File size: 3,780 Bytes
12ac50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148ef13
 
 
 
 
 
 
12ac50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02b880f
 
148ef13
 
 
 
 
12ac50b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: deepset/gbert-base
tags:
- generated_from_trainer
model-index:
- name: gerskill-gbert
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gerskill-gbert

This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1095
- Hard: {'precision': 0.7445544554455445, 'recall': 0.8245614035087719, 'f1': 0.7825182101977106, 'number': 456}
- Soft: {'precision': 0.7272727272727273, 'recall': 0.7804878048780488, 'f1': 0.7529411764705882, 'number': 82}
- Overall Precision: 0.7420
- Overall Recall: 0.8178
- Overall F1: 0.7781
- Overall Accuracy: 0.9635

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Hard                                                                                                     | Soft                                                                                                    | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| No log        | 1.0   | 178  | 0.1255          | {'precision': 0.583756345177665, 'recall': 0.756578947368421, 'f1': 0.659025787965616, 'number': 456}    | {'precision': 0.5425531914893617, 'recall': 0.6219512195121951, 'f1': 0.5795454545454546, 'number': 82} | 0.5781            | 0.7361         | 0.6476     | 0.9515           |
| No log        | 2.0   | 356  | 0.1071          | {'precision': 0.6994219653179191, 'recall': 0.7960526315789473, 'f1': 0.7446153846153847, 'number': 456} | {'precision': 0.6129032258064516, 'recall': 0.6951219512195121, 'f1': 0.6514285714285714, 'number': 82} | 0.6863            | 0.7807         | 0.7304     | 0.9585           |
| 0.1562        | 3.0   | 534  | 0.0990          | {'precision': 0.7150943396226415, 'recall': 0.831140350877193, 'f1': 0.7687626774847871, 'number': 456}  | {'precision': 0.6777777777777778, 'recall': 0.7439024390243902, 'f1': 0.7093023255813954, 'number': 82} | 0.7097            | 0.8178         | 0.7599     | 0.9621           |
| 0.1562        | 4.0   | 712  | 0.1072          | {'precision': 0.7258687258687259, 'recall': 0.8245614035087719, 'f1': 0.7720739219712526, 'number': 456} | {'precision': 0.7222222222222222, 'recall': 0.7926829268292683, 'f1': 0.7558139534883721, 'number': 82} | 0.7253            | 0.8197         | 0.7696     | 0.9628           |
| 0.1562        | 5.0   | 890  | 0.1095          | {'precision': 0.7445544554455445, 'recall': 0.8245614035087719, 'f1': 0.7825182101977106, 'number': 456} | {'precision': 0.7272727272727273, 'recall': 0.7804878048780488, 'f1': 0.7529411764705882, 'number': 82} | 0.7420            | 0.8178         | 0.7781     | 0.9635           |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2