dathi103 commited on
Commit
148ef13
·
verified ·
1 Parent(s): 3644a11

End of training

Browse files
Files changed (1) hide show
  1. README.md +12 -12
README.md CHANGED
@@ -15,13 +15,13 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.1391
19
- - Hard: {'precision': 0.6772616136919315, 'recall': 0.760989010989011, 'f1': 0.7166882276843466, 'number': 364}
20
- - Soft: {'precision': 0.6883116883116883, 'recall': 0.803030303030303, 'f1': 0.7412587412587411, 'number': 66}
21
- - Overall Precision: 0.6790
22
- - Overall Recall: 0.7674
23
- - Overall F1: 0.7205
24
- - Overall Accuracy: 0.9533
25
 
26
  ## Model description
27
 
@@ -52,11 +52,11 @@ The following hyperparameters were used during training:
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
- | No log | 1.0 | 178 | 0.1284 | {'precision': 0.5326315789473685, 'recall': 0.695054945054945, 'f1': 0.6030989272943981, 'number': 364} | {'precision': 0.5, 'recall': 0.5757575757575758, 'f1': 0.5352112676056339, 'number': 66} | 0.5281 | 0.6767 | 0.5933 | 0.9463 |
56
- | No log | 2.0 | 356 | 0.1157 | {'precision': 0.6073059360730594, 'recall': 0.7307692307692307, 'f1': 0.6633416458852868, 'number': 364} | {'precision': 0.631578947368421, 'recall': 0.7272727272727273, 'f1': 0.676056338028169, 'number': 66} | 0.6109 | 0.7302 | 0.6653 | 0.9519 |
57
- | 0.1468 | 3.0 | 534 | 0.1286 | {'precision': 0.6846153846153846, 'recall': 0.7335164835164835, 'f1': 0.7082228116710876, 'number': 364} | {'precision': 0.6582278481012658, 'recall': 0.7878787878787878, 'f1': 0.7172413793103448, 'number': 66} | 0.6802 | 0.7419 | 0.7097 | 0.9547 |
58
- | 0.1468 | 4.0 | 712 | 0.1383 | {'precision': 0.6799007444168734, 'recall': 0.7527472527472527, 'f1': 0.7144719687092568, 'number': 364} | {'precision': 0.6582278481012658, 'recall': 0.7878787878787878, 'f1': 0.7172413793103448, 'number': 66} | 0.6763 | 0.7581 | 0.7149 | 0.9544 |
59
- | 0.1468 | 5.0 | 890 | 0.1391 | {'precision': 0.6772616136919315, 'recall': 0.760989010989011, 'f1': 0.7166882276843466, 'number': 364} | {'precision': 0.6883116883116883, 'recall': 0.803030303030303, 'f1': 0.7412587412587411, 'number': 66} | 0.6790 | 0.7674 | 0.7205 | 0.9533 |
60
 
61
 
62
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.1095
19
+ - Hard: {'precision': 0.7445544554455445, 'recall': 0.8245614035087719, 'f1': 0.7825182101977106, 'number': 456}
20
+ - Soft: {'precision': 0.7272727272727273, 'recall': 0.7804878048780488, 'f1': 0.7529411764705882, 'number': 82}
21
+ - Overall Precision: 0.7420
22
+ - Overall Recall: 0.8178
23
+ - Overall F1: 0.7781
24
+ - Overall Accuracy: 0.9635
25
 
26
  ## Model description
27
 
 
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
+ | No log | 1.0 | 178 | 0.1255 | {'precision': 0.583756345177665, 'recall': 0.756578947368421, 'f1': 0.659025787965616, 'number': 456} | {'precision': 0.5425531914893617, 'recall': 0.6219512195121951, 'f1': 0.5795454545454546, 'number': 82} | 0.5781 | 0.7361 | 0.6476 | 0.9515 |
56
+ | No log | 2.0 | 356 | 0.1071 | {'precision': 0.6994219653179191, 'recall': 0.7960526315789473, 'f1': 0.7446153846153847, 'number': 456} | {'precision': 0.6129032258064516, 'recall': 0.6951219512195121, 'f1': 0.6514285714285714, 'number': 82} | 0.6863 | 0.7807 | 0.7304 | 0.9585 |
57
+ | 0.1562 | 3.0 | 534 | 0.0990 | {'precision': 0.7150943396226415, 'recall': 0.831140350877193, 'f1': 0.7687626774847871, 'number': 456} | {'precision': 0.6777777777777778, 'recall': 0.7439024390243902, 'f1': 0.7093023255813954, 'number': 82} | 0.7097 | 0.8178 | 0.7599 | 0.9621 |
58
+ | 0.1562 | 4.0 | 712 | 0.1072 | {'precision': 0.7258687258687259, 'recall': 0.8245614035087719, 'f1': 0.7720739219712526, 'number': 456} | {'precision': 0.7222222222222222, 'recall': 0.7926829268292683, 'f1': 0.7558139534883721, 'number': 82} | 0.7253 | 0.8197 | 0.7696 | 0.9628 |
59
+ | 0.1562 | 5.0 | 890 | 0.1095 | {'precision': 0.7445544554455445, 'recall': 0.8245614035087719, 'f1': 0.7825182101977106, 'number': 456} | {'precision': 0.7272727272727273, 'recall': 0.7804878048780488, 'f1': 0.7529411764705882, 'number': 82} | 0.7420 | 0.8178 | 0.7781 | 0.9635 |
60
 
61
 
62
  ### Framework versions