SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the telecom-qa-multiple_choice dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What is the trade-off between privacy and convergence performance when using artificial noise obscuring in federated learning?',
'The trade-off between privacy and convergence performance when using artificial noise obscuring in federated learning is that increasing the noise variance improves privacy but degrades convergence.',
"The 'decrypt_error' alert indicates a handshake cryptographic operation failed, including being unable to verify a signature, decrypt a key exchange, or validate a finished message.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
telecom-ir-eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.968 |
cosine_accuracy@3 | 0.9916 |
cosine_accuracy@5 | 0.9916 |
cosine_accuracy@10 | 0.9924 |
cosine_precision@1 | 0.968 |
cosine_recall@1 | 0.968 |
cosine_ndcg@10 | 0.9823 |
cosine_mrr@10 | 0.9789 |
cosine_map@100 | 0.9791 |
Training Details
Training Dataset
telecom-qa-multiple_choice
- Dataset: telecom-qa-multiple_choice at 73aebbb
- Size: 6,552 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 18.8 tokens
- max: 48 tokens
- min: 8 tokens
- mean: 29.27 tokens
- max: 92 tokens
- Samples:
anchor positive What is multi-user multiple input, multiple output (MU-MIMO) in IEEE 802.11-2020?
MU-MIMO is a technique by which multiple stations (STAs) either simultaneously transmit to a single STA or simultaneously receive from a single STA independent data streams over the same radio frequencies.
What is the purpose of wireless network virtualization?
The purpose of wireless network virtualization is to improve resource utilization, support diverse services/use cases, and be cost-effective and flexible for new services.
What is the E2E (end-to-end) latency requirement for factory automation applications?
Factory automation applications require an E2E latency of 0.25-10 ms.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
telecom-qa-multiple_choice
- Dataset: telecom-qa-multiple_choice at 73aebbb
- Size: 6,552 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 18.5 tokens
- max: 52 tokens
- min: 9 tokens
- mean: 28.83 tokens
- max: 85 tokens
- Samples:
anchor positive Which standard enables building Digital Twins of different Physical Twins using combinations of XML (eXtensible Markup Language) and C codes?
The functional mockup interface (FMI) is a standard that enables building Digital Twins of different Physical Twins using combinations of XML and C codes.
What algorithm is commonly used for digital signatures in S/MIME?
RSA is commonly used for digital signatures in S/MIME.
What are the three modes of operation based on the communication range and the SA (subarray) separation?
The three modes of operation based on the communication range and the SA separation are: (1) a mode where the channel paths are independent and the channel is always well-conditioned, (2) a mode where the channel is ill-conditioned, and (3) a mode where the channel is highly correlated.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256weight_decay
: 0.01num_train_epochs
: 10lr_scheduler_type
: cosine_with_restartswarmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | telecom-ir-eval_cosine_ndcg@10 |
---|---|---|---|---|
0.7143 | 15 | 0.824 | 0.1333 | 0.9701 |
1.3810 | 30 | 0.1731 | 0.0759 | 0.9776 |
2.0476 | 45 | 0.0917 | 0.0657 | 0.9807 |
2.7619 | 60 | 0.0676 | 0.0609 | 0.9813 |
3.4286 | 75 | 0.0435 | 0.0596 | 0.9818 |
4.0952 | 90 | 0.038 | 0.0606 | 0.9814 |
4.8095 | 105 | 0.0332 | 0.0594 | 0.9820 |
5.4762 | 120 | 0.0269 | 0.0607 | 0.9817 |
6.1429 | 135 | 0.0219 | 0.0600 | 0.9819 |
6.8571 | 150 | 0.0244 | 0.0599 | 0.9823 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 62
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for dinho1597/phi-2-telecom-ft
Base model
BAAI/bge-small-en-v1.5Dataset used to train dinho1597/phi-2-telecom-ft
Evaluation results
- Cosine Accuracy@1 on telecom ir evalself-reported0.968
- Cosine Accuracy@3 on telecom ir evalself-reported0.992
- Cosine Accuracy@5 on telecom ir evalself-reported0.992
- Cosine Accuracy@10 on telecom ir evalself-reported0.992
- Cosine Precision@1 on telecom ir evalself-reported0.968
- Cosine Recall@1 on telecom ir evalself-reported0.968
- Cosine Ndcg@10 on telecom ir evalself-reported0.982
- Cosine Mrr@10 on telecom ir evalself-reported0.979
- Cosine Map@100 on telecom ir evalself-reported0.979