</code> | <code>The purpose of wireless network virtualization is to improve resource utilization, support diverse services/use cases, and be cost-effective and flexible for new services.</code> | |
|
| <code>What is the E2E (end-to-end) latency requirement for factory automation applications?</code> | <code>Factory automation applications require an E2E latency of 0.25-10 ms.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### telecom-qa-multiple_choice |
|
|
|
* Dataset: [telecom-qa-multiple_choice](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice) at [73aebbb](https://huggingface.co/datasets/dinho1597/Telecom-QA-MultipleChoice/tree/73aebbb16651212e4b1947ac0d64fc80a6bc9398) |
|
* Size: 6,552 evaluation samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 18.5 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 28.83 tokens</li><li>max: 85 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Which standard enables building Digital Twins of different Physical Twins using combinations of XML (eXtensible Markup Language) and C codes?</code> | <code>The functional mockup interface (FMI) is a standard that enables building Digital Twins of different Physical Twins using combinations of XML and C codes.</code> | |
|
| <code>What algorithm is commonly used for digital signatures in S/MIME?</code> | <code>RSA is commonly used for digital signatures in S/MIME.</code> | |
|
| <code>What are the three modes of operation based on the communication range and the SA (subarray) separation?</code> | <code>The three modes of operation based on the communication range and the SA separation are: (1) a mode where the channel paths are independent and the channel is always well-conditioned, (2) a mode where the channel is ill-conditioned, and (3) a mode where the channel is highly correlated.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `weight_decay`: 0.01 |
|
- `num_train_epochs`: 10 |
|
- `lr_scheduler_type`: cosine_with_restarts |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `load_best_model_at_end`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.01 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine_with_restarts |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | telecom-ir-eval_cosine_ndcg@10 | |
|
|:------:|:----:|:-------------:|:---------------:|:------------------------------:| |
|
| 0.7143 | 15 | 0.824 | 0.1333 | 0.9701 | |
|
| 1.3810 | 30 | 0.1731 | 0.0759 | 0.9776 | |
|
| 2.0476 | 45 | 0.0917 | 0.0657 | 0.9807 | |
|
| 2.7619 | 60 | 0.0676 | 0.0609 | 0.9813 | |
|
| 3.4286 | 75 | 0.0435 | 0.0596 | 0.9818 | |
|
| 4.0952 | 90 | 0.038 | 0.0606 | 0.9814 | |
|
| 4.8095 | 105 | 0.0332 | 0.0594 | 0.9820 | |
|
| 5.4762 | 120 | 0.0269 | 0.0607 | 0.9817 | |
|
| 6.1429 | 135 | 0.0219 | 0.0600 | 0.9819 | |
|
| 6.8571 | 150 | 0.0244 | 0.0599 | 0.9823 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.47.1 |
|
- PyTorch: 2.5.1+cu121 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |