dathi103 commited on
Commit
02b880f
·
verified ·
1 Parent(s): 2146ec0

End of training

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -15,13 +15,13 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.1516
19
- - Hard: {'precision': 0.6638023630504833, 'recall': 0.7696139476961394, 'f1': 0.7128027681660899, 'number': 803}
20
- - Soft: {'precision': 0.6542553191489362, 'recall': 0.7935483870967742, 'f1': 0.7172011661807581, 'number': 155}
21
- - Overall Precision: 0.6622
22
- - Overall Recall: 0.7735
23
- - Overall F1: 0.7135
24
- - Overall Accuracy: 0.9526
25
 
26
  ## Model description
27
 
@@ -50,13 +50,13 @@ The following hyperparameters were used during training:
50
 
51
  ### Training results
52
 
53
- | Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
- | No log | 1.0 | 158 | 0.1602 | {'precision': 0.5013054830287206, 'recall': 0.7173100871731009, 'f1': 0.5901639344262294, 'number': 803} | {'precision': 0.47639484978540775, 'recall': 0.7161290322580646, 'f1': 0.5721649484536083, 'number': 155} | 0.4971 | 0.7171 | 0.5872 | 0.9375 |
56
- | No log | 2.0 | 316 | 0.1340 | {'precision': 0.600802407221665, 'recall': 0.7459526774595268, 'f1': 0.6655555555555556, 'number': 803} | {'precision': 0.605, 'recall': 0.7806451612903226, 'f1': 0.6816901408450703, 'number': 155} | 0.6015 | 0.7516 | 0.6682 | 0.9476 |
57
- | No log | 3.0 | 474 | 0.1315 | {'precision': 0.6577825159914712, 'recall': 0.7683686176836861, 'f1': 0.7087880528431935, 'number': 803} | {'precision': 0.6631016042780749, 'recall': 0.8, 'f1': 0.7251461988304094, 'number': 155} | 0.6587 | 0.7735 | 0.7115 | 0.9522 |
58
- | 0.1497 | 4.0 | 632 | 0.1456 | {'precision': 0.6789989118607181, 'recall': 0.7770859277708593, 'f1': 0.7247386759581882, 'number': 803} | {'precision': 0.5970873786407767, 'recall': 0.7935483870967742, 'f1': 0.6814404432132964, 'number': 155} | 0.664 | 0.7797 | 0.7172 | 0.9525 |
59
- | 0.1497 | 5.0 | 790 | 0.1516 | {'precision': 0.6638023630504833, 'recall': 0.7696139476961394, 'f1': 0.7128027681660899, 'number': 803} | {'precision': 0.6542553191489362, 'recall': 0.7935483870967742, 'f1': 0.7172011661807581, 'number': 155} | 0.6622 | 0.7735 | 0.7135 | 0.9526 |
60
 
61
 
62
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.1391
19
+ - Hard: {'precision': 0.6772616136919315, 'recall': 0.760989010989011, 'f1': 0.7166882276843466, 'number': 364}
20
+ - Soft: {'precision': 0.6883116883116883, 'recall': 0.803030303030303, 'f1': 0.7412587412587411, 'number': 66}
21
+ - Overall Precision: 0.6790
22
+ - Overall Recall: 0.7674
23
+ - Overall F1: 0.7205
24
+ - Overall Accuracy: 0.9533
25
 
26
  ## Model description
27
 
 
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
+ | No log | 1.0 | 178 | 0.1284 | {'precision': 0.5326315789473685, 'recall': 0.695054945054945, 'f1': 0.6030989272943981, 'number': 364} | {'precision': 0.5, 'recall': 0.5757575757575758, 'f1': 0.5352112676056339, 'number': 66} | 0.5281 | 0.6767 | 0.5933 | 0.9463 |
56
+ | No log | 2.0 | 356 | 0.1157 | {'precision': 0.6073059360730594, 'recall': 0.7307692307692307, 'f1': 0.6633416458852868, 'number': 364} | {'precision': 0.631578947368421, 'recall': 0.7272727272727273, 'f1': 0.676056338028169, 'number': 66} | 0.6109 | 0.7302 | 0.6653 | 0.9519 |
57
+ | 0.1468 | 3.0 | 534 | 0.1286 | {'precision': 0.6846153846153846, 'recall': 0.7335164835164835, 'f1': 0.7082228116710876, 'number': 364} | {'precision': 0.6582278481012658, 'recall': 0.7878787878787878, 'f1': 0.7172413793103448, 'number': 66} | 0.6802 | 0.7419 | 0.7097 | 0.9547 |
58
+ | 0.1468 | 4.0 | 712 | 0.1383 | {'precision': 0.6799007444168734, 'recall': 0.7527472527472527, 'f1': 0.7144719687092568, 'number': 364} | {'precision': 0.6582278481012658, 'recall': 0.7878787878787878, 'f1': 0.7172413793103448, 'number': 66} | 0.6763 | 0.7581 | 0.7149 | 0.9544 |
59
+ | 0.1468 | 5.0 | 890 | 0.1391 | {'precision': 0.6772616136919315, 'recall': 0.760989010989011, 'f1': 0.7166882276843466, 'number': 364} | {'precision': 0.6883116883116883, 'recall': 0.803030303030303, 'f1': 0.7412587412587411, 'number': 66} | 0.6790 | 0.7674 | 0.7205 | 0.9533 |
60
 
61
 
62
  ### Framework versions