End of training
Browse files
README.md
CHANGED
@@ -15,13 +15,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
-
- Hard: {'precision': 0.
|
20 |
-
- Soft: {'precision': 0.
|
21 |
-
- Overall Precision: 0.
|
22 |
-
- Overall Recall: 0.
|
23 |
-
- Overall F1: 0.
|
24 |
-
- Overall Accuracy: 0.
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -52,11 +52,11 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
55 |
-
| No log | 1.0 | 178 | 0.
|
56 |
-
| No log | 2.0 | 356 | 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
|
61 |
|
62 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.1095
|
19 |
+
- Hard: {'precision': 0.7445544554455445, 'recall': 0.8245614035087719, 'f1': 0.7825182101977106, 'number': 456}
|
20 |
+
- Soft: {'precision': 0.7272727272727273, 'recall': 0.7804878048780488, 'f1': 0.7529411764705882, 'number': 82}
|
21 |
+
- Overall Precision: 0.7420
|
22 |
+
- Overall Recall: 0.8178
|
23 |
+
- Overall F1: 0.7781
|
24 |
+
- Overall Accuracy: 0.9635
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
54 |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
55 |
+
| No log | 1.0 | 178 | 0.1255 | {'precision': 0.583756345177665, 'recall': 0.756578947368421, 'f1': 0.659025787965616, 'number': 456} | {'precision': 0.5425531914893617, 'recall': 0.6219512195121951, 'f1': 0.5795454545454546, 'number': 82} | 0.5781 | 0.7361 | 0.6476 | 0.9515 |
|
56 |
+
| No log | 2.0 | 356 | 0.1071 | {'precision': 0.6994219653179191, 'recall': 0.7960526315789473, 'f1': 0.7446153846153847, 'number': 456} | {'precision': 0.6129032258064516, 'recall': 0.6951219512195121, 'f1': 0.6514285714285714, 'number': 82} | 0.6863 | 0.7807 | 0.7304 | 0.9585 |
|
57 |
+
| 0.1562 | 3.0 | 534 | 0.0990 | {'precision': 0.7150943396226415, 'recall': 0.831140350877193, 'f1': 0.7687626774847871, 'number': 456} | {'precision': 0.6777777777777778, 'recall': 0.7439024390243902, 'f1': 0.7093023255813954, 'number': 82} | 0.7097 | 0.8178 | 0.7599 | 0.9621 |
|
58 |
+
| 0.1562 | 4.0 | 712 | 0.1072 | {'precision': 0.7258687258687259, 'recall': 0.8245614035087719, 'f1': 0.7720739219712526, 'number': 456} | {'precision': 0.7222222222222222, 'recall': 0.7926829268292683, 'f1': 0.7558139534883721, 'number': 82} | 0.7253 | 0.8197 | 0.7696 | 0.9628 |
|
59 |
+
| 0.1562 | 5.0 | 890 | 0.1095 | {'precision': 0.7445544554455445, 'recall': 0.8245614035087719, 'f1': 0.7825182101977106, 'number': 456} | {'precision': 0.7272727272727273, 'recall': 0.7804878048780488, 'f1': 0.7529411764705882, 'number': 82} | 0.7420 | 0.8178 | 0.7781 | 0.9635 |
|
60 |
|
61 |
|
62 |
### Framework versions
|