content
stringlengths
1
1.05M
input_ids
sequencelengths
1
883k
ratio_char_token
float64
1
22.9
token_count
int64
1
883k
# Copyright (C) 2014-2015 LiuLang <gsushzhsosgsu@gmail.com> # Use of this source code is governed by GPLv3 license that can be found # in http://www.gnu.org/licenses/gpl-3.0.html import hashlib import os import zlib CHUNK = 2 ** 20
[ 198, 2, 15069, 357, 34, 8, 1946, 12, 4626, 18258, 43, 648, 1279, 14542, 1530, 89, 11994, 418, 70, 2385, 31, 14816, 13, 785, 29, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 38644, 85, 18, 5964, 326, 460, 307, 1043, 198, 2, 287, 2638, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 14, 70, 489, 12, 18, 13, 15, 13, 6494, 198, 198, 11748, 12234, 8019, 198, 11748, 28686, 198, 11748, 1976, 8019, 198, 198, 3398, 4944, 42, 796, 362, 12429, 1160, 628 ]
2.712644
87
#!/usr/bin/python # encoding: utf-8 '''a rich client 1. for one server (instead of multi like in libmc.Client) 2. encapsulate @, ?, gc ... use is instead of libmc.Client ''' import telnetlib import logging import libmc import string import urllib import itertools import warnings from collections import defaultdict from beansdbadmin.core.hint import parse_new_hint_body from beansdbadmin.core.data import parse_records from beansdbadmin.core.hash import get_khash64 def get_buckets_keys_count(store): """ return dict: buckets -> count """ st = {} try: for line in (store.get('@') or '').split('\n'): if line: d, _, c = line.split(' ') if not d.endswith('/'): continue st[int(d[0], 16)] = int(c) return st except IOError: raise Exception("cannot get @ from %s" % (store)) def get_primary_buckets(store): """ return possible primary buckets, might be wrong on temporary nodes, result is list of buckets in integer """ ss = get_buckets_keys_count(store) bucket_list = ss.items() bucket_list = [x for x in bucket_list if x[1] > 0] if not bucket_list: return None bucket_list.sort(lambda a, b: cmp(a[1], b[1]), reverse=True) result = [bucket_list[0]] for i in bucket_list[1:]: if result[-1][1] / i[1] >= 2: break result.append(i) return [x[0] for x in result] def get_key_info_disk(store, key): '''return ver, vhash, flag, vsz, ts, fid, pos''' info = store.get('??' + key) if info: return [int(x) for x in info.split()] def test_new(addr, bucket): b = bucket c = DBClient(addr) print "stats:", c.stats() print 'version:', c.get_server_version() print "isold:", c.is_old() print "dir root:", c.get_dir("@") print "bucket key count:", c.get_bucket_keys_count(int(b)) print "item_count:", c.item_count() print "primary_buckets", get_primary_buckets(c) leaf = c.get_dir("@" + b + "000000") print "a dir leaf:", leaf khash_str = list(leaf)[0] print "a khash_str", khash_str r = c.get_records_by_khash(khash_str)[0] k = r[0] print "key, len(value), (flag, tstamp, ver):", k, r[1], r[3:] print "key info mem:", c.get_key_info_mem(k) print "key info disk(ver, vhash, flag, vsz, ts, fid, pos):", \ c.get_key_info_disk(k) print "key version:", c.get_version(k) print "collision_summary", c.get_collision_summary(int(b)) print "gc status:", c.get_gc_status() if __name__ == '__main__': test_new("rosa3a:7900", '3')
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 2, 21004, 25, 3384, 69, 12, 23, 198, 7061, 6, 64, 5527, 5456, 198, 220, 220, 220, 352, 13, 329, 530, 4382, 357, 38070, 286, 5021, 588, 287, 9195, 23209, 13, 11792, 8, 198, 220, 220, 220, 362, 13, 32652, 5039, 2488, 11, 5633, 11, 308, 66, 2644, 198, 198, 1904, 318, 2427, 286, 9195, 23209, 13, 11792, 198, 7061, 6, 198, 198, 11748, 13632, 3262, 8019, 198, 11748, 18931, 198, 11748, 9195, 23209, 198, 11748, 4731, 198, 11748, 2956, 297, 571, 198, 11748, 340, 861, 10141, 198, 11748, 14601, 198, 6738, 17268, 1330, 4277, 11600, 198, 6738, 16567, 9945, 28482, 13, 7295, 13, 71, 600, 1330, 21136, 62, 3605, 62, 71, 600, 62, 2618, 198, 6738, 16567, 9945, 28482, 13, 7295, 13, 7890, 1330, 21136, 62, 8344, 3669, 198, 6738, 16567, 9945, 28482, 13, 7295, 13, 17831, 1330, 651, 62, 14636, 1077, 2414, 628, 628, 628, 198, 4299, 651, 62, 27041, 1039, 62, 13083, 62, 9127, 7, 8095, 2599, 198, 220, 220, 220, 37227, 1441, 8633, 25, 38674, 4613, 954, 37227, 198, 220, 220, 220, 336, 796, 23884, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 357, 8095, 13, 1136, 10786, 31, 11537, 393, 10148, 737, 35312, 10786, 59, 77, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 11, 4808, 11, 269, 796, 1627, 13, 35312, 10786, 705, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 288, 13, 437, 2032, 342, 10786, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 336, 58, 600, 7, 67, 58, 15, 4357, 1467, 15437, 796, 493, 7, 66, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 336, 198, 220, 220, 220, 2845, 24418, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 66, 34574, 651, 2488, 422, 4064, 82, 1, 4064, 357, 8095, 4008, 628, 198, 4299, 651, 62, 39754, 62, 27041, 1039, 7, 8095, 2599, 198, 220, 220, 220, 37227, 1441, 1744, 4165, 38674, 11, 1244, 307, 2642, 319, 8584, 13760, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 318, 1351, 286, 38674, 287, 18253, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 37786, 796, 651, 62, 27041, 1039, 62, 13083, 62, 9127, 7, 8095, 8, 198, 220, 220, 220, 19236, 62, 4868, 796, 37786, 13, 23814, 3419, 198, 220, 220, 220, 19236, 62, 4868, 796, 685, 87, 329, 2124, 287, 19236, 62, 4868, 611, 2124, 58, 16, 60, 1875, 657, 60, 198, 220, 220, 220, 611, 407, 19236, 62, 4868, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 198, 220, 220, 220, 19236, 62, 4868, 13, 30619, 7, 50033, 257, 11, 275, 25, 269, 3149, 7, 64, 58, 16, 4357, 275, 58, 16, 46570, 9575, 28, 17821, 8, 198, 220, 220, 220, 1255, 796, 685, 27041, 316, 62, 4868, 58, 15, 11907, 198, 220, 220, 220, 329, 1312, 287, 19236, 62, 4868, 58, 16, 25, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1255, 58, 12, 16, 7131, 16, 60, 1220, 1312, 58, 16, 60, 18189, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 33295, 7, 72, 8, 198, 220, 220, 220, 1441, 685, 87, 58, 15, 60, 329, 2124, 287, 1255, 60, 628, 198, 4299, 651, 62, 2539, 62, 10951, 62, 39531, 7, 8095, 11, 1994, 2599, 198, 220, 220, 220, 705, 7061, 7783, 3326, 11, 410, 17831, 11, 6056, 11, 3691, 89, 11, 40379, 11, 49909, 11, 1426, 7061, 6, 198, 220, 220, 220, 7508, 796, 3650, 13, 1136, 10786, 3548, 6, 1343, 1994, 8, 198, 220, 220, 220, 611, 7508, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 600, 7, 87, 8, 329, 2124, 287, 7508, 13, 35312, 3419, 60, 628, 628, 628, 198, 198, 4299, 1332, 62, 3605, 7, 29851, 11, 19236, 2599, 198, 220, 220, 220, 275, 796, 19236, 198, 220, 220, 220, 269, 796, 20137, 11792, 7, 29851, 8, 198, 220, 220, 220, 3601, 366, 34242, 25, 1600, 269, 13, 34242, 3419, 198, 220, 220, 220, 3601, 705, 9641, 25, 3256, 269, 13, 1136, 62, 15388, 62, 9641, 3419, 198, 220, 220, 220, 3601, 366, 271, 727, 25, 1600, 269, 13, 271, 62, 727, 3419, 198, 220, 220, 220, 3601, 366, 15908, 6808, 25, 1600, 269, 13, 1136, 62, 15908, 7203, 31, 4943, 198, 220, 220, 220, 3601, 366, 27041, 316, 1994, 954, 25, 1600, 269, 13, 1136, 62, 27041, 316, 62, 13083, 62, 9127, 7, 600, 7, 65, 4008, 198, 220, 220, 220, 3601, 366, 9186, 62, 9127, 25, 1600, 269, 13, 9186, 62, 9127, 3419, 198, 220, 220, 220, 3601, 366, 39754, 62, 27041, 1039, 1600, 651, 62, 39754, 62, 27041, 1039, 7, 66, 8, 628, 220, 220, 220, 12835, 796, 269, 13, 1136, 62, 15908, 7203, 31, 1, 1343, 275, 1343, 366, 10535, 4943, 198, 220, 220, 220, 3601, 366, 64, 26672, 12835, 25, 1600, 12835, 198, 220, 220, 220, 479, 17831, 62, 2536, 796, 1351, 7, 33201, 38381, 15, 60, 198, 220, 220, 220, 3601, 366, 64, 479, 17831, 62, 2536, 1600, 479, 17831, 62, 2536, 198, 220, 220, 220, 374, 796, 269, 13, 1136, 62, 8344, 3669, 62, 1525, 62, 14636, 1077, 7, 14636, 1077, 62, 2536, 38381, 15, 60, 198, 220, 220, 220, 479, 796, 374, 58, 15, 60, 198, 220, 220, 220, 3601, 366, 2539, 11, 18896, 7, 8367, 828, 357, 32109, 11, 256, 301, 696, 11, 3326, 2599, 1600, 479, 11, 374, 58, 16, 4357, 374, 58, 18, 47715, 198, 220, 220, 220, 3601, 366, 2539, 7508, 1066, 25, 1600, 269, 13, 1136, 62, 2539, 62, 10951, 62, 11883, 7, 74, 8, 198, 220, 220, 220, 3601, 366, 2539, 7508, 11898, 7, 332, 11, 410, 17831, 11, 6056, 11, 3691, 89, 11, 40379, 11, 49909, 11, 1426, 2599, 1600, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 13, 1136, 62, 2539, 62, 10951, 62, 39531, 7, 74, 8, 198, 220, 220, 220, 3601, 366, 2539, 2196, 25, 1600, 269, 13, 1136, 62, 9641, 7, 74, 8, 198, 220, 220, 220, 3601, 366, 26000, 1166, 62, 49736, 1600, 269, 13, 1136, 62, 26000, 1166, 62, 49736, 7, 600, 7, 65, 4008, 198, 220, 220, 220, 3601, 366, 36484, 3722, 25, 1600, 269, 13, 1136, 62, 36484, 62, 13376, 3419, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1332, 62, 3605, 7203, 4951, 64, 18, 64, 25, 3720, 405, 1600, 705, 18, 11537, 198 ]
2.271637
1,167
import matplotlib.pyplot __author__ = 'xiongyi' line1 = [(200, 100), (200, 400)] line2 = [(190, 190), (210, 210)] if __name__ == '__main__': matplotlib.pyplot.plot((line1[0][0],line1[1][0]),(line1[0][1],line1[1][1])) matplotlib.pyplot.hold(True) matplotlib.pyplot.plot((line2[0][0],line2[1][0]),(line2[0][1],line2[1][1])) print(overlap()) matplotlib.pyplot.show()
[ 11748, 2603, 29487, 8019, 13, 9078, 29487, 198, 834, 9800, 834, 796, 705, 87, 295, 1360, 72, 6, 198, 1370, 16, 796, 47527, 2167, 11, 1802, 828, 357, 2167, 11, 7337, 15437, 198, 1370, 17, 796, 47527, 19782, 11, 19884, 828, 357, 21536, 11, 20064, 15437, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 2603, 29487, 8019, 13, 9078, 29487, 13, 29487, 19510, 1370, 16, 58, 15, 7131, 15, 4357, 1370, 16, 58, 16, 7131, 15, 46570, 7, 1370, 16, 58, 15, 7131, 16, 4357, 1370, 16, 58, 16, 7131, 16, 60, 4008, 198, 220, 220, 220, 2603, 29487, 8019, 13, 9078, 29487, 13, 2946, 7, 17821, 8, 628, 220, 220, 220, 2603, 29487, 8019, 13, 9078, 29487, 13, 29487, 19510, 1370, 17, 58, 15, 7131, 15, 4357, 1370, 17, 58, 16, 7131, 15, 46570, 7, 1370, 17, 58, 15, 7131, 16, 4357, 1370, 17, 58, 16, 7131, 16, 60, 4008, 198, 220, 220, 220, 3601, 7, 2502, 37796, 28955, 198, 220, 220, 220, 2603, 29487, 8019, 13, 9078, 29487, 13, 12860, 3419, 198 ]
2.120879
182
from sqlalchemy import select from sqlalchemy.schema import Column from .declarative import Model class ModelLoader(Loader): class AliasLoader(ModelLoader): class ColumnLoader(Loader): class TupleLoader(Loader): class CallableLoader(Loader): class ValueLoader(Loader):
[ 6738, 44161, 282, 26599, 1330, 2922, 198, 6738, 44161, 282, 26599, 13, 15952, 2611, 1330, 29201, 198, 198, 6738, 764, 32446, 283, 876, 1330, 9104, 628, 198, 198, 4871, 9104, 17401, 7, 17401, 2599, 628, 198, 4871, 978, 4448, 17401, 7, 17633, 17401, 2599, 628, 198, 4871, 29201, 17401, 7, 17401, 2599, 628, 198, 4871, 309, 29291, 17401, 7, 17401, 2599, 628, 198, 4871, 4889, 540, 17401, 7, 17401, 2599, 628, 198, 4871, 11052, 17401, 7, 17401, 2599, 198 ]
3.582278
79
# Standard imports import logging import math import json from uuid import UUID from datetime import datetime, timedelta import time # Our imports from emission.core.get_database import get_trip_db, get_section_db import emission.analysis.result.carbon as carbon import emission.core.common as common import emission.net.api.stats as stats from emission.core.wrapper.user import User from emission.clients.leaderboard import leaderboard from emission.clients.gamified import gamified from emission.clients.recommendation import recommendation from emission.clients.commontrips import commontrips from emission.clients.data import data # TODO: Consider subclassing to provide client specific user functions # These are copy/pasted from our first client, the carshare study # TODO: Simplify this. runBackgroundTasks are currently only invoked from the # result precomputation code. We could change that code to pass in the day, and # remove this interface. Extra credit: should we pass in the day, or a date # range? Passing in the date range could make it possible for us to run the # scripts more than once a day...
[ 2, 8997, 17944, 198, 11748, 18931, 198, 11748, 10688, 198, 11748, 33918, 198, 6738, 334, 27112, 1330, 471, 27586, 198, 6738, 4818, 8079, 1330, 4818, 8079, 11, 28805, 12514, 198, 11748, 640, 198, 198, 2, 3954, 17944, 198, 6738, 25592, 13, 7295, 13, 1136, 62, 48806, 1330, 651, 62, 39813, 62, 9945, 11, 651, 62, 5458, 62, 9945, 198, 11748, 25592, 13, 20930, 13, 20274, 13, 29255, 355, 6588, 198, 11748, 25592, 13, 7295, 13, 11321, 355, 2219, 198, 11748, 25592, 13, 3262, 13, 15042, 13, 34242, 355, 9756, 198, 6738, 25592, 13, 7295, 13, 48553, 13, 7220, 1330, 11787, 198, 6738, 25592, 13, 565, 2334, 13, 27940, 3526, 1330, 3554, 3526, 198, 6738, 25592, 13, 565, 2334, 13, 28483, 1431, 1330, 9106, 1431, 198, 6738, 25592, 13, 565, 2334, 13, 47335, 437, 341, 1330, 15602, 198, 6738, 25592, 13, 565, 2334, 13, 785, 8691, 380, 862, 1330, 725, 756, 380, 862, 198, 6738, 25592, 13, 565, 2334, 13, 7890, 1330, 1366, 198, 198, 2, 16926, 46, 25, 12642, 47611, 278, 284, 2148, 5456, 2176, 2836, 5499, 198, 198, 2, 2312, 389, 4866, 14, 79, 8992, 422, 674, 717, 5456, 11, 262, 5006, 43466, 2050, 198, 198, 2, 16926, 46, 25, 45157, 1958, 428, 13, 1057, 21756, 51, 6791, 389, 3058, 691, 24399, 422, 262, 198, 2, 1255, 662, 785, 1996, 341, 2438, 13, 775, 714, 1487, 326, 2438, 284, 1208, 287, 262, 1110, 11, 290, 198, 2, 4781, 428, 7071, 13, 17221, 3884, 25, 815, 356, 1208, 287, 262, 1110, 11, 393, 257, 3128, 198, 2, 2837, 30, 220, 46389, 287, 262, 3128, 2837, 714, 787, 340, 1744, 329, 514, 284, 1057, 262, 198, 2, 14750, 517, 621, 1752, 257, 1110, 986, 198 ]
3.947183
284
#!/usr/bin/env python """ HAR Formatter for REDbot. """ __author__ = "Jerome Renard <jerome.renard@gmail.com>" __copyright__ = """\ Copyright (c) 2008-2010 Mark Nottingham Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import operator import nbhttp.error as nberr import redbot.speak as rs from redbot.formatter import Formatter nl = u"\n" # TODO: errors and status on stderr with CLI?
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 37811, 198, 39, 1503, 5178, 1436, 329, 23848, 13645, 13, 198, 37811, 198, 198, 834, 9800, 834, 796, 366, 36134, 462, 7152, 446, 1279, 44009, 462, 13, 918, 446, 31, 14816, 13, 785, 24618, 198, 834, 22163, 4766, 834, 796, 37227, 59, 198, 15269, 357, 66, 8, 3648, 12, 10333, 2940, 39802, 198, 198, 5990, 3411, 318, 29376, 7520, 11, 1479, 286, 3877, 11, 284, 597, 1048, 16727, 257, 4866, 198, 1659, 428, 3788, 290, 3917, 10314, 3696, 357, 1169, 366, 25423, 12340, 284, 1730, 198, 259, 262, 10442, 1231, 17504, 11, 1390, 1231, 17385, 262, 2489, 198, 1462, 779, 11, 4866, 11, 13096, 11, 20121, 11, 7715, 11, 14983, 11, 850, 43085, 11, 290, 14, 273, 3677, 198, 22163, 444, 286, 262, 10442, 11, 290, 284, 8749, 6506, 284, 4150, 262, 10442, 318, 198, 69, 700, 1348, 284, 466, 523, 11, 2426, 284, 262, 1708, 3403, 25, 198, 198, 464, 2029, 6634, 4003, 290, 428, 7170, 4003, 2236, 307, 3017, 287, 198, 439, 9088, 393, 8904, 16690, 286, 262, 10442, 13, 198, 198, 10970, 47466, 3180, 36592, 2389, 1961, 366, 1921, 3180, 1600, 42881, 34764, 56, 3963, 15529, 509, 12115, 11, 7788, 32761, 6375, 198, 3955, 49094, 11, 47783, 2751, 21728, 5626, 40880, 5390, 3336, 34764, 11015, 3963, 34482, 3398, 1565, 5603, 25382, 11, 198, 37, 46144, 7473, 317, 16652, 2149, 37232, 33079, 48933, 5357, 44521, 1268, 10913, 2751, 12529, 13, 3268, 8005, 49261, 50163, 3336, 198, 32, 24318, 20673, 6375, 27975, 38162, 9947, 367, 15173, 4877, 9348, 43031, 19146, 7473, 15529, 47666, 3955, 11, 29506, 25552, 6375, 25401, 198, 43, 3539, 25382, 11, 7655, 2767, 16879, 3268, 3537, 40282, 3963, 27342, 10659, 11, 309, 9863, 6375, 25401, 54, 24352, 11, 5923, 1797, 2751, 16034, 11, 198, 12425, 3963, 6375, 3268, 7102, 45, 24565, 13315, 3336, 47466, 6375, 3336, 23210, 6375, 25401, 5550, 1847, 20754, 3268, 198, 10970, 47466, 13, 198, 37811, 198, 198, 11748, 10088, 198, 198, 11748, 299, 65, 4023, 13, 18224, 355, 299, 527, 81, 198, 11748, 2266, 13645, 13, 47350, 355, 44608, 198, 198, 6738, 2266, 13645, 13, 687, 1436, 1330, 5178, 1436, 198, 198, 21283, 796, 334, 1, 59, 77, 1, 198, 198, 2, 16926, 46, 25, 8563, 290, 3722, 319, 336, 1082, 81, 351, 43749, 30, 628, 628 ]
3.576623
385
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2020-2021 by Murray Altheim. All rights reserved. This file is part # of the Robot Operating System project, released under the MIT License. Please # see the LICENSE file included as part of this package. # # author: Murray Altheim # created: 2020-09-19 # modified: 2020-09-19 # import sys, colorsys import ioexpander as io from colorama import init, Fore, Style init() from lib.logger import Logger # .............................................................................. # return (( self._out_max - self._out_min ) * ( self.get_value() - self._in_min ) / ( self._in_max - self._in_min )) + self._out_min #EOF
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 12131, 12, 1238, 2481, 416, 12164, 978, 1169, 320, 13, 1439, 2489, 10395, 13, 770, 2393, 318, 636, 198, 2, 286, 262, 16071, 24850, 4482, 1628, 11, 2716, 739, 262, 17168, 13789, 13, 4222, 198, 2, 766, 262, 38559, 24290, 2393, 3017, 355, 636, 286, 428, 5301, 13, 198, 2, 198, 2, 1772, 25, 220, 220, 12164, 978, 1169, 320, 198, 2, 2727, 25, 220, 12131, 12, 2931, 12, 1129, 198, 2, 9518, 25, 12131, 12, 2931, 12, 1129, 198, 2, 198, 198, 11748, 25064, 11, 7577, 893, 198, 11748, 33245, 11201, 4066, 355, 33245, 198, 6738, 3124, 1689, 1330, 2315, 11, 4558, 11, 17738, 198, 15003, 3419, 198, 198, 6738, 9195, 13, 6404, 1362, 1330, 5972, 1362, 198, 198, 2, 220, 23193, 2109, 16317, 198, 2, 220, 220, 220, 220, 220, 220, 1441, 14808, 2116, 13557, 448, 62, 9806, 532, 2116, 13557, 448, 62, 1084, 1267, 1635, 357, 2116, 13, 1136, 62, 8367, 3419, 532, 2116, 13557, 259, 62, 1084, 1267, 1220, 357, 2116, 13557, 259, 62, 9806, 532, 2116, 13557, 259, 62, 1084, 15306, 1343, 2116, 13557, 448, 62, 1084, 198, 198, 2, 4720, 37, 628 ]
3.212963
216
""" Module: 'urequests' on esp32 1.12.0 """ # MCU: (sysname='esp32', nodename='esp32', release='1.12.0', version='v1.12 on 2019-12-20', machine='ESP32 module (spiram) with ESP32') # Stubber: 1.3.2 usocket = None
[ 37811, 198, 26796, 25, 705, 495, 421, 3558, 6, 319, 15024, 2624, 352, 13, 1065, 13, 15, 198, 37811, 198, 2, 13122, 52, 25, 357, 17597, 3672, 11639, 9774, 2624, 3256, 18666, 12453, 11639, 9774, 2624, 3256, 2650, 11639, 16, 13, 1065, 13, 15, 3256, 2196, 11639, 85, 16, 13, 1065, 319, 13130, 12, 1065, 12, 1238, 3256, 4572, 11639, 1546, 47, 2624, 8265, 357, 45564, 321, 8, 351, 9428, 2624, 11537, 198, 2, 41135, 527, 25, 352, 13, 18, 13, 17, 198, 198, 385, 5459, 796, 6045, 198 ]
2.393258
89
#!/usr/bin/env python #-*- coding=utf-8 -*- # # Copyright 2012 Jike Inc. All Rights Reserved. # Author: liwei@jike.com import re from urlparse import urlparse parse1()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 12, 9, 12, 19617, 28, 40477, 12, 23, 532, 9, 12, 198, 2, 198, 2, 15069, 2321, 449, 522, 3457, 13, 1439, 6923, 33876, 13, 198, 2, 6434, 25, 7649, 42990, 31, 73, 522, 13, 785, 198, 198, 11748, 302, 198, 6738, 19016, 29572, 1330, 19016, 29572, 198, 29572, 16, 3419, 198 ]
2.725806
62
from kivy.uix.gridlayout import GridLayout from kivy.uix.label import Label from kivy.uix.textinput import TextInput from kivy.garden.matplotlib.backend_kivyagg import FigureCanvasKivyAgg from kivy.uix.anchorlayout import AnchorLayout from kivy.uix.boxlayout import BoxLayout from kivy.uix.button import Button import matplotlib.pyplot as plt import matplotlib import datetime from TransactionBook.model.Filter import Filter from datetime import datetime from kivy.uix.popup import Popup from kivy.properties import NumericProperty, ReferenceListProperty from kivy.uix.checkbox import CheckBox from kivy.core.window import Window if __name__ == "__main__": from kivy.base import runTouchApp c = MultiSelectPopUp(title="Test", option_list=["Item1", "Item2", "Item3"], callback=cb, option_init=[True, False, True]) runTouchApp(c)
[ 6738, 479, 452, 88, 13, 84, 844, 13, 25928, 39786, 1330, 24846, 32517, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 18242, 1330, 36052, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 5239, 15414, 1330, 8255, 20560, 198, 6738, 479, 452, 88, 13, 70, 5872, 13, 6759, 29487, 8019, 13, 1891, 437, 62, 74, 452, 88, 9460, 1330, 11291, 6090, 11017, 42, 452, 88, 46384, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 3702, 273, 39786, 1330, 29253, 273, 32517, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 3524, 39786, 1330, 8315, 32517, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 16539, 1330, 20969, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 2603, 29487, 8019, 198, 11748, 4818, 8079, 198, 6738, 45389, 10482, 13, 19849, 13, 22417, 1330, 25853, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 12924, 929, 1330, 8099, 929, 198, 6738, 479, 452, 88, 13, 48310, 1330, 399, 39223, 21746, 11, 20984, 8053, 21746, 198, 6738, 479, 452, 88, 13, 84, 844, 13, 9122, 3524, 1330, 6822, 14253, 198, 6738, 479, 452, 88, 13, 7295, 13, 17497, 1330, 26580, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 422, 479, 452, 88, 13, 8692, 1330, 1057, 35211, 4677, 198, 220, 220, 220, 269, 796, 15237, 17563, 16979, 4933, 7, 7839, 2625, 14402, 1600, 3038, 62, 4868, 28, 14692, 7449, 16, 1600, 366, 7449, 17, 1600, 366, 7449, 18, 33116, 23838, 28, 21101, 11, 3038, 62, 15003, 41888, 17821, 11, 10352, 11, 6407, 12962, 198, 220, 220, 220, 1057, 35211, 4677, 7, 66, 8 ]
2.985816
282
from dataclasses import dataclass, field from typing import List from Car2 import Car
[ 6738, 4818, 330, 28958, 1330, 4818, 330, 31172, 11, 2214, 198, 6738, 19720, 1330, 7343, 198, 6738, 1879, 17, 1330, 1879, 628 ]
3.954545
22
import subprocess import threading import time import errno import socket import urllib import pathlib from io import StringIO from http.server import BaseHTTPRequestHandler, HTTPServer import lib.stations as stations import lib.epg2xml as epg2xml import lib.channels_m3u as channels_m3u from lib.templates import templates # with help from https://www.acmesystems.it/python_http # and https://stackoverflow.com/questions/21631799/how-can-i-pass-parameters-to-a-requesthandler # mostly from https://github.com/ZeWaren/python-upnp-ssdp-example # and https://stackoverflow.com/questions/46210672/python-2-7-streaming-http-server-supporting-multiple-connections-on-one-port def start(config, locast, location): serverSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) serverSocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) serverSocket.bind((config["main"]['bind_ip'], int(config["main"]['bind_port']))) serverSocket.listen(int(config["main"]["concurrent_listeners"])) print("Now listening for requests.") for i in range(int(config["main"]["concurrent_listeners"])): PlexHttpServer(serverSocket, config, locast, location)
[ 11748, 850, 14681, 198, 11748, 4704, 278, 198, 11748, 640, 198, 11748, 11454, 3919, 198, 11748, 17802, 198, 11748, 2956, 297, 571, 198, 11748, 3108, 8019, 198, 6738, 33245, 1330, 10903, 9399, 198, 6738, 2638, 13, 15388, 1330, 7308, 40717, 18453, 25060, 11, 38288, 18497, 198, 198, 11748, 9195, 13, 301, 602, 355, 8985, 198, 11748, 9195, 13, 538, 70, 17, 19875, 355, 2462, 70, 17, 19875, 198, 11748, 9195, 13, 354, 8961, 62, 76, 18, 84, 355, 9619, 62, 76, 18, 84, 198, 6738, 9195, 13, 11498, 17041, 1330, 24019, 628, 198, 2, 351, 1037, 422, 3740, 1378, 2503, 13, 330, 6880, 6781, 82, 13, 270, 14, 29412, 62, 4023, 198, 2, 290, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 20666, 34125, 2079, 14, 4919, 12, 5171, 12, 72, 12, 6603, 12, 17143, 7307, 12, 1462, 12, 64, 12, 25927, 30281, 628, 198, 198, 2, 4632, 422, 3740, 1378, 12567, 13, 785, 14, 36056, 54, 5757, 14, 29412, 12, 929, 37659, 12, 824, 26059, 12, 20688, 198, 2, 290, 3740, 1378, 25558, 2502, 11125, 13, 785, 14, 6138, 507, 14, 3510, 21536, 43864, 14, 29412, 12, 17, 12, 22, 12, 5532, 278, 12, 4023, 12, 15388, 12, 11284, 278, 12, 48101, 12, 8443, 507, 12, 261, 12, 505, 12, 634, 628, 198, 4299, 923, 7, 11250, 11, 1179, 459, 11, 4067, 2599, 198, 220, 220, 220, 4382, 39105, 796, 17802, 13, 44971, 7, 44971, 13, 8579, 62, 1268, 2767, 11, 17802, 13, 50, 11290, 62, 2257, 32235, 8, 198, 220, 220, 220, 4382, 39105, 13, 28709, 735, 8738, 7, 44971, 13, 50, 3535, 62, 50, 11290, 2767, 11, 17802, 13, 15821, 62, 2200, 19108, 2885, 7707, 11, 352, 8, 198, 220, 220, 220, 4382, 39105, 13, 21653, 19510, 11250, 14692, 12417, 1, 7131, 6, 21653, 62, 541, 6, 4357, 493, 7, 11250, 14692, 12417, 1, 7131, 6, 21653, 62, 634, 20520, 22305, 198, 220, 220, 220, 4382, 39105, 13, 4868, 268, 7, 600, 7, 11250, 14692, 12417, 1, 7131, 1, 1102, 14421, 62, 4868, 36014, 8973, 4008, 628, 220, 220, 220, 3601, 7203, 3844, 8680, 329, 7007, 19570, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 600, 7, 11250, 14692, 12417, 1, 7131, 1, 1102, 14421, 62, 4868, 36014, 8973, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 47176, 43481, 10697, 7, 15388, 39105, 11, 4566, 11, 1179, 459, 11, 4067, 8, 198 ]
2.942643
401
from django import template from django.contrib.auth.decorators import login_required from django.http import HttpResponse from django.template import loader
[ 6738, 42625, 14208, 1330, 11055, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 6738, 42625, 14208, 13, 28243, 1330, 40213, 628, 198 ]
3.809524
42
import os from pathlib import Path import numpy as np AUDIO_FILENAME_ENDINGS = (".aiff", ".flac", ".m4a", ".mp3", ".ogg", ".opus", ".wav") def get_file_paths( root_path, filename_endings=AUDIO_FILENAME_ENDINGS, traverse_subdirectories=True ): """Return a list of paths to all files with the given filename extensions in a directory. Also traverses subdirectories by default. """ file_paths = [] for root, dirs, filenames in os.walk(root_path): filenames = sorted(filenames) for filename in filenames: input_path = os.path.abspath(root) file_path = os.path.join(input_path, filename) if filename.lower().endswith(filename_endings): file_paths.append(Path(file_path)) if not traverse_subdirectories: # prevent descending into subfolders break return file_paths def calculate_rms(samples): """Given a numpy array of audio samples, return its Root Mean Square (RMS).""" return np.sqrt(np.mean(np.square(samples), axis=-1)) def calculate_desired_noise_rms(clean_rms, snr): """ Given the Root Mean Square (RMS) of a clean sound and a desired signal-to-noise ratio (SNR), calculate the desired RMS of a noise sound to be mixed in. Based on https://github.com/Sato-Kunihiko/audio-SNR/blob/8d2c933b6c0afe6f1203251f4877e7a1068a6130/create_mixed_audio_file.py#L20 :param clean_rms: Root Mean Square (RMS) - a value between 0.0 and 1.0 :param snr: Signal-to-Noise (SNR) Ratio in dB - typically somewhere between -20 and 60 :return: """ a = float(snr) / 20 noise_rms = clean_rms / (10 ** a) return noise_rms def is_waveform_multichannel(samples): """ Return bool that answers the question: Is the given ndarray a multichannel waveform or not? :param samples: numpy ndarray :return: """ return len(samples.shape) > 1 def is_spectrogram_multichannel(spectrogram): """ Return bool that answers the question: Is the given ndarray a multichannel spectrogram? :param samples: numpy ndarray :return: """ return len(spectrogram.shape) > 2 and spectrogram.shape[-1] > 1 def convert_float_samples_to_int16(y): """Convert floating-point numpy array of audio samples to int16.""" if not issubclass(y.dtype.type, np.floating): raise ValueError("input samples not floating-point") return (y * np.iinfo(np.int16).max).astype(np.int16)
[ 11748, 28686, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 48877, 9399, 62, 46700, 1677, 10067, 62, 10619, 20754, 796, 357, 1911, 64, 733, 1600, 27071, 2704, 330, 1600, 27071, 76, 19, 64, 1600, 27071, 3149, 18, 1600, 27071, 10332, 1600, 27071, 25790, 1600, 27071, 45137, 4943, 628, 198, 4299, 651, 62, 7753, 62, 6978, 82, 7, 198, 220, 220, 220, 6808, 62, 6978, 11, 29472, 62, 437, 654, 28, 48877, 9399, 62, 46700, 1677, 10067, 62, 10619, 20754, 11, 38138, 62, 7266, 12942, 1749, 28, 17821, 198, 2599, 198, 220, 220, 220, 37227, 13615, 257, 1351, 286, 13532, 284, 477, 3696, 351, 262, 1813, 29472, 18366, 287, 257, 8619, 13, 198, 220, 220, 220, 4418, 33038, 274, 850, 12942, 1749, 416, 4277, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 2393, 62, 6978, 82, 796, 17635, 628, 220, 220, 220, 329, 6808, 11, 288, 17062, 11, 1226, 268, 1047, 287, 28686, 13, 11152, 7, 15763, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1226, 268, 1047, 796, 23243, 7, 10379, 268, 1047, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 29472, 287, 1226, 268, 1047, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 6978, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 15763, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 15414, 62, 6978, 11, 29472, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 29472, 13, 21037, 22446, 437, 2032, 342, 7, 34345, 62, 437, 654, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2393, 62, 6978, 82, 13, 33295, 7, 15235, 7, 7753, 62, 6978, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 38138, 62, 7266, 12942, 1749, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 2948, 31491, 656, 850, 11379, 364, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 1441, 2393, 62, 6978, 82, 628, 198, 4299, 15284, 62, 81, 907, 7, 82, 12629, 2599, 198, 220, 220, 220, 37227, 15056, 257, 299, 32152, 7177, 286, 6597, 8405, 11, 1441, 663, 20410, 22728, 9276, 357, 49, 5653, 21387, 15931, 198, 220, 220, 220, 1441, 45941, 13, 31166, 17034, 7, 37659, 13, 32604, 7, 37659, 13, 23415, 7, 82, 12629, 828, 16488, 10779, 16, 4008, 628, 198, 4299, 15284, 62, 8906, 1202, 62, 3919, 786, 62, 81, 907, 7, 27773, 62, 81, 907, 11, 3013, 81, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 11259, 262, 20410, 22728, 9276, 357, 49, 5653, 8, 286, 257, 3424, 2128, 290, 257, 10348, 6737, 12, 1462, 12, 3919, 786, 8064, 357, 15571, 49, 828, 198, 220, 220, 220, 15284, 262, 10348, 371, 5653, 286, 257, 7838, 2128, 284, 307, 7668, 287, 13, 628, 220, 220, 220, 13403, 319, 3740, 1378, 12567, 13, 785, 14, 50, 5549, 12, 42, 403, 4449, 12125, 14, 24051, 12, 15571, 49, 14, 2436, 672, 14, 23, 67, 17, 66, 24, 2091, 65, 21, 66, 15, 8635, 21, 69, 1065, 3070, 28072, 69, 2780, 3324, 68, 22, 64, 940, 3104, 64, 5333, 1270, 14, 17953, 62, 76, 2966, 62, 24051, 62, 7753, 13, 9078, 2, 43, 1238, 198, 220, 220, 220, 1058, 17143, 3424, 62, 81, 907, 25, 20410, 22728, 9276, 357, 49, 5653, 8, 532, 257, 1988, 1022, 657, 13, 15, 290, 352, 13, 15, 198, 220, 220, 220, 1058, 17143, 3013, 81, 25, 26484, 12, 1462, 12, 2949, 786, 357, 15571, 49, 8, 33956, 287, 30221, 532, 6032, 7382, 1022, 532, 1238, 290, 3126, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 257, 796, 12178, 7, 16184, 81, 8, 1220, 1160, 198, 220, 220, 220, 7838, 62, 81, 907, 796, 3424, 62, 81, 907, 1220, 357, 940, 12429, 257, 8, 198, 220, 220, 220, 1441, 7838, 62, 81, 907, 628, 198, 198, 4299, 318, 62, 19204, 687, 62, 16680, 488, 4276, 7, 82, 12629, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 20512, 326, 7429, 262, 1808, 25, 1148, 262, 1813, 299, 67, 18747, 257, 1963, 488, 4276, 6769, 687, 393, 407, 30, 628, 220, 220, 220, 1058, 17143, 8405, 25, 299, 32152, 299, 67, 18747, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 18896, 7, 82, 12629, 13, 43358, 8, 1875, 352, 628, 198, 4299, 318, 62, 4443, 39529, 62, 16680, 488, 4276, 7, 4443, 39529, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 20512, 326, 7429, 262, 1808, 25, 1148, 262, 1813, 299, 67, 18747, 257, 1963, 488, 4276, 5444, 39529, 30, 628, 220, 220, 220, 1058, 17143, 8405, 25, 299, 32152, 299, 67, 18747, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 18896, 7, 4443, 39529, 13, 43358, 8, 1875, 362, 290, 5444, 39529, 13, 43358, 58, 12, 16, 60, 1875, 352, 628, 198, 4299, 10385, 62, 22468, 62, 82, 12629, 62, 1462, 62, 600, 1433, 7, 88, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 12462, 12, 4122, 299, 32152, 7177, 286, 6597, 8405, 284, 493, 1433, 526, 15931, 198, 220, 220, 220, 611, 407, 1189, 549, 4871, 7, 88, 13, 67, 4906, 13, 4906, 11, 45941, 13, 48679, 803, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 15414, 8405, 407, 12462, 12, 4122, 4943, 198, 220, 220, 220, 1441, 357, 88, 1635, 45941, 13, 72, 10951, 7, 37659, 13, 600, 1433, 737, 9806, 737, 459, 2981, 7, 37659, 13, 600, 1433, 8, 198 ]
2.547325
972
s = "([}}])" stack = [] if len(s) % 2 == 1: print(False) exit() for i in s: if i == "(": stack.append("(") elif i == "[": stack.append("[") elif i == "{": stack.append("{") elif i == ")": if len(stack) < 1: print(False) exit() if stack[-1] == "(": stack.pop() else: print(False) exit() elif i == "]": if len(stack) < 1: print(False) exit() if stack[-1] == "[": stack.pop() else: print(False) exit() elif i == "}": if len(stack) < 1: print(False) exit() if stack[-1] == "{": stack.pop() else: print(False) exit() if len(stack) == 0: print(True) else: print(False)
[ 82, 796, 366, 26933, 11709, 12962, 1, 198, 198, 25558, 796, 17635, 198, 198, 361, 18896, 7, 82, 8, 4064, 362, 6624, 352, 25, 198, 220, 220, 220, 3601, 7, 25101, 8, 198, 220, 220, 220, 8420, 3419, 198, 198, 1640, 1312, 287, 264, 25, 198, 220, 220, 220, 611, 1312, 6624, 30629, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 8931, 13, 33295, 7203, 7, 4943, 198, 220, 220, 220, 1288, 361, 1312, 6624, 12878, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 8931, 13, 33295, 7203, 58, 4943, 198, 220, 220, 220, 1288, 361, 1312, 6624, 45144, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 8931, 13, 33295, 7203, 4895, 8, 198, 220, 220, 220, 1288, 361, 1312, 6624, 366, 8, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 25558, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8931, 58, 12, 16, 60, 6624, 30629, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8931, 13, 12924, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 198, 220, 220, 220, 1288, 361, 1312, 6624, 366, 60, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 25558, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8931, 58, 12, 16, 60, 6624, 12878, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8931, 13, 12924, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 198, 220, 220, 220, 1288, 361, 1312, 6624, 366, 92, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 611, 18896, 7, 25558, 8, 1279, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8931, 58, 12, 16, 60, 6624, 45144, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8931, 13, 12924, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 198, 198, 361, 18896, 7, 25558, 8, 6624, 657, 25, 198, 220, 220, 220, 3601, 7, 17821, 8, 198, 17772, 25, 198, 220, 220, 220, 3601, 7, 25101, 8, 198 ]
1.647388
536
import random import string import os from IPython.display import display, HTML from .utils import html_loader from .utils import get_content from jinja2 import Template
[ 11748, 4738, 198, 11748, 4731, 198, 11748, 28686, 198, 198, 6738, 6101, 7535, 13, 13812, 1330, 3359, 11, 11532, 198, 6738, 764, 26791, 1330, 27711, 62, 29356, 198, 6738, 764, 26791, 1330, 651, 62, 11299, 198, 6738, 474, 259, 6592, 17, 1330, 37350, 628 ]
3.909091
44
from decimal import Decimal from fixtures import * # noqa: F401,F403 from fixtures import TEST_NETWORK from flaky import flaky # noqa: F401 from pyln.client import RpcError, Millisatoshi from utils import ( only_one, wait_for, sync_blockheight, EXPERIMENTAL_FEATURES, COMPAT, VALGRIND ) import os import pytest import subprocess import time import unittest def test_minconf_withdraw(node_factory, bitcoind): """Issue 2518: ensure that ridiculous confirmation levels don't overflow The number of confirmations is used to compute a maximum height that is to be accepted. If the current height is smaller than the number of confirmations we wrap around and just select everything. The fix is to clamp the maxheight parameter to a positive small number. """ amount = 1000000 # Don't get any funds from previous runs. l1 = node_factory.get_node(random_hsm=True) addr = l1.rpc.newaddr()['bech32'] # Add some funds to withdraw later for i in range(10): l1.bitcoin.rpc.sendtoaddress(addr, amount / 10**8 + 0.01) bitcoind.generate_block(1) wait_for(lambda: len(l1.rpc.listfunds()['outputs']) == 10) with pytest.raises(RpcError): l1.rpc.withdraw(destination=addr, satoshi=10000, feerate='normal', minconf=9999999) def test_addfunds_from_block(node_factory, bitcoind): """Send funds to the daemon without telling it explicitly """ # Previous runs with same bitcoind can leave funds! l1 = node_factory.get_node(random_hsm=True) addr = l1.rpc.newaddr()['bech32'] bitcoind.rpc.sendtoaddress(addr, 0.1) bitcoind.generate_block(1) wait_for(lambda: len(l1.rpc.listfunds()['outputs']) == 1) outputs = l1.db_query('SELECT value FROM outputs WHERE status=0;') assert only_one(outputs)['value'] == 10000000 # The address we detect must match what was paid to. output = only_one(l1.rpc.listfunds()['outputs']) assert output['address'] == addr # Send all our money to a P2WPKH address this time. addr = l1.rpc.newaddr("bech32")['bech32'] l1.rpc.withdraw(addr, "all") bitcoind.generate_block(1) time.sleep(1) # The address we detect must match what was paid to. output = only_one(l1.rpc.listfunds()['outputs']) assert output['address'] == addr # this test does a 'listtransactions' on a yet unconfirmed channel def test_fundchannel_listtransaction(node_factory, bitcoind): l1, l2 = node_factory.get_nodes(2) l1.fundwallet(10**6) l1.connect(l2) txid = l1.rpc.fundchannel(l2.info['id'], 10**5)['txid'] # next call warned about SQL Accessing a null column # and crashed the daemon for accessing random memory or null txs = l1.rpc.listtransactions()['transactions'] tx = [t for t in txs if t['hash'] == txid][0] assert tx['blockheight'] == 0 def test_withdraw_nlocktime(node_factory): """ Test that we don't set the nLockTime to 0 for withdrawal transactions. """ l1 = node_factory.get_node(1) l1.fundwallet(10**4) addr = l1.rpc.newaddr()["bech32"] tx = l1.rpc.withdraw(addr, 10**3)["tx"] nlocktime = node_factory.bitcoind.rpc.decoderawtransaction(tx)["locktime"] tip = node_factory.bitcoind.rpc.getblockcount() assert nlocktime > 0 and nlocktime <= tip
[ 6738, 32465, 1330, 4280, 4402, 198, 6738, 34609, 1330, 1635, 220, 1303, 645, 20402, 25, 376, 21844, 11, 37, 31552, 198, 6738, 34609, 1330, 43001, 62, 12884, 33249, 198, 6738, 781, 15492, 1330, 781, 15492, 220, 1303, 645, 20402, 25, 376, 21844, 198, 6738, 279, 2645, 77, 13, 16366, 1330, 371, 14751, 12331, 11, 9212, 271, 265, 13704, 198, 6738, 3384, 4487, 1330, 357, 198, 220, 220, 220, 691, 62, 505, 11, 4043, 62, 1640, 11, 17510, 62, 9967, 17015, 11, 7788, 18973, 3955, 3525, 1847, 62, 15112, 47471, 11, 24301, 1404, 11, 198, 220, 220, 220, 26173, 10761, 12115, 198, 8, 198, 198, 11748, 28686, 198, 11748, 12972, 9288, 198, 11748, 850, 14681, 198, 11748, 640, 198, 11748, 555, 715, 395, 628, 198, 198, 4299, 1332, 62, 1084, 10414, 62, 4480, 19334, 7, 17440, 62, 69, 9548, 11, 1643, 1073, 521, 2599, 198, 220, 220, 220, 37227, 45147, 1679, 1507, 25, 4155, 326, 11441, 12641, 2974, 836, 470, 30343, 628, 220, 220, 220, 383, 1271, 286, 6216, 602, 318, 973, 284, 24061, 257, 5415, 6001, 326, 318, 284, 198, 220, 220, 220, 307, 6292, 13, 1002, 262, 1459, 6001, 318, 4833, 621, 262, 1271, 286, 198, 220, 220, 220, 6216, 602, 356, 14441, 1088, 290, 655, 2922, 2279, 13, 383, 4259, 318, 284, 198, 220, 220, 220, 29405, 262, 3509, 17015, 11507, 284, 257, 3967, 1402, 1271, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 2033, 796, 1802, 2388, 198, 220, 220, 220, 1303, 2094, 470, 651, 597, 5153, 422, 2180, 4539, 13, 198, 220, 220, 220, 300, 16, 796, 10139, 62, 69, 9548, 13, 1136, 62, 17440, 7, 25120, 62, 71, 5796, 28, 17821, 8, 198, 220, 220, 220, 37817, 796, 300, 16, 13, 81, 14751, 13, 3605, 29851, 3419, 17816, 1350, 354, 2624, 20520, 628, 220, 220, 220, 1303, 3060, 617, 5153, 284, 8399, 1568, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 300, 16, 13, 35395, 13, 81, 14751, 13, 21280, 83, 1170, 49380, 7, 29851, 11, 2033, 1220, 838, 1174, 23, 1343, 657, 13, 486, 8, 628, 220, 220, 220, 1643, 1073, 521, 13, 8612, 378, 62, 9967, 7, 16, 8, 628, 220, 220, 220, 4043, 62, 1640, 7, 50033, 25, 18896, 7, 75, 16, 13, 81, 14751, 13, 4868, 10990, 82, 3419, 17816, 22915, 82, 6, 12962, 6624, 838, 8, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 49, 14751, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 300, 16, 13, 81, 14751, 13, 4480, 19334, 7, 16520, 1883, 28, 29851, 11, 3332, 13704, 28, 49388, 11, 730, 21620, 11639, 11265, 3256, 949, 10414, 28, 24214, 17032, 8, 628, 198, 4299, 1332, 62, 2860, 10990, 82, 62, 6738, 62, 9967, 7, 17440, 62, 69, 9548, 11, 1643, 1073, 521, 2599, 198, 220, 220, 220, 37227, 25206, 5153, 284, 262, 33386, 1231, 5149, 340, 11777, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 21801, 4539, 351, 976, 1643, 1073, 521, 460, 2666, 5153, 0, 198, 220, 220, 220, 300, 16, 796, 10139, 62, 69, 9548, 13, 1136, 62, 17440, 7, 25120, 62, 71, 5796, 28, 17821, 8, 628, 220, 220, 220, 37817, 796, 300, 16, 13, 81, 14751, 13, 3605, 29851, 3419, 17816, 1350, 354, 2624, 20520, 198, 220, 220, 220, 1643, 1073, 521, 13, 81, 14751, 13, 21280, 83, 1170, 49380, 7, 29851, 11, 657, 13, 16, 8, 198, 220, 220, 220, 1643, 1073, 521, 13, 8612, 378, 62, 9967, 7, 16, 8, 628, 220, 220, 220, 4043, 62, 1640, 7, 50033, 25, 18896, 7, 75, 16, 13, 81, 14751, 13, 4868, 10990, 82, 3419, 17816, 22915, 82, 6, 12962, 6624, 352, 8, 628, 220, 220, 220, 23862, 796, 300, 16, 13, 9945, 62, 22766, 10786, 46506, 1988, 16034, 23862, 33411, 3722, 28, 15, 26, 11537, 198, 220, 220, 220, 6818, 691, 62, 505, 7, 22915, 82, 8, 17816, 8367, 20520, 6624, 1802, 20483, 628, 220, 220, 220, 1303, 383, 2209, 356, 4886, 1276, 2872, 644, 373, 3432, 284, 13, 198, 220, 220, 220, 5072, 796, 691, 62, 505, 7, 75, 16, 13, 81, 14751, 13, 4868, 10990, 82, 3419, 17816, 22915, 82, 6, 12962, 198, 220, 220, 220, 6818, 5072, 17816, 21975, 20520, 6624, 37817, 628, 220, 220, 220, 1303, 16290, 477, 674, 1637, 284, 257, 350, 17, 25527, 42, 39, 2209, 428, 640, 13, 198, 220, 220, 220, 37817, 796, 300, 16, 13, 81, 14751, 13, 3605, 29851, 7203, 1350, 354, 2624, 4943, 17816, 1350, 354, 2624, 20520, 198, 220, 220, 220, 300, 16, 13, 81, 14751, 13, 4480, 19334, 7, 29851, 11, 366, 439, 4943, 198, 220, 220, 220, 1643, 1073, 521, 13, 8612, 378, 62, 9967, 7, 16, 8, 198, 220, 220, 220, 640, 13, 42832, 7, 16, 8, 628, 220, 220, 220, 1303, 383, 2209, 356, 4886, 1276, 2872, 644, 373, 3432, 284, 13, 198, 220, 220, 220, 5072, 796, 691, 62, 505, 7, 75, 16, 13, 81, 14751, 13, 4868, 10990, 82, 3419, 17816, 22915, 82, 6, 12962, 198, 220, 220, 220, 6818, 5072, 17816, 21975, 20520, 6624, 37817, 628, 628, 628, 628, 628, 198, 2, 428, 1332, 857, 257, 705, 4868, 7645, 4658, 6, 319, 257, 1865, 555, 36349, 6518, 198, 4299, 1332, 62, 10990, 17620, 62, 4868, 7645, 2673, 7, 17440, 62, 69, 9548, 11, 1643, 1073, 521, 2599, 198, 220, 220, 220, 300, 16, 11, 300, 17, 796, 10139, 62, 69, 9548, 13, 1136, 62, 77, 4147, 7, 17, 8, 198, 220, 220, 220, 300, 16, 13, 10990, 44623, 7, 940, 1174, 21, 8, 628, 220, 220, 220, 300, 16, 13, 8443, 7, 75, 17, 8, 198, 220, 220, 220, 27765, 312, 796, 300, 16, 13, 81, 14751, 13, 10990, 17620, 7, 75, 17, 13, 10951, 17816, 312, 6, 4357, 838, 1174, 20, 8, 17816, 17602, 312, 20520, 628, 220, 220, 220, 1303, 1306, 869, 7728, 546, 16363, 8798, 278, 257, 9242, 5721, 198, 220, 220, 220, 1303, 290, 14997, 262, 33386, 329, 22534, 4738, 4088, 393, 9242, 198, 220, 220, 220, 27765, 82, 796, 300, 16, 13, 81, 14751, 13, 4868, 7645, 4658, 3419, 17816, 7645, 4658, 20520, 628, 220, 220, 220, 27765, 796, 685, 83, 329, 256, 287, 27765, 82, 611, 256, 17816, 17831, 20520, 6624, 27765, 312, 7131, 15, 60, 198, 220, 220, 220, 6818, 27765, 17816, 9967, 17015, 20520, 6624, 657, 628, 198, 4299, 1332, 62, 4480, 19334, 62, 77, 5354, 2435, 7, 17440, 62, 69, 9548, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6208, 326, 356, 836, 470, 900, 262, 299, 25392, 7575, 284, 657, 329, 15220, 8945, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 300, 16, 796, 10139, 62, 69, 9548, 13, 1136, 62, 17440, 7, 16, 8, 198, 220, 220, 220, 300, 16, 13, 10990, 44623, 7, 940, 1174, 19, 8, 628, 220, 220, 220, 37817, 796, 300, 16, 13, 81, 14751, 13, 3605, 29851, 3419, 14692, 1350, 354, 2624, 8973, 198, 220, 220, 220, 27765, 796, 300, 16, 13, 81, 14751, 13, 4480, 19334, 7, 29851, 11, 838, 1174, 18, 8, 14692, 17602, 8973, 198, 220, 220, 220, 299, 5354, 2435, 796, 10139, 62, 69, 9548, 13, 2545, 1073, 521, 13, 81, 14751, 13, 12501, 12342, 707, 7645, 2673, 7, 17602, 8, 14692, 5354, 2435, 8973, 198, 220, 220, 220, 8171, 796, 10139, 62, 69, 9548, 13, 2545, 1073, 521, 13, 81, 14751, 13, 1136, 9967, 9127, 3419, 628, 220, 220, 220, 6818, 299, 5354, 2435, 1875, 657, 290, 299, 5354, 2435, 19841, 8171, 628 ]
2.637161
1,254
"""Provides plots of mutations for Isolates and Lines.""" from microbepy.common import constants as cn from microbepy.common.dataframe_sorter import DataframeSorter from microbepy.common.isolate import Isolate from microbepy.common import util from microbepy.correlation import genome_correlation from microbepy.data.model_data_provider import ModelDataProvider from microbepy.data import util_data from microbepy.plot.mutation_cofraction import MutationCofraction from microbepy.plot.util_plot import PlotParms import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns COLORS = ['red', 'green', 'blue'] SPECIES = {cn.SPECIES_MIX_DVH: "DVH", cn.SPECIES_MIX_MMP: "MMP", None: "both"} FONTSIZE_TITLE = 16 FONTSIZE_LABEL = 8 MAX_LINES = 9 MIN_FRACTION = 0.25 THRESHOLD_FRAC = 0.2 MAX_SIGLVL = 0.01 COLORBAR_MIN = 1.0 COLORBAR_MAX = 4.0
[ 37811, 15946, 1460, 21528, 286, 220, 23005, 329, 1148, 349, 689, 290, 26299, 526, 15931, 198, 198, 6738, 4580, 65, 538, 88, 13, 11321, 1330, 38491, 355, 269, 77, 198, 6738, 4580, 65, 538, 88, 13, 11321, 13, 7890, 14535, 62, 82, 4337, 1330, 6060, 14535, 50, 4337, 198, 6738, 4580, 65, 538, 88, 13, 11321, 13, 271, 27976, 1330, 1148, 27976, 198, 6738, 4580, 65, 538, 88, 13, 11321, 1330, 7736, 198, 6738, 4580, 65, 538, 88, 13, 10215, 49501, 1330, 19270, 62, 10215, 49501, 198, 6738, 4580, 65, 538, 88, 13, 7890, 13, 19849, 62, 7890, 62, 15234, 1304, 1330, 9104, 6601, 29495, 198, 6738, 4580, 65, 538, 88, 13, 7890, 1330, 7736, 62, 7890, 198, 6738, 4580, 65, 538, 88, 13, 29487, 13, 76, 7094, 62, 1073, 69, 7861, 1330, 337, 7094, 34, 1659, 7861, 198, 6738, 4580, 65, 538, 88, 13, 29487, 13, 22602, 62, 29487, 1330, 28114, 47, 8357, 198, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 384, 397, 1211, 355, 3013, 82, 628, 198, 25154, 20673, 796, 37250, 445, 3256, 705, 14809, 3256, 705, 17585, 20520, 198, 48451, 11015, 796, 1391, 31522, 13, 48451, 11015, 62, 8895, 55, 62, 35, 53, 39, 25, 366, 35, 53, 39, 1600, 198, 220, 220, 220, 269, 77, 13, 48451, 11015, 62, 8895, 55, 62, 44, 7378, 25, 366, 44, 7378, 1600, 198, 220, 220, 220, 6045, 25, 366, 16885, 20662, 198, 37, 1340, 4694, 35400, 62, 49560, 2538, 796, 1467, 198, 37, 1340, 4694, 35400, 62, 48780, 3698, 796, 807, 198, 22921, 62, 34509, 1546, 796, 860, 198, 23678, 62, 10913, 44710, 796, 657, 13, 1495, 198, 4221, 19535, 39, 15173, 62, 10913, 2246, 796, 657, 13, 17, 198, 22921, 62, 50, 3528, 30976, 43, 796, 657, 13, 486, 198, 46786, 33, 1503, 62, 23678, 796, 352, 13, 15, 198, 46786, 33, 1503, 62, 22921, 796, 604, 13, 15, 628 ]
2.656627
332
# Copyright (c) 2017 Sony Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import os from scipy.misc import imread from args import get_args import matplotlib.pyplot as plt def encode_label(label): ''' Converting pixel values to corresponding class numbers. Assuming that the input label in 3-dim(h,w,c) and in BGR fromat read from cv2 ''' h, w, c = label.shape new_label = np.zeros((h, w, 1), dtype=np.int32) cls_to_clr_map = get_color() for i in range(cls_to_clr_map.shape[0]): #new_label[(label == cls_to_clr_map[i])[:,:,0]] = i #new_label[np.argwhere((label.astype(np.int32) == cls_to_clr_map[i]).all(axis=2))]=i print(np.where((label.astype(np.int32) == [120, 0, 128]).all(axis=2))) if i == 21: new_label[np.where( (label.astype(np.int32) == cls_to_clr_map[i]).all(axis=2))] = 255 else: new_label[np.where( (label.astype(np.int32) == cls_to_clr_map[i]).all(axis=2))] = i return new_label # this method should generate train-image.txt and train-label.txt def main(): ''' Arguments: train-file = txt file containing randomly selected image filenames to be taken as training set. val-file = txt file containing randomly selected image filenames to be taken as validation set. data-dir = dataset directory Usage: python dataset_utils.py --train-file="" --val-file="" --data_dir="" ''' args = get_args() data_dir = args.data_dir if not os.path.exists(data_dir+'SegmentationClass/' + 'encoded/'): os.makedirs(data_dir+'SegmentationClass/' + 'encoded/') for filename in os.listdir(data_dir+'SegmentationClass/'): if os.path.isdir(data_dir+'SegmentationClass/' + filename): continue label = imread(data_dir+'SegmentationClass/' + filename).astype('float32') label = encode_label(label) np.save(data_dir+'SegmentationClass/' + 'encoded/' + filename.split('.')[0] + '.npy', label) generate_path_files(args.data_dir, args.train_file, args.val_file) if __name__ == '__main__': main()
[ 2, 15069, 357, 66, 8, 2177, 10184, 10501, 13, 1439, 6923, 33876, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 6738, 629, 541, 88, 13, 44374, 1330, 545, 961, 198, 6738, 26498, 1330, 651, 62, 22046, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 628, 198, 198, 4299, 37773, 62, 18242, 7, 18242, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 35602, 889, 17465, 3815, 284, 11188, 1398, 3146, 13, 33238, 326, 262, 5128, 6167, 287, 513, 12, 27740, 7, 71, 11, 86, 11, 66, 8, 290, 287, 347, 10761, 422, 265, 1100, 422, 269, 85, 17, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 289, 11, 266, 11, 269, 796, 6167, 13, 43358, 198, 220, 220, 220, 649, 62, 18242, 796, 45941, 13, 9107, 418, 19510, 71, 11, 266, 11, 352, 828, 288, 4906, 28, 37659, 13, 600, 2624, 8, 628, 220, 220, 220, 537, 82, 62, 1462, 62, 565, 81, 62, 8899, 796, 651, 62, 8043, 3419, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 565, 82, 62, 1462, 62, 565, 81, 62, 8899, 13, 43358, 58, 15, 60, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3605, 62, 18242, 58, 7, 18242, 6624, 537, 82, 62, 1462, 62, 565, 81, 62, 8899, 58, 72, 12962, 58, 45299, 45299, 15, 11907, 796, 1312, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3605, 62, 18242, 58, 37659, 13, 853, 3003, 19510, 18242, 13, 459, 2981, 7, 37659, 13, 600, 2624, 8, 6624, 537, 82, 62, 1462, 62, 565, 81, 62, 8899, 58, 72, 35944, 439, 7, 22704, 28, 17, 4008, 22241, 72, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 37659, 13, 3003, 19510, 18242, 13, 459, 2981, 7, 37659, 13, 600, 2624, 8, 6624, 685, 10232, 11, 657, 11, 13108, 35944, 439, 7, 22704, 28, 17, 22305, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 2310, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 18242, 58, 37659, 13, 3003, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 18242, 13, 459, 2981, 7, 37659, 13, 600, 2624, 8, 6624, 537, 82, 62, 1462, 62, 565, 81, 62, 8899, 58, 72, 35944, 439, 7, 22704, 28, 17, 4008, 60, 796, 14280, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 18242, 58, 37659, 13, 3003, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 18242, 13, 459, 2981, 7, 37659, 13, 600, 2624, 8, 6624, 537, 82, 62, 1462, 62, 565, 81, 62, 8899, 58, 72, 35944, 439, 7, 22704, 28, 17, 4008, 60, 796, 1312, 628, 220, 220, 220, 1441, 649, 62, 18242, 628, 198, 2, 428, 2446, 815, 7716, 4512, 12, 9060, 13, 14116, 290, 4512, 12, 18242, 13, 14116, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 20559, 2886, 25, 198, 220, 220, 220, 4512, 12, 7753, 796, 256, 742, 2393, 7268, 15456, 6163, 2939, 1226, 268, 1047, 284, 307, 2077, 355, 3047, 900, 13, 198, 220, 220, 220, 1188, 12, 7753, 796, 256, 742, 2393, 7268, 15456, 6163, 2939, 1226, 268, 1047, 284, 307, 2077, 355, 21201, 900, 13, 198, 220, 220, 220, 1366, 12, 15908, 796, 27039, 8619, 198, 220, 220, 220, 29566, 25, 21015, 27039, 62, 26791, 13, 9078, 1377, 27432, 12, 7753, 33151, 1377, 2100, 12, 7753, 33151, 1377, 7890, 62, 15908, 33151, 198, 220, 220, 220, 705, 7061, 628, 220, 220, 220, 26498, 796, 651, 62, 22046, 3419, 198, 220, 220, 220, 1366, 62, 15908, 796, 26498, 13, 7890, 62, 15908, 628, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 7890, 62, 15908, 10, 6, 41030, 14374, 9487, 14, 6, 1343, 705, 12685, 9043, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 7890, 62, 15908, 10, 6, 41030, 14374, 9487, 14, 6, 1343, 705, 12685, 9043, 14, 11537, 198, 220, 220, 220, 329, 29472, 287, 28686, 13, 4868, 15908, 7, 7890, 62, 15908, 10, 6, 41030, 14374, 9487, 14, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 28686, 13, 6978, 13, 9409, 343, 7, 7890, 62, 15908, 10, 6, 41030, 14374, 9487, 14, 6, 1343, 29472, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 545, 961, 7, 7890, 62, 15908, 10, 6, 41030, 14374, 9487, 14, 6, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 737, 459, 2981, 10786, 22468, 2624, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 37773, 62, 18242, 7, 18242, 8, 198, 220, 220, 220, 220, 220, 220, 220, 45941, 13, 21928, 7, 7890, 62, 15908, 10, 6, 41030, 14374, 9487, 14, 6, 1343, 705, 12685, 9043, 14, 6, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29472, 13, 35312, 10786, 2637, 38381, 15, 60, 1343, 45302, 77, 9078, 3256, 6167, 8, 628, 220, 220, 220, 7716, 62, 6978, 62, 16624, 7, 22046, 13, 7890, 62, 15908, 11, 26498, 13, 27432, 62, 7753, 11, 26498, 13, 2100, 62, 7753, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.506925
1,083
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. # import collections import os import torch import math from fairseq import bleu, data, options, utils from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter from fairseq.multiprocessing_trainer import MultiprocessingTrainer from fairseq.progress_bar import progress_bar from fairseq.sequence_generator import SequenceGenerator def train(args, epoch, batch_offset, trainer, criterion, dataset, num_gpus): """Train the model for one epoch.""" itr = dataset.dataloader(args.train_subset, batch_size=args.batch_size, test_batch_size=args.test_batch_size, valid_batch_size=args.valid_batch_size, num_workers=args.workers, max_tokens=args.max_tokens, seed=args.seed, epoch=epoch, max_positions=args.max_positions, sample_without_replacement=args.sample_without_replacement) loss_meter = AverageMeter() bsz_meter = AverageMeter() # sentences per batch wpb_meter = AverageMeter() # words per batch wps_meter = TimeMeter() # words per second clip_meter = AverageMeter() # % of updates clipped gnorm_meter = AverageMeter() # gradient norm desc = '| epoch {:03d}'.format(epoch) lr = trainer.get_lr() with progress_bar(itr, desc, leave=False) as t: for i, sample in data.skip_group_enumerator(t, num_gpus, batch_offset): loss, grad_norm = trainer.train_step(sample, criterion) ntokens = sum(s['ntokens'] for s in sample) src_size = sum(s['src_tokens'].size(0) for s in sample) loss_meter.update(loss, ntokens) bsz_meter.update(src_size) wpb_meter.update(ntokens) wps_meter.update(ntokens) clip_meter.update(1 if grad_norm > args.clip_norm else 0) gnorm_meter.update(grad_norm) t.set_postfix(collections.OrderedDict([ ('loss', '{:.2f} ({:.2f})'.format(loss, loss_meter.avg)), ('wps', '{:5d}'.format(round(wps_meter.avg))), ('wpb', '{:5d}'.format(round(wpb_meter.avg))), ('bsz', '{:5d}'.format(round(bsz_meter.avg))), ('lr', lr), ('clip', '{:3.0f}%'.format(clip_meter.avg * 100)), ('gnorm', '{:.4f}'.format(gnorm_meter.avg)), ])) if i == 0: # ignore the first mini-batch in words-per-second calculation wps_meter.reset() if args.save_interval > 0 and (i + 1) % args.save_interval == 0: trainer.save_checkpoint(args, epoch, i + 1) fmt = desc + ' | train loss {:2.2f} | train ppl {:3.2f}' fmt += ' | s/checkpoint {:7d} | words/s {:6d} | words/batch {:6d}' fmt += ' | bsz {:5d} | lr {:0.6f} | clip {:3.0f}% | gnorm {:.4f}' t.write(fmt.format(loss_meter.avg, math.pow(2, loss_meter.avg), round(wps_meter.elapsed_time), round(wps_meter.avg), round(wpb_meter.avg), round(bsz_meter.avg), lr, clip_meter.avg * 100, gnorm_meter.avg)) def validate(args, epoch, trainer, criterion, dataset, subset, ngpus): """Evaluate the model on the validation set and return the average loss.""" itr = dataset.dataloader(subset, batch_size=None, max_tokens=args.max_tokens, max_positions=args.max_positions) loss_meter = AverageMeter() desc = '| epoch {:03d} | valid on \'{}\' subset'.format(epoch, subset) with progress_bar(itr, desc, leave=False) as t: for _, sample in data.skip_group_enumerator(t, ngpus): ntokens = sum(s['ntokens'] for s in sample) loss = trainer.valid_step(sample, criterion) loss_meter.update(loss, ntokens) t.set_postfix(loss='{:.2f}'.format(loss_meter.avg)) val_loss = loss_meter.avg t.write(desc + ' | valid loss {:2.2f} | valid ppl {:3.2f}' .format(val_loss, math.pow(2, val_loss))) # update and return the learning rate return val_loss def score_test(args, model, dataset, subset, beam, cuda_device): """Evaluate the model on the test set and return the BLEU scorer.""" translator = SequenceGenerator([model], dataset.dst_dict, beam_size=beam) if torch.cuda.is_available(): translator.cuda() scorer = bleu.Scorer(dataset.dst_dict.pad(), dataset.dst_dict.eos(), dataset.dst_dict.unk()) itr = dataset.dataloader(subset, batch_size=4, max_positions=args.max_positions) for _, _, ref, hypos in translator.generate_batched_itr(itr, cuda_device=cuda_device): scorer.add(ref.int().cpu(), hypos[0]['tokens'].int().cpu()) return scorer if __name__ == '__main__': main()
[ 2, 15069, 357, 66, 8, 2177, 12, 25579, 11, 3203, 11, 3457, 13, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 5964, 1043, 287, 262, 38559, 24290, 2393, 287, 198, 2, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 1052, 3224, 7264, 286, 12701, 2489, 198, 2, 460, 307, 1043, 287, 262, 28748, 15365, 2393, 287, 262, 976, 8619, 13, 198, 2, 198, 198, 11748, 17268, 198, 11748, 28686, 198, 11748, 28034, 198, 11748, 10688, 198, 198, 6738, 3148, 41068, 1330, 7245, 84, 11, 1366, 11, 3689, 11, 3384, 4487, 198, 6738, 3148, 41068, 13, 4164, 364, 1330, 13475, 44, 2357, 11, 13707, 8340, 44, 2357, 11, 3862, 44, 2357, 198, 6738, 3148, 41068, 13, 16680, 541, 305, 919, 278, 62, 2213, 10613, 1330, 7854, 541, 305, 919, 278, 2898, 10613, 198, 6738, 3148, 41068, 13, 33723, 62, 5657, 1330, 4371, 62, 5657, 198, 6738, 3148, 41068, 13, 43167, 62, 8612, 1352, 1330, 45835, 8645, 1352, 628, 198, 198, 4299, 4512, 7, 22046, 11, 36835, 11, 15458, 62, 28968, 11, 21997, 11, 34054, 11, 27039, 11, 997, 62, 31197, 385, 2599, 198, 220, 220, 220, 37227, 44077, 262, 2746, 329, 530, 36835, 526, 15931, 628, 220, 220, 220, 340, 81, 796, 27039, 13, 67, 10254, 1170, 263, 7, 22046, 13, 27432, 62, 7266, 2617, 11, 15458, 62, 7857, 28, 22046, 13, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 43501, 62, 7857, 28, 22046, 13, 9288, 62, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4938, 62, 43501, 62, 7857, 28, 22046, 13, 12102, 62, 43501, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 997, 62, 22896, 28, 22046, 13, 22896, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 83, 482, 641, 28, 22046, 13, 9806, 62, 83, 482, 641, 11, 9403, 28, 22046, 13, 28826, 11, 36835, 28, 538, 5374, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 1930, 1756, 28, 22046, 13, 9806, 62, 1930, 1756, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6291, 62, 19419, 62, 35666, 5592, 28, 22046, 13, 39873, 62, 19419, 62, 35666, 5592, 8, 198, 220, 220, 220, 2994, 62, 27231, 796, 13475, 44, 2357, 3419, 198, 220, 220, 220, 275, 82, 89, 62, 27231, 796, 13475, 44, 2357, 3419, 220, 220, 220, 1303, 13439, 583, 15458, 198, 220, 220, 220, 266, 40842, 62, 27231, 796, 13475, 44, 2357, 3419, 220, 220, 220, 1303, 2456, 583, 15458, 198, 220, 220, 220, 266, 862, 62, 27231, 796, 3862, 44, 2357, 3419, 220, 220, 220, 220, 220, 220, 1303, 2456, 583, 1218, 198, 220, 220, 220, 10651, 62, 27231, 796, 13475, 44, 2357, 3419, 220, 220, 1303, 4064, 286, 5992, 49305, 198, 220, 220, 220, 19967, 579, 62, 27231, 796, 13475, 44, 2357, 3419, 220, 1303, 31312, 2593, 628, 220, 220, 220, 1715, 796, 705, 91, 36835, 46110, 3070, 67, 92, 4458, 18982, 7, 538, 5374, 8, 198, 220, 220, 220, 300, 81, 796, 21997, 13, 1136, 62, 14050, 3419, 198, 220, 220, 220, 351, 4371, 62, 5657, 7, 270, 81, 11, 1715, 11, 2666, 28, 25101, 8, 355, 256, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 11, 6291, 287, 1366, 13, 48267, 62, 8094, 62, 268, 6975, 1352, 7, 83, 11, 997, 62, 31197, 385, 11, 15458, 62, 28968, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 11, 3915, 62, 27237, 796, 21997, 13, 27432, 62, 9662, 7, 39873, 11, 34054, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 83, 482, 641, 796, 2160, 7, 82, 17816, 429, 482, 641, 20520, 329, 264, 287, 6291, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 62, 7857, 796, 2160, 7, 82, 17816, 10677, 62, 83, 482, 641, 6, 4083, 7857, 7, 15, 8, 329, 264, 287, 6291, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 27231, 13, 19119, 7, 22462, 11, 299, 83, 482, 641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 82, 89, 62, 27231, 13, 19119, 7, 10677, 62, 7857, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 40842, 62, 27231, 13, 19119, 7, 429, 482, 641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 862, 62, 27231, 13, 19119, 7, 429, 482, 641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10651, 62, 27231, 13, 19119, 7, 16, 611, 3915, 62, 27237, 1875, 26498, 13, 15036, 62, 27237, 2073, 657, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19967, 579, 62, 27231, 13, 19119, 7, 9744, 62, 27237, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13, 2617, 62, 7353, 13049, 7, 4033, 26448, 13, 35422, 1068, 35, 713, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 22462, 3256, 705, 90, 25, 13, 17, 69, 92, 37913, 25, 13, 17, 69, 30072, 4458, 18982, 7, 22462, 11, 2994, 62, 27231, 13, 615, 70, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 86, 862, 3256, 705, 90, 25, 20, 67, 92, 4458, 18982, 7, 744, 7, 86, 862, 62, 27231, 13, 615, 70, 4008, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 24142, 65, 3256, 705, 90, 25, 20, 67, 92, 4458, 18982, 7, 744, 7, 24142, 65, 62, 27231, 13, 615, 70, 4008, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 1443, 89, 3256, 705, 90, 25, 20, 67, 92, 4458, 18982, 7, 744, 7, 1443, 89, 62, 27231, 13, 615, 70, 4008, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 14050, 3256, 300, 81, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 15036, 3256, 705, 90, 25, 18, 13, 15, 69, 92, 4, 4458, 18982, 7, 15036, 62, 27231, 13, 615, 70, 1635, 1802, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19203, 4593, 579, 3256, 705, 90, 25, 13, 19, 69, 92, 4458, 18982, 7, 4593, 579, 62, 27231, 13, 615, 70, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 8856, 262, 717, 9927, 12, 43501, 287, 2456, 12, 525, 12, 12227, 17952, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 266, 862, 62, 27231, 13, 42503, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 26498, 13, 21928, 62, 3849, 2100, 1875, 657, 290, 357, 72, 1343, 352, 8, 4064, 26498, 13, 21928, 62, 3849, 2100, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 21997, 13, 21928, 62, 9122, 4122, 7, 22046, 11, 36835, 11, 1312, 1343, 352, 8, 628, 220, 220, 220, 220, 220, 220, 220, 46996, 796, 1715, 1343, 705, 930, 4512, 2994, 46110, 17, 13, 17, 69, 92, 930, 4512, 279, 489, 46110, 18, 13, 17, 69, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 15853, 705, 930, 264, 14, 9122, 4122, 46110, 22, 67, 92, 930, 2456, 14, 82, 46110, 21, 67, 92, 930, 2456, 14, 43501, 46110, 21, 67, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 46996, 15853, 705, 930, 275, 82, 89, 46110, 20, 67, 92, 930, 300, 81, 46110, 15, 13, 21, 69, 92, 930, 10651, 46110, 18, 13, 15, 69, 92, 4, 930, 19967, 579, 46110, 13, 19, 69, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 256, 13, 13564, 7, 69, 16762, 13, 18982, 7, 22462, 62, 27231, 13, 615, 70, 11, 10688, 13, 79, 322, 7, 17, 11, 2994, 62, 27231, 13, 615, 70, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2835, 7, 86, 862, 62, 27231, 13, 417, 28361, 62, 2435, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2835, 7, 86, 862, 62, 27231, 13, 615, 70, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2835, 7, 24142, 65, 62, 27231, 13, 615, 70, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2835, 7, 1443, 89, 62, 27231, 13, 615, 70, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 81, 11, 10651, 62, 27231, 13, 615, 70, 1635, 1802, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19967, 579, 62, 27231, 13, 615, 70, 4008, 628, 198, 4299, 26571, 7, 22046, 11, 36835, 11, 21997, 11, 34054, 11, 27039, 11, 24637, 11, 23370, 79, 385, 2599, 198, 220, 220, 220, 37227, 36, 2100, 4985, 262, 2746, 319, 262, 21201, 900, 290, 1441, 262, 2811, 2994, 526, 15931, 628, 220, 220, 220, 340, 81, 796, 27039, 13, 67, 10254, 1170, 263, 7, 7266, 2617, 11, 15458, 62, 7857, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 83, 482, 641, 28, 22046, 13, 9806, 62, 83, 482, 641, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 62, 1930, 1756, 28, 22046, 13, 9806, 62, 1930, 1756, 8, 198, 220, 220, 220, 2994, 62, 27231, 796, 13475, 44, 2357, 3419, 628, 220, 220, 220, 1715, 796, 705, 91, 36835, 46110, 3070, 67, 92, 930, 4938, 319, 34373, 90, 32239, 6, 24637, 4458, 18982, 7, 538, 5374, 11, 24637, 8, 198, 220, 220, 220, 351, 4371, 62, 5657, 7, 270, 81, 11, 1715, 11, 2666, 28, 25101, 8, 355, 256, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4808, 11, 6291, 287, 1366, 13, 48267, 62, 8094, 62, 268, 6975, 1352, 7, 83, 11, 23370, 79, 385, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 83, 482, 641, 796, 2160, 7, 82, 17816, 429, 482, 641, 20520, 329, 264, 287, 6291, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 21997, 13, 12102, 62, 9662, 7, 39873, 11, 34054, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2994, 62, 27231, 13, 19119, 7, 22462, 11, 299, 83, 482, 641, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 256, 13, 2617, 62, 7353, 13049, 7, 22462, 11639, 90, 25, 13, 17, 69, 92, 4458, 18982, 7, 22462, 62, 27231, 13, 615, 70, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 1188, 62, 22462, 796, 2994, 62, 27231, 13, 615, 70, 198, 220, 220, 220, 220, 220, 220, 220, 256, 13, 13564, 7, 20147, 1343, 705, 930, 4938, 2994, 46110, 17, 13, 17, 69, 92, 930, 4938, 279, 489, 46110, 18, 13, 17, 69, 92, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 18982, 7, 2100, 62, 22462, 11, 10688, 13, 79, 322, 7, 17, 11, 1188, 62, 22462, 22305, 628, 220, 220, 220, 1303, 4296, 290, 1441, 262, 4673, 2494, 198, 220, 220, 220, 1441, 1188, 62, 22462, 628, 198, 4299, 4776, 62, 9288, 7, 22046, 11, 2746, 11, 27039, 11, 24637, 11, 15584, 11, 269, 15339, 62, 25202, 2599, 198, 220, 220, 220, 37227, 36, 2100, 4985, 262, 2746, 319, 262, 1332, 900, 290, 1441, 262, 347, 2538, 52, 30664, 526, 15931, 628, 220, 220, 220, 33417, 796, 45835, 8645, 1352, 26933, 19849, 4357, 27039, 13, 67, 301, 62, 11600, 11, 15584, 62, 7857, 28, 40045, 8, 198, 220, 220, 220, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 33417, 13, 66, 15339, 3419, 628, 220, 220, 220, 30664, 796, 7245, 84, 13, 3351, 11934, 7, 19608, 292, 316, 13, 67, 301, 62, 11600, 13, 15636, 22784, 27039, 13, 67, 301, 62, 11600, 13, 68, 418, 22784, 27039, 13, 67, 301, 62, 11600, 13, 2954, 28955, 198, 220, 220, 220, 340, 81, 796, 27039, 13, 67, 10254, 1170, 263, 7, 7266, 2617, 11, 15458, 62, 7857, 28, 19, 11, 3509, 62, 1930, 1756, 28, 22046, 13, 9806, 62, 1930, 1756, 8, 198, 220, 220, 220, 329, 4808, 11, 4808, 11, 1006, 11, 2537, 1930, 287, 33417, 13, 8612, 378, 62, 8664, 1740, 62, 270, 81, 7, 270, 81, 11, 269, 15339, 62, 25202, 28, 66, 15339, 62, 25202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 30664, 13, 2860, 7, 5420, 13, 600, 22446, 36166, 22784, 2537, 1930, 58, 15, 7131, 6, 83, 482, 641, 6, 4083, 600, 22446, 36166, 28955, 198, 220, 220, 220, 1441, 30664, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.104292
2,493
#!/usr/bin/env python """ This parses a log file series (i.e. log, log.1, log.2, etc..) and outputs timing and call frequency information for HAL messages. Hazen 5/18 """ from datetime import datetime import os pattern = '%Y-%m-%d %H:%M:%S,%f' def getIterable(dict_or_list): """ Returns an iterable given a dictionary of a list. """ if isinstance(dict_or_list, dict): iterable = list(dict_or_list.values()) elif isinstance(dict_or_list, list): iterable = dict_or_list else: raise Exception("Unknown type '" + str(type(dict_or_list)) + "'") return iterable def groupByMsgType(messages): """ Returns a dictionary keyed by message type, with a list of one or more message objects per message type. """ return groupByX(lambda x : x.getType(), messages) def groupBySource(messages): """ Returns a dictionary keyed by message source, with a list of one or more message objects per message source. """ return groupByX(lambda x : x.getSource(), messages) def groupByX(grp_fn, messages): """ Returns a dictionary keyed by the requested group. """ m_grp = {} for msg in getIterable(messages): # Ignore messages that we don't have all the timing for. if msg.isComplete() or not ignore_incomplete: m_type = grp_fn(msg) if m_type in m_grp: m_grp[m_type].append(msg) else: m_grp[m_type] = [msg] return m_grp def logTiming(basename, ignore_incomplete = False): """ Returns a dictionary of Message objects keyed by their ID number. """ zero_time = None messages = {} for ext in [".5", ".4", ".3", ".2", ".1", ""]: fname = basename + ".out" + ext if not os.path.exists(fname): print(fname, "not found.") continue with open(fname) as fp: for line in fp: try: [time, command] = map(lambda x: x.strip(), line.split(":hal4000:INFO:")) except ValueError: continue if zero_time is None: zero_time = time # Message queued. if (command.startswith("queued,")): [m_id, source, m_type] = command.split(",")[1:] messages[m_id] = Message(m_type = m_type, source = source, time = time, zero_time = zero_time) # Message sent. elif (command.startswith("sent,")): m_id = command.split(",")[1] messages[m_id].sent(time) # Message processed. elif (command.startswith("processed,")): m_id = command.split(",")[1] messages[m_id].processed(time) elif (command.startswith("worker done,")): m_id = command.split(",")[1] messages[m_id].incNWorkers() # Ignore messages that we don't have all the timing for. if not ignore_incomplete: temp = {} for m_id in messages: msg = messages[m_id] if msg.isComplete(): temp[m_id] = msg return temp else: return messages def processingTime(messages): """ Returns the total processing time for a collection of messages. """ accum_time = 0 for msg in getIterable(messages): if isinstance(msg, list): for elt in msg: accum_time += elt.getProcessingTime() else: accum_time += msg.getProcessingTime() return accum_time def queuedTime(messages): """ Returns the total queued time for a a collection of messages. """ accum_time = 0 for msg in getIterable(messages): if isinstance(msg, list): for elt in msg: accum_time += elt.getQueuedTime() else: accum_time += msg.getQueuedTime() return accum_time if (__name__ == "__main__"): import sys if (len(sys.argv) != 2): print("usage: <log file>") exit() messages = logTiming(sys.argv[1]) groups = groupByMsgType(messages) print() print("All messages:") for key in sorted(groups): grp = groups[key] print(key + ", {0:0d} counts, {1:.3f} seconds".format(len(grp), processingTime(grp))) print("Total queued time {0:.3f} seconds".format(queuedTime(groups))) print("Total processing time {0:.3f} seconds".format(processingTime(groups))) print() print("Film messages:") groups = groupByMsgType(groupBySource(messages)["film"]) for key in sorted(groups): grp = groups[key] print(key + ", {0:0d} counts, {1:.3f} seconds".format(len(grp), processingTime(grp))) print("Total processing time {0:.3f} seconds".format(processingTime(groups)))
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 37811, 198, 1212, 13544, 274, 257, 2604, 2393, 2168, 357, 72, 13, 68, 13, 2604, 11, 2604, 13, 16, 11, 2604, 13, 17, 11, 3503, 492, 8, 290, 198, 22915, 82, 10576, 290, 869, 8373, 1321, 329, 42968, 6218, 13, 198, 198, 39, 1031, 268, 642, 14, 1507, 198, 37811, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 11748, 28686, 628, 198, 33279, 796, 705, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 11, 4, 69, 6, 628, 198, 198, 4299, 651, 29993, 540, 7, 11600, 62, 273, 62, 4868, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 281, 11629, 540, 1813, 257, 22155, 286, 257, 1351, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 11600, 62, 273, 62, 4868, 11, 8633, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11629, 540, 796, 1351, 7, 11600, 62, 273, 62, 4868, 13, 27160, 28955, 198, 220, 220, 220, 1288, 361, 318, 39098, 7, 11600, 62, 273, 62, 4868, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 11629, 540, 796, 8633, 62, 273, 62, 4868, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 35528, 7203, 20035, 2099, 705, 1, 1343, 965, 7, 4906, 7, 11600, 62, 273, 62, 4868, 4008, 1343, 24018, 4943, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 11629, 540, 628, 198, 4299, 1448, 3886, 50108, 6030, 7, 37348, 1095, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 22155, 1994, 276, 416, 3275, 2099, 11, 351, 257, 1351, 286, 530, 393, 198, 220, 220, 220, 517, 3275, 5563, 583, 3275, 2099, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 1448, 3886, 55, 7, 50033, 2124, 1058, 2124, 13, 1136, 6030, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6218, 8, 628, 198, 4299, 1448, 3886, 7416, 7, 37348, 1095, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 22155, 1994, 276, 416, 3275, 2723, 11, 351, 257, 1351, 286, 530, 393, 198, 220, 220, 220, 517, 3275, 5563, 583, 3275, 2723, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 1448, 3886, 55, 7, 50033, 2124, 1058, 2124, 13, 1136, 7416, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6218, 8, 628, 198, 4299, 1448, 3886, 55, 7, 2164, 79, 62, 22184, 11, 6218, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 22155, 1994, 276, 416, 262, 9167, 1448, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 285, 62, 2164, 79, 796, 23884, 198, 220, 220, 220, 220, 198, 220, 220, 220, 329, 31456, 287, 651, 29993, 540, 7, 37348, 1095, 2599, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 41032, 6218, 326, 356, 836, 470, 423, 477, 262, 10576, 329, 13, 198, 220, 220, 220, 220, 220, 220, 220, 611, 31456, 13, 271, 20988, 3419, 393, 407, 8856, 62, 259, 20751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 4906, 796, 1036, 79, 62, 22184, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 285, 62, 4906, 287, 285, 62, 2164, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 2164, 79, 58, 76, 62, 4906, 4083, 33295, 7, 19662, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 2164, 79, 58, 76, 62, 4906, 60, 796, 685, 19662, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 285, 62, 2164, 79, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 198, 4299, 2604, 14967, 278, 7, 12093, 12453, 11, 8856, 62, 259, 20751, 796, 10352, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 257, 22155, 286, 16000, 5563, 1994, 276, 416, 511, 4522, 1271, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6632, 62, 2435, 796, 6045, 198, 220, 220, 220, 6218, 796, 23884, 628, 220, 220, 220, 329, 1070, 287, 685, 1911, 20, 1600, 27071, 19, 1600, 27071, 18, 1600, 27071, 17, 1600, 27071, 16, 1600, 13538, 5974, 628, 220, 220, 220, 220, 220, 220, 220, 277, 3672, 796, 1615, 12453, 1343, 27071, 448, 1, 1343, 1070, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 69, 3672, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 69, 3672, 11, 366, 1662, 1043, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 69, 3672, 8, 355, 277, 79, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1627, 287, 277, 79, 25, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 2435, 11, 3141, 60, 796, 3975, 7, 50033, 2124, 25, 2124, 13, 36311, 22784, 1627, 13, 35312, 7, 1298, 14201, 27559, 25, 10778, 11097, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2845, 11052, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6632, 62, 2435, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6632, 62, 2435, 796, 640, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16000, 8358, 1739, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 357, 21812, 13, 9688, 2032, 342, 7203, 4188, 1739, 553, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 685, 76, 62, 312, 11, 2723, 11, 285, 62, 4906, 60, 796, 3141, 13, 35312, 7, 2430, 38381, 16, 47715, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6218, 58, 76, 62, 312, 60, 796, 16000, 7, 76, 62, 4906, 796, 285, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 796, 2723, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 796, 640, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6632, 62, 2435, 796, 6632, 62, 2435, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16000, 1908, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 357, 21812, 13, 9688, 2032, 342, 7203, 34086, 553, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 312, 796, 3141, 13, 35312, 7, 2430, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6218, 58, 76, 62, 312, 4083, 34086, 7, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 16000, 13686, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 357, 21812, 13, 9688, 2032, 342, 7203, 14681, 276, 553, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 312, 796, 3141, 13, 35312, 7, 2430, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6218, 58, 76, 62, 312, 4083, 14681, 276, 7, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 357, 21812, 13, 9688, 2032, 342, 7203, 28816, 1760, 553, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 285, 62, 312, 796, 3141, 13, 35312, 7, 2430, 38381, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6218, 58, 76, 62, 312, 4083, 1939, 45, 12468, 364, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 41032, 6218, 326, 356, 836, 470, 423, 477, 262, 10576, 329, 13, 198, 220, 220, 220, 611, 407, 8856, 62, 259, 20751, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 329, 285, 62, 312, 287, 6218, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 31456, 796, 6218, 58, 76, 62, 312, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 31456, 13, 271, 20988, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 58, 76, 62, 312, 60, 796, 31456, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 20218, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6218, 628, 198, 4299, 7587, 7575, 7, 37348, 1095, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 2472, 7587, 640, 329, 257, 4947, 286, 6218, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10507, 62, 2435, 796, 657, 198, 220, 220, 220, 329, 31456, 287, 651, 29993, 540, 7, 37348, 1095, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 19662, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1288, 83, 287, 31456, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10507, 62, 2435, 15853, 1288, 83, 13, 1136, 18709, 278, 7575, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10507, 62, 2435, 15853, 31456, 13, 1136, 18709, 278, 7575, 3419, 198, 220, 220, 220, 1441, 10507, 62, 2435, 628, 198, 4299, 8358, 1739, 7575, 7, 37348, 1095, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 16409, 262, 2472, 8358, 1739, 640, 329, 257, 257, 4947, 286, 6218, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10507, 62, 2435, 796, 657, 198, 220, 220, 220, 329, 31456, 287, 651, 29993, 540, 7, 37348, 1095, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 318, 39098, 7, 19662, 11, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1288, 83, 287, 31456, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10507, 62, 2435, 15853, 1288, 83, 13, 1136, 15681, 1739, 7575, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10507, 62, 2435, 15853, 31456, 13, 1136, 15681, 1739, 7575, 3419, 198, 220, 220, 220, 1441, 10507, 62, 2435, 628, 198, 361, 357, 834, 3672, 834, 6624, 366, 834, 12417, 834, 1, 2599, 628, 220, 220, 220, 1330, 25064, 198, 220, 220, 220, 220, 198, 220, 220, 220, 611, 357, 11925, 7, 17597, 13, 853, 85, 8, 14512, 362, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 26060, 25, 1279, 6404, 2393, 29, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 3419, 628, 220, 220, 220, 6218, 796, 2604, 14967, 278, 7, 17597, 13, 853, 85, 58, 16, 12962, 198, 220, 220, 220, 2628, 796, 1448, 3886, 50108, 6030, 7, 37348, 1095, 8, 628, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 3601, 7203, 3237, 6218, 25, 4943, 198, 220, 220, 220, 329, 1994, 287, 23243, 7, 24432, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1036, 79, 796, 2628, 58, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2539, 1343, 33172, 1391, 15, 25, 15, 67, 92, 9853, 11, 1391, 16, 25, 13, 18, 69, 92, 4201, 1911, 18982, 7, 11925, 7, 2164, 79, 828, 7587, 7575, 7, 2164, 79, 22305, 198, 220, 220, 220, 3601, 7203, 14957, 8358, 1739, 640, 1391, 15, 25, 13, 18, 69, 92, 4201, 1911, 18982, 7, 4188, 1739, 7575, 7, 24432, 22305, 198, 220, 220, 220, 3601, 7203, 14957, 7587, 640, 1391, 15, 25, 13, 18, 69, 92, 4201, 1911, 18982, 7, 36948, 7575, 7, 24432, 22305, 628, 220, 220, 220, 3601, 3419, 198, 220, 220, 220, 3601, 7203, 39750, 6218, 25, 4943, 198, 220, 220, 220, 2628, 796, 1448, 3886, 50108, 6030, 7, 8094, 3886, 7416, 7, 37348, 1095, 8, 14692, 26240, 8973, 8, 198, 220, 220, 220, 329, 1994, 287, 23243, 7, 24432, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1036, 79, 796, 2628, 58, 2539, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2539, 1343, 33172, 1391, 15, 25, 15, 67, 92, 9853, 11, 1391, 16, 25, 13, 18, 69, 92, 4201, 1911, 18982, 7, 11925, 7, 2164, 79, 828, 7587, 7575, 7, 2164, 79, 22305, 198, 220, 220, 220, 3601, 7203, 14957, 7587, 640, 1391, 15, 25, 13, 18, 69, 92, 4201, 1911, 18982, 7, 36948, 7575, 7, 24432, 22305, 628, 628 ]
2.05309
2,524
from django.core.management.base import BaseCommand from django.utils import termcolors from jsonschema import Draft4Validator from jsonschema.exceptions import SchemaError import json
[ 6738, 42625, 14208, 13, 7295, 13, 27604, 13, 8692, 1330, 7308, 21575, 198, 6738, 42625, 14208, 13, 26791, 1330, 3381, 4033, 669, 198, 6738, 44804, 684, 2395, 2611, 1330, 13650, 19, 47139, 1352, 198, 6738, 44804, 684, 2395, 2611, 13, 1069, 11755, 1330, 10011, 2611, 12331, 198, 11748, 33918, 628 ]
3.72
50
import cv2, time import numpy as np import Tkinter """ Wraps up some interfaces to opencv user interface methods (displaying image frames, event handling, etc). If desired, an alternative UI could be built and imported into get_pulse.py instead. Opencv is used to perform much of the data analysis, but there is no reason it has to be used to handle the UI as well. It just happens to be very effective for our purposes. """ """ The rest of this file defines some GUI plotting functionality. There are plenty of other ways to do simple x-y data plots in python, but this application uses cv2.imshow to do real-time data plotting and handle user interaction. This is entirely independent of the data calculation functions, so it can be replaced in the get_pulse.py application easily. """ def combine(left, right): """Stack images horizontally. """ h = max(left.shape[0], right.shape[0]) w = left.shape[1] + right.shape[1] hoff = left.shape[0] shape = list(left.shape) shape[0] = h shape[1] = w comb = np.zeros(tuple(shape),left.dtype) # left will be on left, aligned top, with right on right comb[:left.shape[0],:left.shape[1]] = left comb[:right.shape[0],left.shape[1]:] = right return comb
[ 11748, 269, 85, 17, 11, 640, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 309, 74, 3849, 198, 198, 37811, 198, 36918, 862, 510, 617, 20314, 284, 1280, 33967, 2836, 7071, 5050, 357, 13812, 278, 198, 9060, 13431, 11, 1785, 9041, 11, 3503, 737, 198, 198, 1532, 10348, 11, 281, 5559, 12454, 714, 307, 3170, 290, 17392, 656, 651, 62, 79, 9615, 13, 9078, 220, 198, 38070, 13, 4946, 33967, 318, 973, 284, 1620, 881, 286, 262, 1366, 3781, 11, 475, 612, 318, 645, 198, 41181, 340, 468, 284, 307, 973, 284, 5412, 262, 12454, 355, 880, 13, 632, 655, 4325, 284, 307, 845, 198, 16803, 329, 674, 4959, 13, 198, 37811, 628, 198, 37811, 198, 464, 1334, 286, 428, 2393, 15738, 617, 25757, 29353, 11244, 13, 1318, 389, 6088, 198, 1659, 584, 2842, 284, 466, 2829, 2124, 12, 88, 1366, 21528, 287, 21015, 11, 475, 428, 3586, 3544, 220, 198, 33967, 17, 13, 320, 12860, 284, 466, 1103, 12, 2435, 1366, 29353, 290, 5412, 2836, 10375, 13, 198, 198, 1212, 318, 5000, 4795, 286, 262, 1366, 17952, 5499, 11, 523, 340, 460, 307, 220, 198, 260, 21820, 287, 262, 651, 62, 79, 9615, 13, 9078, 3586, 3538, 13, 198, 37811, 628, 198, 4299, 12082, 7, 9464, 11, 826, 2599, 198, 220, 220, 220, 37227, 25896, 4263, 36774, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 289, 796, 3509, 7, 9464, 13, 43358, 58, 15, 4357, 826, 13, 43358, 58, 15, 12962, 198, 220, 220, 220, 266, 796, 1364, 13, 43358, 58, 16, 60, 1343, 826, 13, 43358, 58, 16, 60, 198, 220, 220, 220, 289, 2364, 796, 1364, 13, 43358, 58, 15, 60, 198, 220, 220, 220, 220, 198, 220, 220, 220, 5485, 796, 1351, 7, 9464, 13, 43358, 8, 198, 220, 220, 220, 5485, 58, 15, 60, 796, 289, 198, 220, 220, 220, 5485, 58, 16, 60, 796, 266, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1974, 796, 45941, 13, 9107, 418, 7, 83, 29291, 7, 43358, 828, 9464, 13, 67, 4906, 8, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1303, 1364, 481, 307, 319, 1364, 11, 19874, 1353, 11, 351, 826, 319, 826, 198, 220, 220, 220, 1974, 58, 25, 9464, 13, 43358, 58, 15, 4357, 25, 9464, 13, 43358, 58, 16, 11907, 796, 1364, 198, 220, 220, 220, 1974, 58, 25, 3506, 13, 43358, 58, 15, 4357, 9464, 13, 43358, 58, 16, 5974, 60, 796, 826, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 1974, 220, 220, 220, 198 ]
3.033254
421
# -*- coding: utf-8 -*- # Natural Language Toolkit: Transformation-based learning # # Copyright (C) 2001-2018 NLTK Project # Author: Marcus Uneson <marcus.uneson@gmail.com> # based on previous (nltk2) version by # Christopher Maloof, Edward Loper, Steven Bird # URL: <http://nltk.org/> # For license information, see LICENSE.TXT from __future__ import print_function, division from collections import defaultdict, Counter from nltk.tag import TaggerI from nltk.tbl import Feature, Template from nltk import jsontags ###################################################################### # Brill Templates ###################################################################### def nltkdemo18(): """ Return 18 templates, from the original nltk demo, in multi-feature syntax """ return [ Template(Pos([-1])), Template(Pos([1])), Template(Pos([-2])), Template(Pos([2])), Template(Pos([-2, -1])), Template(Pos([1, 2])), Template(Pos([-3, -2, -1])), Template(Pos([1, 2, 3])), Template(Pos([-1]), Pos([1])), Template(Word([-1])), Template(Word([1])), Template(Word([-2])), Template(Word([2])), Template(Word([-2, -1])), Template(Word([1, 2])), Template(Word([-3, -2, -1])), Template(Word([1, 2, 3])), Template(Word([-1]), Word([1])), ] def nltkdemo18plus(): """ Return 18 templates, from the original nltk demo, and additionally a few multi-feature ones (the motivation is easy comparison with nltkdemo18) """ return nltkdemo18() + [ Template(Word([-1]), Pos([1])), Template(Pos([-1]), Word([1])), Template(Word([-1]), Word([0]), Pos([1])), Template(Pos([-1]), Word([0]), Word([1])), Template(Pos([-1]), Word([0]), Pos([1])), ] def fntbl37(): """ Return 37 templates taken from the postagging task of the fntbl distribution http://www.cs.jhu.edu/~rflorian/fntbl/ (37 is after excluding a handful which do not condition on Pos[0]; fntbl can do that but the current nltk implementation cannot.) """ return [ Template(Word([0]), Word([1]), Word([2])), Template(Word([-1]), Word([0]), Word([1])), Template(Word([0]), Word([-1])), Template(Word([0]), Word([1])), Template(Word([0]), Word([2])), Template(Word([0]), Word([-2])), Template(Word([1, 2])), Template(Word([-2, -1])), Template(Word([1, 2, 3])), Template(Word([-3, -2, -1])), Template(Word([0]), Pos([2])), Template(Word([0]), Pos([-2])), Template(Word([0]), Pos([1])), Template(Word([0]), Pos([-1])), Template(Word([0])), Template(Word([-2])), Template(Word([2])), Template(Word([1])), Template(Word([-1])), Template(Pos([-1]), Pos([1])), Template(Pos([1]), Pos([2])), Template(Pos([-1]), Pos([-2])), Template(Pos([1])), Template(Pos([-1])), Template(Pos([-2])), Template(Pos([2])), Template(Pos([1, 2, 3])), Template(Pos([1, 2])), Template(Pos([-3, -2, -1])), Template(Pos([-2, -1])), Template(Pos([1]), Word([0]), Word([1])), Template(Pos([1]), Word([0]), Word([-1])), Template(Pos([-1]), Word([-1]), Word([0])), Template(Pos([-1]), Word([0]), Word([1])), Template(Pos([-2]), Pos([-1])), Template(Pos([1]), Pos([2])), Template(Pos([1]), Pos([2]), Word([1])) ] def brill24(): """ Return 24 templates of the seminal TBL paper, Brill (1995) """ return [ Template(Pos([-1])), Template(Pos([1])), Template(Pos([-2])), Template(Pos([2])), Template(Pos([-2, -1])), Template(Pos([1, 2])), Template(Pos([-3, -2, -1])), Template(Pos([1, 2, 3])), Template(Pos([-1]), Pos([1])), Template(Pos([-2]), Pos([-1])), Template(Pos([1]), Pos([2])), Template(Word([-1])), Template(Word([1])), Template(Word([-2])), Template(Word([2])), Template(Word([-2, -1])), Template(Word([1, 2])), Template(Word([-1, 0])), Template(Word([0, 1])), Template(Word([0])), Template(Word([-1]), Pos([-1])), Template(Word([1]), Pos([1])), Template(Word([0]), Word([-1]), Pos([-1])), Template(Word([0]), Word([1]), Pos([1])), ] def describe_template_sets(): """ Print the available template sets in this demo, with a short description" """ import inspect import sys # a bit of magic to get all functions in this module templatesets = inspect.getmembers(sys.modules[__name__], inspect.isfunction) for (name, obj) in templatesets: if name == "describe_template_sets": continue print(name, obj.__doc__, "\n") ###################################################################### # The Brill Tagger ######################################################################
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 12068, 15417, 16984, 15813, 25, 49127, 12, 3106, 4673, 198, 2, 198, 2, 15069, 357, 34, 8, 5878, 12, 7908, 22879, 51, 42, 4935, 198, 2, 6434, 25, 17068, 791, 42038, 1279, 3876, 9042, 13, 4015, 261, 31, 14816, 13, 785, 29, 198, 2, 220, 220, 1912, 319, 2180, 357, 77, 2528, 74, 17, 8, 2196, 416, 198, 2, 220, 220, 12803, 4434, 37711, 11, 10443, 406, 3575, 11, 8239, 14506, 198, 2, 10289, 25, 1279, 4023, 1378, 77, 2528, 74, 13, 2398, 15913, 198, 2, 1114, 5964, 1321, 11, 766, 220, 38559, 24290, 13, 51, 25010, 198, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 11, 7297, 198, 198, 6738, 17268, 1330, 4277, 11600, 11, 15034, 198, 198, 6738, 299, 2528, 74, 13, 12985, 1330, 309, 7928, 40, 198, 6738, 299, 2528, 74, 13, 83, 2436, 1330, 27018, 11, 37350, 198, 6738, 299, 2528, 74, 1330, 44804, 756, 3775, 628, 198, 29113, 29113, 4242, 2235, 198, 2, 33335, 5825, 17041, 198, 29113, 29113, 4242, 2235, 628, 198, 198, 4299, 299, 2528, 74, 9536, 78, 1507, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 1248, 24019, 11, 422, 262, 2656, 299, 2528, 74, 13605, 11, 287, 5021, 12, 30053, 15582, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 685, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 17, 11, 532, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 11, 362, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 18, 11, 532, 17, 11, 532, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 11, 362, 11, 513, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 16, 46570, 18574, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 17, 11, 532, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 16, 11, 362, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 18, 11, 532, 17, 11, 532, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 16, 11, 362, 11, 513, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 16, 46570, 9678, 26933, 16, 12962, 828, 198, 220, 220, 220, 2361, 628, 198, 4299, 299, 2528, 74, 9536, 78, 1507, 9541, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 1248, 24019, 11, 422, 262, 2656, 299, 2528, 74, 13605, 11, 290, 36527, 257, 1178, 198, 220, 220, 220, 5021, 12, 30053, 3392, 357, 1169, 14052, 318, 2562, 7208, 351, 299, 2528, 74, 9536, 78, 1507, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 299, 2528, 74, 9536, 78, 1507, 3419, 1343, 685, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 16, 46570, 18574, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 16, 46570, 9678, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 16, 46570, 9678, 26933, 15, 46570, 18574, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 16, 46570, 9678, 26933, 15, 46570, 9678, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 16, 46570, 9678, 26933, 15, 46570, 18574, 26933, 16, 12962, 828, 198, 220, 220, 220, 2361, 628, 198, 4299, 277, 429, 2436, 2718, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 5214, 24019, 2077, 422, 262, 1281, 16406, 4876, 286, 262, 198, 220, 220, 220, 277, 429, 2436, 6082, 2638, 1378, 2503, 13, 6359, 13, 73, 13415, 13, 15532, 14, 93, 81, 2704, 22618, 14, 69, 429, 2436, 14, 198, 220, 220, 220, 357, 2718, 318, 706, 23494, 257, 10089, 543, 466, 407, 4006, 319, 18574, 58, 15, 11208, 198, 220, 220, 220, 277, 429, 2436, 460, 466, 326, 475, 262, 1459, 299, 2528, 74, 7822, 2314, 2014, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 685, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 46570, 9678, 26933, 16, 46570, 9678, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 16, 46570, 9678, 26933, 15, 46570, 9678, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 46570, 9678, 26933, 12, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 46570, 9678, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 46570, 9678, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 46570, 9678, 26933, 12, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 16, 11, 362, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 17, 11, 532, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 16, 11, 362, 11, 513, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 18, 11, 532, 17, 11, 532, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 46570, 18574, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 46570, 18574, 26933, 12, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 46570, 18574, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 46570, 18574, 26933, 12, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 16, 46570, 18574, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 46570, 18574, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 16, 46570, 18574, 26933, 12, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 11, 362, 11, 513, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 11, 362, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 18, 11, 532, 17, 11, 532, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 17, 11, 532, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 46570, 9678, 26933, 15, 46570, 9678, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 46570, 9678, 26933, 15, 46570, 9678, 26933, 12, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 16, 46570, 9678, 26933, 12, 16, 46570, 9678, 26933, 15, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 16, 46570, 9678, 26933, 15, 46570, 9678, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 17, 46570, 18574, 26933, 12, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 46570, 18574, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 46570, 18574, 26933, 17, 46570, 9678, 26933, 16, 60, 4008, 198, 220, 220, 220, 2361, 628, 198, 4299, 9547, 1731, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 8229, 1987, 24019, 286, 262, 38915, 309, 9148, 3348, 11, 33335, 357, 21908, 8, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 685, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 17, 11, 532, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 11, 362, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 18, 11, 532, 17, 11, 532, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 11, 362, 11, 513, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 16, 46570, 18574, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 12, 17, 46570, 18574, 26933, 12, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 21604, 26933, 16, 46570, 18574, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 17, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 17, 11, 532, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 16, 11, 362, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 16, 11, 657, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 11, 352, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 12, 16, 46570, 18574, 26933, 12, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 16, 46570, 18574, 26933, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 46570, 9678, 26933, 12, 16, 46570, 18574, 26933, 12, 16, 12962, 828, 198, 220, 220, 220, 220, 220, 220, 220, 37350, 7, 26449, 26933, 15, 46570, 9678, 26933, 16, 46570, 18574, 26933, 16, 12962, 828, 198, 220, 220, 220, 2361, 628, 198, 4299, 6901, 62, 28243, 62, 28709, 33529, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12578, 262, 1695, 11055, 5621, 287, 428, 13605, 11, 351, 257, 1790, 6764, 1, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1330, 10104, 198, 220, 220, 220, 1330, 25064, 628, 220, 220, 220, 1303, 257, 1643, 286, 5536, 284, 651, 477, 5499, 287, 428, 8265, 198, 220, 220, 220, 24019, 1039, 796, 10104, 13, 1136, 30814, 7, 17597, 13, 18170, 58, 834, 3672, 834, 4357, 10104, 13, 4468, 4575, 8, 198, 220, 220, 220, 329, 357, 3672, 11, 26181, 8, 287, 24019, 1039, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1438, 6624, 366, 20147, 4892, 62, 28243, 62, 28709, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 3672, 11, 26181, 13, 834, 15390, 834, 11, 37082, 77, 4943, 628, 198, 29113, 29113, 4242, 2235, 198, 2, 383, 33335, 309, 7928, 198, 29113, 29113, 4242, 2235, 198 ]
2.301616
2,228
import json import logging import sys import numpy as np import torch from task_config import SuperGLUE_LABEL_MAPPING from snorkel.mtl.data import MultitaskDataset sys.path.append("..") # Adds higher directory to python modules path. logger = logging.getLogger(__name__) TASK_NAME = "WSC"
[ 11748, 33918, 198, 11748, 18931, 198, 11748, 25064, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 6738, 4876, 62, 11250, 1330, 3115, 8763, 8924, 62, 48780, 3698, 62, 44, 24805, 2751, 198, 198, 6738, 3013, 273, 7750, 13, 16762, 75, 13, 7890, 1330, 7854, 270, 2093, 27354, 292, 316, 198, 198, 17597, 13, 6978, 13, 33295, 7203, 492, 4943, 220, 1303, 34333, 2440, 8619, 284, 21015, 13103, 3108, 13, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 198, 51, 1921, 42, 62, 20608, 796, 366, 54, 6173, 1, 628, 198 ]
2.950495
101
import re import json __all__ = ["Simplimental"]
[ 11748, 302, 198, 11748, 33918, 198, 198, 834, 439, 834, 796, 14631, 8890, 489, 9134, 8973, 198 ]
2.941176
17
# This example shows how to read or modify the Axes Optimization settings using the RoboDK API and a JSON string. # You can select "Axes optimization" in a robot machining menu or the robot parameters to view the axes optimization settings. # It is possible to update the axes optimization settings attached to a robot or a robot machining project manually or using the API. # # More information about the RoboDK API here: # https://robodk.com/doc/en/RoboDK-API.html # For more information visit: # https://robodk.com/doc/en/PythonAPI/robolink.html from robolink import * # RoboDK API # JSON tools import json # Start the RoboDK API RDK = Robolink() # Ask the user to select a robot arm (6 axis robot wich can have external axes) robot = RDK.ItemUserPick("Select a robot arm",ITEM_TYPE_ROBOT_ARM) # Default optimization settings test template AxesOptimSettings = { # Optimization parameters: "Active": 1, # Use generic axes optimization: 0=Disabled or 1=Enabled "Algorithm": 2, # Optimization algorithm to use: 1=Nelder Mead, 2=Samples, 3=Samples+Nelder Mead "MaxIter": 650, # Max. number of iterations "Tol": 0.0016, # Tolerance to stop iterations # Absolute Reference joints (double): "AbsJnt_1": 104.17, "AbsJnt_2": 11.22, "AbsJnt_3": 15.97, "AbsJnt_4": -87.48, "AbsJnt_5": -75.36, "AbsJnt_6": 63.03, "AbsJnt_7": 174.13, "AbsJnt_8": 173.60, "AbsJnt_9": 0, # Using Absolute reference joints (0: No, 1: Yes): "AbsOn_1": 1, "AbsOn_2": 1, "AbsOn_3": 1, "AbsOn_4": 1, "AbsOn_5": 1, "AbsOn_6": 1, "AbsOn_7": 1, "AbsOn_8": 1, "AbsOn_9": 1, # Weight for absolute reference joints (double): "AbsW_1": 100, "AbsW_2": 100, "AbsW_3": 100, "AbsW_4": 89, "AbsW_5": 90, "AbsW_6": 92, "AbsW_7": 92, "AbsW_8": 96, "AbsW_9": 50, # Using for relative joint motion smoothing (0: No, 1: Yes): "RelOn_1": 1, "RelOn_2": 1, "RelOn_3": 1, "RelOn_4": 1, "RelOn_5": 1, "RelOn_6": 1, "RelOn_7": 1, "RelOn_8": 1, "RelOn_9": 1, # Weight for relative joint motion (double): "RelW_1": 5, "RelW_2": 47, "RelW_3": 44, "RelW_4": 43, "RelW_5": 36, "RelW_6": 47, "RelW_7": 53, "RelW_8": 59, "RelW_9": 0, } # Update one value, for example, make it active: ToUpdate = {} ToUpdate["Active"] = 1 json_str = json.dumps(json.dumps(ToUpdate)) status = robot.setParam("OptimAxes", json_str) print(status) # Example to make a partial or full update count = 1 while True: for i in range(7): # Partial update ToUpdate = {} ToUpdate["AbsJnt_" + str(i+1)] = (count+i)*4 ToUpdate["AbsOn_" + str(i+1)] = count % 2 ToUpdate["AbsW_" + str(i+1)] = (count+i) json_str = json.dumps(json.dumps(ToUpdate)) status = robot.setParam("OptimAxes", json_str) print(status) # Full update #OptimAxes_TEST["RefJoint_" + str(i+1)] = (count+i)*4 #OptimAxes_TEST["RefWeight_" + str(i+1)] = (count+i) #OptimAxes_TEST["RefOn_" + str(i+1)] = count % 2 # Full update #print(robot.setParam("OptimAxes", str(AxesOptimSettings))) count = count + 1 # Read settings json_data = robot.setParam("OptimAxes") json_object = json.loads(json_data) print(json.dumps(json_object, indent=4)) pause(0.2) # Example to read the current axes optimization settings: while True: json_data = robot.setParam("OptimAxes") json_object = json.loads(json_data) print(json.dumps(json_object, indent=4)) pause(0.2)
[ 2, 770, 1672, 2523, 703, 284, 1100, 393, 13096, 262, 12176, 274, 30011, 1634, 6460, 1262, 262, 39702, 48510, 7824, 290, 257, 19449, 4731, 13, 198, 2, 921, 460, 2922, 366, 31554, 274, 23989, 1, 287, 257, 9379, 3235, 3191, 6859, 393, 262, 9379, 10007, 284, 1570, 262, 34197, 23989, 6460, 13, 198, 2, 632, 318, 1744, 284, 4296, 262, 34197, 23989, 6460, 7223, 284, 257, 9379, 393, 257, 9379, 3235, 3191, 1628, 14500, 393, 1262, 262, 7824, 13, 198, 2, 198, 2, 3125, 1321, 546, 262, 39702, 48510, 7824, 994, 25, 198, 2, 3740, 1378, 22609, 375, 74, 13, 785, 14, 15390, 14, 268, 14, 14350, 78, 48510, 12, 17614, 13, 6494, 198, 2, 1114, 517, 1321, 3187, 25, 198, 2, 3740, 1378, 22609, 375, 74, 13, 785, 14, 15390, 14, 268, 14, 37906, 17614, 14, 22609, 349, 676, 13, 6494, 198, 198, 6738, 3857, 349, 676, 1330, 1635, 220, 220, 220, 1303, 39702, 48510, 7824, 198, 198, 2, 19449, 4899, 198, 11748, 33918, 198, 198, 2, 7253, 262, 39702, 48510, 7824, 198, 35257, 42, 796, 3851, 349, 676, 3419, 198, 198, 2, 16981, 262, 2836, 284, 2922, 257, 9379, 3211, 357, 21, 16488, 9379, 266, 488, 460, 423, 7097, 34197, 8, 198, 305, 13645, 796, 31475, 42, 13, 7449, 12982, 31686, 7203, 17563, 257, 9379, 3211, 1600, 2043, 3620, 62, 25216, 62, 49, 9864, 2394, 62, 33456, 8, 198, 198, 2, 15161, 23989, 6460, 1332, 11055, 198, 31554, 274, 27871, 320, 26232, 796, 1391, 198, 220, 220, 220, 1303, 30011, 1634, 10007, 25, 198, 220, 220, 220, 366, 13739, 1298, 352, 11, 1303, 5765, 14276, 34197, 23989, 25, 657, 28, 7279, 4510, 393, 352, 28, 20491, 198, 220, 220, 220, 366, 2348, 42289, 1298, 362, 11, 1303, 30011, 1634, 11862, 284, 779, 25, 352, 28, 8199, 6499, 21910, 11, 362, 28, 50, 12629, 11, 513, 28, 50, 12629, 10, 8199, 6499, 21910, 198, 220, 220, 220, 366, 11518, 29993, 1298, 22626, 11, 1303, 5436, 13, 1271, 286, 34820, 198, 220, 220, 220, 366, 51, 349, 1298, 657, 13, 405, 1433, 11, 1303, 309, 37668, 284, 2245, 34820, 628, 220, 220, 220, 1303, 36532, 20984, 24039, 357, 23352, 2599, 198, 220, 220, 220, 366, 24849, 41, 429, 62, 16, 1298, 14436, 13, 1558, 11, 198, 220, 220, 220, 366, 24849, 41, 429, 62, 17, 1298, 1367, 13, 1828, 11, 198, 220, 220, 220, 366, 24849, 41, 429, 62, 18, 1298, 1315, 13, 5607, 11, 198, 220, 220, 220, 366, 24849, 41, 429, 62, 19, 1298, 532, 5774, 13, 2780, 11, 198, 220, 220, 220, 366, 24849, 41, 429, 62, 20, 1298, 532, 2425, 13, 2623, 11, 198, 220, 220, 220, 366, 24849, 41, 429, 62, 21, 1298, 8093, 13, 3070, 11, 198, 220, 220, 220, 366, 24849, 41, 429, 62, 22, 1298, 27621, 13, 1485, 11, 198, 220, 220, 220, 366, 24849, 41, 429, 62, 23, 1298, 28174, 13, 1899, 11, 198, 220, 220, 220, 366, 24849, 41, 429, 62, 24, 1298, 657, 11, 628, 220, 220, 220, 1303, 8554, 36532, 4941, 24039, 357, 15, 25, 1400, 11, 352, 25, 3363, 2599, 198, 220, 220, 220, 366, 24849, 2202, 62, 16, 1298, 352, 11, 220, 198, 220, 220, 220, 366, 24849, 2202, 62, 17, 1298, 352, 11, 198, 220, 220, 220, 366, 24849, 2202, 62, 18, 1298, 352, 11, 198, 220, 220, 220, 366, 24849, 2202, 62, 19, 1298, 352, 11, 198, 220, 220, 220, 366, 24849, 2202, 62, 20, 1298, 352, 11, 198, 220, 220, 220, 366, 24849, 2202, 62, 21, 1298, 352, 11, 198, 220, 220, 220, 366, 24849, 2202, 62, 22, 1298, 352, 11, 198, 220, 220, 220, 366, 24849, 2202, 62, 23, 1298, 352, 11, 198, 220, 220, 220, 366, 24849, 2202, 62, 24, 1298, 352, 11, 628, 220, 220, 220, 1303, 14331, 329, 4112, 4941, 24039, 357, 23352, 2599, 198, 220, 220, 220, 366, 24849, 54, 62, 16, 1298, 1802, 11, 198, 220, 220, 220, 366, 24849, 54, 62, 17, 1298, 1802, 11, 198, 220, 220, 220, 366, 24849, 54, 62, 18, 1298, 1802, 11, 198, 220, 220, 220, 366, 24849, 54, 62, 19, 1298, 9919, 11, 198, 220, 220, 220, 366, 24849, 54, 62, 20, 1298, 4101, 11, 198, 220, 220, 220, 366, 24849, 54, 62, 21, 1298, 10190, 11, 198, 220, 220, 220, 366, 24849, 54, 62, 22, 1298, 10190, 11, 198, 220, 220, 220, 366, 24849, 54, 62, 23, 1298, 9907, 11, 198, 220, 220, 220, 366, 24849, 54, 62, 24, 1298, 2026, 11, 628, 220, 220, 220, 1303, 8554, 329, 3585, 6466, 6268, 32746, 722, 357, 15, 25, 1400, 11, 352, 25, 3363, 2599, 198, 220, 220, 220, 366, 6892, 2202, 62, 16, 1298, 352, 11, 198, 220, 220, 220, 366, 6892, 2202, 62, 17, 1298, 352, 11, 198, 220, 220, 220, 366, 6892, 2202, 62, 18, 1298, 352, 11, 198, 220, 220, 220, 366, 6892, 2202, 62, 19, 1298, 352, 11, 198, 220, 220, 220, 366, 6892, 2202, 62, 20, 1298, 352, 11, 198, 220, 220, 220, 366, 6892, 2202, 62, 21, 1298, 352, 11, 198, 220, 220, 220, 366, 6892, 2202, 62, 22, 1298, 352, 11, 198, 220, 220, 220, 366, 6892, 2202, 62, 23, 1298, 352, 11, 198, 220, 220, 220, 366, 6892, 2202, 62, 24, 1298, 352, 11, 628, 220, 220, 220, 1303, 14331, 329, 3585, 6466, 6268, 357, 23352, 2599, 198, 220, 220, 220, 366, 6892, 54, 62, 16, 1298, 642, 11, 198, 220, 220, 220, 366, 6892, 54, 62, 17, 1298, 6298, 11, 198, 220, 220, 220, 366, 6892, 54, 62, 18, 1298, 5846, 11, 198, 220, 220, 220, 366, 6892, 54, 62, 19, 1298, 5946, 11, 198, 220, 220, 220, 366, 6892, 54, 62, 20, 1298, 4570, 11, 198, 220, 220, 220, 366, 6892, 54, 62, 21, 1298, 6298, 11, 198, 220, 220, 220, 366, 6892, 54, 62, 22, 1298, 7192, 11, 198, 220, 220, 220, 366, 6892, 54, 62, 23, 1298, 7863, 11, 198, 220, 220, 220, 366, 6892, 54, 62, 24, 1298, 657, 11, 198, 92, 198, 198, 2, 10133, 530, 1988, 11, 329, 1672, 11, 787, 340, 4075, 25, 198, 2514, 10260, 796, 23884, 198, 2514, 10260, 14692, 13739, 8973, 796, 352, 198, 17752, 62, 2536, 796, 33918, 13, 67, 8142, 7, 17752, 13, 67, 8142, 7, 2514, 10260, 4008, 198, 13376, 796, 9379, 13, 2617, 22973, 7203, 27871, 320, 31554, 274, 1600, 33918, 62, 2536, 8, 198, 4798, 7, 13376, 8, 198, 198, 2, 17934, 284, 787, 257, 13027, 393, 1336, 4296, 198, 9127, 796, 352, 198, 4514, 6407, 25, 220, 220, 220, 220, 198, 220, 220, 220, 329, 1312, 287, 2837, 7, 22, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 43689, 4296, 198, 220, 220, 220, 220, 220, 220, 220, 1675, 10260, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 1675, 10260, 14692, 24849, 41, 429, 62, 1, 1343, 965, 7, 72, 10, 16, 15437, 796, 357, 9127, 10, 72, 27493, 19, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1675, 10260, 14692, 24849, 2202, 62, 1, 1343, 965, 7, 72, 10, 16, 15437, 796, 954, 4064, 362, 198, 220, 220, 220, 220, 220, 220, 220, 1675, 10260, 14692, 24849, 54, 62, 1, 1343, 965, 7, 72, 10, 16, 15437, 796, 357, 9127, 10, 72, 8, 628, 220, 220, 220, 220, 220, 220, 220, 33918, 62, 2536, 796, 33918, 13, 67, 8142, 7, 17752, 13, 67, 8142, 7, 2514, 10260, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 3722, 796, 9379, 13, 2617, 22973, 7203, 27871, 320, 31554, 274, 1600, 33918, 62, 2536, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 13376, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6462, 4296, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27871, 320, 31554, 274, 62, 51, 6465, 14692, 8134, 41, 1563, 62, 1, 1343, 965, 7, 72, 10, 16, 15437, 796, 357, 9127, 10, 72, 27493, 19, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27871, 320, 31554, 274, 62, 51, 6465, 14692, 8134, 25844, 62, 1, 1343, 965, 7, 72, 10, 16, 15437, 796, 357, 9127, 10, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27871, 320, 31554, 274, 62, 51, 6465, 14692, 8134, 2202, 62, 1, 1343, 965, 7, 72, 10, 16, 15437, 796, 954, 4064, 362, 628, 220, 220, 220, 1303, 6462, 4296, 198, 220, 220, 220, 1303, 4798, 7, 305, 13645, 13, 2617, 22973, 7203, 27871, 320, 31554, 274, 1600, 965, 7, 31554, 274, 27871, 320, 26232, 22305, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 954, 796, 954, 1343, 352, 628, 220, 220, 220, 1303, 4149, 6460, 198, 220, 220, 220, 33918, 62, 7890, 796, 9379, 13, 2617, 22973, 7203, 27871, 320, 31554, 274, 4943, 198, 220, 220, 220, 33918, 62, 15252, 796, 33918, 13, 46030, 7, 17752, 62, 7890, 8, 198, 220, 220, 220, 3601, 7, 17752, 13, 67, 8142, 7, 17752, 62, 15252, 11, 33793, 28, 19, 4008, 198, 220, 220, 220, 14985, 7, 15, 13, 17, 8, 198, 220, 220, 220, 220, 198, 198, 2, 17934, 284, 1100, 262, 1459, 34197, 23989, 6460, 25, 198, 4514, 6407, 25, 198, 220, 220, 220, 33918, 62, 7890, 796, 9379, 13, 2617, 22973, 7203, 27871, 320, 31554, 274, 4943, 198, 220, 220, 220, 33918, 62, 15252, 796, 33918, 13, 46030, 7, 17752, 62, 7890, 8, 198, 220, 220, 220, 3601, 7, 17752, 13, 67, 8142, 7, 17752, 62, 15252, 11, 33793, 28, 19, 4008, 198, 220, 220, 220, 14985, 7, 15, 13, 17, 8, 198 ]
2.274547
1,599
from slr_parser.grammar import Grammar import unittest if __name__ == '__main__': unittest.main()
[ 6738, 1017, 81, 62, 48610, 13, 4546, 3876, 1330, 20159, 3876, 198, 11748, 555, 715, 395, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.625
40
# Generated by Django 3.1 on 2020-09-08 07:43 from django.db import migrations, models import django.db.models.deletion
[ 2, 2980, 515, 416, 37770, 513, 13, 16, 319, 12131, 12, 2931, 12, 2919, 8753, 25, 3559, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.904762
42
import torch import numpy as np from mpi4py import MPI from parallel_pytorch.ops import tensor_merge from parallel_pytorch.utils import abort_on_exception def run_all(): test_1() test_2() if __name__ == '__main__': run_all()
[ 11748, 28034, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 285, 14415, 19, 9078, 1330, 4904, 40, 198, 198, 6738, 10730, 62, 9078, 13165, 354, 13, 2840, 1330, 11192, 273, 62, 647, 469, 198, 6738, 10730, 62, 9078, 13165, 354, 13, 26791, 1330, 15614, 62, 261, 62, 1069, 4516, 628, 628, 198, 4299, 1057, 62, 439, 33529, 198, 220, 220, 220, 1332, 62, 16, 3419, 198, 220, 220, 220, 1332, 62, 17, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1057, 62, 439, 3419, 198 ]
2.595745
94
"""Day 07""" if __name__ == '__main__': process('test.txt') process('input.txt')
[ 37811, 12393, 8753, 37811, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1429, 10786, 9288, 13, 14116, 11537, 198, 220, 220, 220, 1429, 10786, 15414, 13, 14116, 11537, 198 ]
2.432432
37
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ utilities @author: boyangzhao """ import pandas as pd import re
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 315, 2410, 198, 31, 9800, 25, 2933, 648, 89, 23778, 198, 37811, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 302, 198 ]
2.32
50
#!/usr/bin/python3.7 # Copyright 2020 Aragubas # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # -- Imports -- # from ENGINE import APPDATA as reg from ENGINE import UTILS as utils import ENGINE as tge from Fogoso.MAIN import ClassesUtils as gameObjs from Fogoso import MAIN as gameMain import pygame, sys import importlib import time from random import randint OptionsScreen_DebugModeEnabled = gameObjs.UpDownButton OptionsScreen_RandomWindowTitle = gameObjs.UpDownButton OptionsScreen_NumberFormatting = gameObjs.UpDownButton ElementsX = 0 ElementsY = 0
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 13, 22, 198, 2, 220, 220, 15069, 12131, 943, 363, 549, 292, 198, 2, 198, 2, 220, 220, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 220, 220, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 220, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 220, 220, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 220, 220, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 220, 220, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 220, 220, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 220, 220, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 198, 198, 2, 1377, 1846, 3742, 1377, 1303, 198, 6738, 36924, 8881, 1330, 3486, 5760, 13563, 355, 842, 198, 6738, 36924, 8881, 1330, 19255, 45484, 355, 3384, 4487, 198, 11748, 36924, 8881, 355, 256, 469, 198, 198, 6738, 33381, 28213, 13, 5673, 1268, 1330, 38884, 18274, 4487, 355, 983, 5944, 8457, 198, 6738, 33381, 28213, 1330, 8779, 1268, 355, 983, 13383, 198, 198, 11748, 12972, 6057, 11, 25064, 198, 198, 11748, 1330, 8019, 198, 11748, 640, 198, 6738, 4738, 1330, 43720, 600, 198, 198, 29046, 23901, 62, 27509, 19076, 20491, 796, 983, 5944, 8457, 13, 4933, 8048, 21864, 198, 29046, 23901, 62, 29531, 27703, 19160, 796, 983, 5944, 8457, 13, 4933, 8048, 21864, 198, 29046, 23901, 62, 15057, 26227, 889, 796, 983, 5944, 8457, 13, 4933, 8048, 21864, 198, 198, 36, 3639, 55, 796, 657, 198, 36, 3639, 56, 796, 657, 628 ]
3.328221
326
from robotpy_ext.control.toggle import Toggle from robotpy_ext.misc.precise_delay import NotifierDelay
[ 6738, 9379, 9078, 62, 2302, 13, 13716, 13, 44256, 1330, 34098, 198, 6738, 9379, 9078, 62, 2302, 13, 44374, 13, 3866, 37561, 62, 40850, 1330, 1892, 7483, 13856, 323, 628, 628 ]
3.419355
31
''' This file contains test cases for tflearn ''' import tensorflow.compat.v1 as tf import tflearn import unittest if __name__ == "__main__": unittest.main()
[ 7061, 6, 198, 220, 220, 220, 770, 2393, 4909, 1332, 2663, 329, 256, 27919, 1501, 198, 7061, 6, 198, 198, 11748, 11192, 273, 11125, 13, 5589, 265, 13, 85, 16, 355, 48700, 198, 11748, 256, 27919, 1501, 198, 11748, 555, 715, 395, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419 ]
2.609375
64
#!/usr/bin/python3 # ***************************************************************************** # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ****************************************************************************** import json import os import sys import subprocess if __name__ == "__main__": success = True try: subprocess.run('cd /root; fab install-libs', shell=True, check=True) except: success = False reply = dict() reply['request_id'] = os.environ['request_id'] if success: reply['status'] = 'ok' else: reply['status'] = 'err' reply['response'] = dict() try: with open("/root/result.json") as f: reply['response']['result'] = json.loads(f.read()) except: reply['response']['result'] = {"error": "Failed to open result.json"} reply['response']['log'] = "/var/log/datalab/{0}/{0}_{1}_{2}.log".format(os.environ['conf_resource'], os.environ['project_name'], os.environ['request_id']) with open("/response/{}_{}_{}.json".format(os.environ['conf_resource'], os.environ['project_name'], os.environ['request_id']), 'w') as response_file: response_file.write(json.dumps(reply)) try: subprocess.run('chmod 666 /response/*', shell=True, check=True) except: success = False if not success: sys.exit(1)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 198, 2, 41906, 17174, 4557, 35625, 198, 2, 198, 2, 49962, 284, 262, 24843, 10442, 5693, 357, 1921, 37, 8, 739, 530, 198, 2, 393, 517, 18920, 5964, 11704, 13, 220, 4091, 262, 28536, 2393, 198, 2, 9387, 351, 428, 670, 329, 3224, 1321, 198, 2, 5115, 6634, 9238, 13, 220, 383, 7054, 37, 16625, 428, 2393, 198, 2, 284, 345, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 198, 2, 366, 34156, 15341, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 198, 2, 351, 262, 13789, 13, 220, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 198, 2, 3788, 9387, 739, 262, 13789, 318, 9387, 319, 281, 198, 2, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 198, 2, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 220, 4091, 262, 13789, 329, 262, 198, 2, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 2, 198, 2, 41906, 17174, 46068, 1174, 198, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 850, 14681, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1943, 796, 6407, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 850, 14681, 13, 5143, 10786, 10210, 1220, 15763, 26, 7843, 2721, 12, 8019, 82, 3256, 7582, 28, 17821, 11, 2198, 28, 17821, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1943, 796, 10352, 628, 220, 220, 220, 10971, 796, 8633, 3419, 198, 220, 220, 220, 10971, 17816, 25927, 62, 312, 20520, 796, 28686, 13, 268, 2268, 17816, 25927, 62, 312, 20520, 198, 220, 220, 220, 611, 1943, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10971, 17816, 13376, 20520, 796, 705, 482, 6, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10971, 17816, 13376, 20520, 796, 705, 8056, 6, 628, 220, 220, 220, 10971, 17816, 26209, 20520, 796, 8633, 3419, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7203, 14, 15763, 14, 20274, 13, 17752, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10971, 17816, 26209, 6, 7131, 6, 20274, 20520, 796, 33918, 13, 46030, 7, 69, 13, 961, 28955, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10971, 17816, 26209, 6, 7131, 6, 20274, 20520, 796, 19779, 18224, 1298, 366, 37, 6255, 284, 1280, 1255, 13, 17752, 20662, 628, 220, 220, 220, 10971, 17816, 26209, 6, 7131, 6, 6404, 20520, 796, 12813, 7785, 14, 6404, 14, 67, 10254, 397, 14, 90, 15, 92, 14, 90, 15, 92, 23330, 16, 92, 23330, 17, 27422, 6404, 1911, 18982, 7, 418, 13, 268, 2268, 17816, 10414, 62, 31092, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 268, 2268, 17816, 16302, 62, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 268, 2268, 17816, 25927, 62, 312, 6, 12962, 628, 220, 220, 220, 351, 1280, 7203, 14, 26209, 14, 90, 92, 23330, 92, 23330, 27422, 17752, 1911, 18982, 7, 418, 13, 268, 2268, 17816, 10414, 62, 31092, 6, 4357, 28686, 13, 268, 2268, 17816, 16302, 62, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 268, 2268, 17816, 25927, 62, 312, 20520, 828, 705, 86, 11537, 355, 2882, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2882, 62, 7753, 13, 13564, 7, 17752, 13, 67, 8142, 7, 47768, 4008, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 850, 14681, 13, 5143, 10786, 354, 4666, 43364, 1220, 26209, 15211, 3256, 7582, 28, 17821, 11, 2198, 28, 17821, 8, 198, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1943, 796, 10352, 628, 220, 220, 220, 611, 407, 1943, 25, 198, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 37023, 7, 16, 8 ]
2.567148
901
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ config settings, will be used in finetune.py """ from easydict import EasyDict as edict import mindspore.common.dtype as mstype from .bert_model import BertConfig cfg = edict({ 'task': 'NER', 'num_labels': 41, 'data_file': '', 'schema_file': None, 'finetune_ckpt': '', 'use_crf': False, 'clue_benchmark': False, }) bert_net_cfg = BertConfig( batch_size=8 if not cfg.clue_benchmark else 1, seq_length=512, vocab_size=30522, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, use_relative_positions=False, input_mask_from_dataset=True, token_type_ids_from_dataset=True, dtype=mstype.float32, compute_type=mstype.float16, )
[ 2, 15069, 12131, 43208, 21852, 1766, 1539, 12052, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 38093, 2559, 18604, 198, 198, 37811, 198, 11250, 6460, 11, 481, 307, 973, 287, 957, 316, 1726, 13, 9078, 198, 37811, 198, 198, 6738, 2562, 11600, 1330, 16789, 35, 713, 355, 1225, 713, 198, 198, 11748, 2000, 2777, 382, 13, 11321, 13, 67, 4906, 355, 285, 301, 2981, 198, 6738, 764, 4835, 62, 19849, 1330, 22108, 16934, 198, 198, 37581, 796, 1225, 713, 15090, 198, 220, 220, 220, 705, 35943, 10354, 705, 21479, 3256, 198, 220, 220, 220, 705, 22510, 62, 23912, 1424, 10354, 6073, 11, 198, 220, 220, 220, 705, 7890, 62, 7753, 10354, 705, 3256, 198, 220, 220, 220, 705, 15952, 2611, 62, 7753, 10354, 6045, 11, 198, 220, 220, 220, 705, 15643, 316, 1726, 62, 694, 457, 10354, 705, 3256, 198, 220, 220, 220, 705, 1904, 62, 6098, 69, 10354, 10352, 11, 198, 220, 220, 220, 705, 565, 518, 62, 26968, 4102, 10354, 10352, 11, 198, 30072, 198, 198, 4835, 62, 3262, 62, 37581, 796, 22108, 16934, 7, 198, 220, 220, 220, 15458, 62, 7857, 28, 23, 611, 407, 30218, 70, 13, 565, 518, 62, 26968, 4102, 2073, 352, 11, 198, 220, 220, 220, 33756, 62, 13664, 28, 25836, 11, 198, 220, 220, 220, 12776, 397, 62, 7857, 28, 22515, 1828, 11, 198, 220, 220, 220, 7104, 62, 7857, 28, 35500, 11, 198, 220, 220, 220, 997, 62, 30342, 62, 75, 6962, 28, 1731, 11, 198, 220, 220, 220, 997, 62, 1078, 1463, 62, 16600, 28, 1433, 11, 198, 220, 220, 220, 19898, 62, 7857, 28, 1821, 4846, 11, 198, 220, 220, 220, 7104, 62, 529, 2625, 25280, 84, 1600, 198, 220, 220, 220, 7104, 62, 14781, 448, 62, 1676, 65, 28, 15, 13, 15, 11, 198, 220, 220, 220, 3241, 62, 1676, 1443, 62, 14781, 448, 62, 1676, 65, 28, 15, 13, 15, 11, 198, 220, 220, 220, 3509, 62, 9150, 62, 20521, 67, 654, 28, 25836, 11, 198, 220, 220, 220, 2099, 62, 18893, 397, 62, 7857, 28, 17, 11, 198, 220, 220, 220, 4238, 7509, 62, 9521, 28, 15, 13, 2999, 11, 198, 220, 220, 220, 779, 62, 43762, 62, 1930, 1756, 28, 25101, 11, 198, 220, 220, 220, 5128, 62, 27932, 62, 6738, 62, 19608, 292, 316, 28, 17821, 11, 198, 220, 220, 220, 11241, 62, 4906, 62, 2340, 62, 6738, 62, 19608, 292, 316, 28, 17821, 11, 198, 220, 220, 220, 288, 4906, 28, 76, 301, 2981, 13, 22468, 2624, 11, 198, 220, 220, 220, 24061, 62, 4906, 28, 76, 301, 2981, 13, 22468, 1433, 11, 198, 8, 198 ]
2.80354
565
# -*- coding: utf-8 -*- # utopia-cms 2020. Anbal Pacheco. from django.core.management import BaseCommand from django.db.utils import IntegrityError from apps import core_articleviewedby_mdb from core.models import ArticleViewedBy
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 3384, 24464, 12, 46406, 12131, 13, 1052, 6893, 350, 4891, 1073, 13, 198, 198, 6738, 42625, 14208, 13, 7295, 13, 27604, 1330, 7308, 21575, 198, 6738, 42625, 14208, 13, 9945, 13, 26791, 1330, 39348, 12331, 198, 198, 6738, 6725, 1330, 4755, 62, 20205, 1177, 276, 1525, 62, 9132, 65, 198, 6738, 4755, 13, 27530, 1330, 10172, 7680, 276, 3886, 628 ]
3.106667
75
import torch import torch.nn as nn from torch.optim import SGD import MinkowskiEngine as ME from MinkowskiEngine.modules.resnet_block import BasicBlock, Bottleneck from examples.common import data_loader from examples.resnet import ResNetBase if __name__ == '__main__': # loss and network criterion = nn.CrossEntropyLoss() net = MinkUNet14A(in_channels=3, out_channels=5, D=2) print(net) # a data loader must return a tuple of coords, features, and labels. device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net = net.to(device) optimizer = SGD(net.parameters(), lr=1e-2) for i in range(10): optimizer.zero_grad() # Get new data coords, feat, label = data_loader(is_classification=False) input = ME.SparseTensor(feat, coords=coords).to(device) label = label.to(device) # Forward output = net(input) # Loss loss = criterion(output.F, label) print('Iteration: ', i, ', Loss: ', loss.item()) # Gradient loss.backward() optimizer.step() # Saving and loading a network torch.save(net.state_dict(), 'test.pth') net.load_state_dict(torch.load('test.pth'))
[ 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 6738, 28034, 13, 40085, 1330, 26147, 35, 198, 198, 11748, 337, 676, 12079, 13798, 355, 11948, 198, 198, 6738, 337, 676, 12079, 13798, 13, 18170, 13, 411, 3262, 62, 9967, 1330, 14392, 12235, 11, 14835, 43163, 198, 198, 6738, 6096, 13, 11321, 1330, 1366, 62, 29356, 198, 6738, 6096, 13, 411, 3262, 1330, 1874, 7934, 14881, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 2994, 290, 3127, 198, 220, 220, 220, 34054, 796, 299, 77, 13, 21544, 14539, 28338, 43, 793, 3419, 198, 220, 220, 220, 2010, 796, 337, 676, 4944, 316, 1415, 32, 7, 259, 62, 354, 8961, 28, 18, 11, 503, 62, 354, 8961, 28, 20, 11, 360, 28, 17, 8, 198, 220, 220, 220, 3601, 7, 3262, 8, 628, 220, 220, 220, 1303, 257, 1366, 40213, 1276, 1441, 257, 46545, 286, 763, 3669, 11, 3033, 11, 290, 14722, 13, 198, 220, 220, 220, 3335, 796, 28034, 13, 25202, 10786, 66, 15339, 6, 611, 28034, 13, 66, 15339, 13, 271, 62, 15182, 3419, 2073, 705, 36166, 11537, 628, 220, 220, 220, 2010, 796, 2010, 13, 1462, 7, 25202, 8, 198, 220, 220, 220, 6436, 7509, 796, 26147, 35, 7, 3262, 13, 17143, 7307, 22784, 300, 81, 28, 16, 68, 12, 17, 8, 628, 220, 220, 220, 329, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 22570, 62, 9744, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 3497, 649, 1366, 198, 220, 220, 220, 220, 220, 220, 220, 763, 3669, 11, 2218, 11, 6167, 796, 1366, 62, 29356, 7, 271, 62, 4871, 2649, 28, 25101, 8, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 796, 11948, 13, 50, 29572, 51, 22854, 7, 27594, 11, 763, 3669, 28, 1073, 3669, 737, 1462, 7, 25202, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 796, 6167, 13, 1462, 7, 25202, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 19530, 198, 220, 220, 220, 220, 220, 220, 220, 5072, 796, 2010, 7, 15414, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 22014, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 34054, 7, 22915, 13, 37, 11, 6167, 8, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 10786, 29993, 341, 25, 46083, 1312, 11, 46083, 22014, 25, 46083, 2994, 13, 9186, 28955, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 17701, 1153, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 13, 1891, 904, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 7509, 13, 9662, 3419, 628, 220, 220, 220, 1303, 34689, 290, 11046, 257, 3127, 198, 220, 220, 220, 28034, 13, 21928, 7, 3262, 13, 5219, 62, 11600, 22784, 705, 9288, 13, 79, 400, 11537, 198, 220, 220, 220, 2010, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 10786, 9288, 13, 79, 400, 6, 4008, 198 ]
2.458661
508
"""TODO.""" from setuptools import setup setup( name='nginx-access-tailer', version='0.1', author='swfrench', url='https://github.com/swfrench/nginx-tailer', packages=['nginx_access_tailer',], license='BSD three-clause license', entry_points={ 'console_scripts': ['nginx-access-tailer = nginx_access_tailer.__main__:main'], }, install_requires=[ 'python-gflags >= 3.1.1', 'google-cloud-monitoring >= 0.25.0', ], test_suite='nose.collector', tests_require=['nose', 'mock'], )
[ 37811, 51, 3727, 46, 526, 15931, 198, 198, 6738, 900, 37623, 10141, 1330, 9058, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 782, 28413, 12, 15526, 12, 13199, 263, 3256, 198, 220, 220, 220, 2196, 11639, 15, 13, 16, 3256, 198, 220, 220, 220, 1772, 11639, 2032, 69, 3532, 3256, 198, 220, 220, 220, 19016, 11639, 5450, 1378, 12567, 13, 785, 14, 2032, 69, 3532, 14, 782, 28413, 12, 13199, 263, 3256, 198, 220, 220, 220, 10392, 28, 17816, 782, 28413, 62, 15526, 62, 13199, 263, 3256, 4357, 198, 220, 220, 220, 5964, 11639, 21800, 1115, 12, 565, 682, 5964, 3256, 198, 220, 220, 220, 5726, 62, 13033, 34758, 198, 220, 220, 220, 220, 220, 220, 220, 705, 41947, 62, 46521, 10354, 37250, 782, 28413, 12, 15526, 12, 13199, 263, 796, 299, 42822, 62, 15526, 62, 13199, 263, 13, 834, 12417, 834, 25, 12417, 6, 4357, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 2721, 62, 47911, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 29412, 12, 70, 33152, 18189, 513, 13, 16, 13, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 13297, 12, 17721, 12, 41143, 278, 18189, 657, 13, 1495, 13, 15, 3256, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 1332, 62, 2385, 578, 11639, 77, 577, 13, 33327, 273, 3256, 198, 220, 220, 220, 5254, 62, 46115, 28, 17816, 77, 577, 3256, 705, 76, 735, 6, 4357, 198, 8, 198 ]
2.259259
243
# Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .. import helpers from . import integration
[ 2, 15069, 357, 66, 8, 2177, 8180, 10501, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 6738, 11485, 1330, 49385, 198, 6738, 764, 1330, 11812, 628, 198 ]
3.890244
164
#!/usr/bin/env python # -*- coding: utf-8 -* import os from setuptools import find_packages, setup # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) with open('requirements.txt') as f: install_requires = f.read().splitlines() setup( name='persistent-celery-beat-scheduler', version='0.1.1.dev0', packages=find_packages('src', exclude=('tests',)), package_dir={'': 'src'}, include_package_data=True, zip_safe=False, description=( 'Celery Beat Scheduler that stores the scheduler data in Redis.' ), author='Richard O\'Dwyer', author_email='richard@richard.do', license='Apache 2', long_description='https://github.com/richardasaurus/persistent-celery-beat-scheduler', install_requires=install_requires, classifiers=[ 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP', ], )
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 198, 198, 11748, 28686, 198, 198, 6738, 900, 37623, 10141, 1330, 1064, 62, 43789, 11, 9058, 198, 198, 2, 1249, 9058, 13, 9078, 284, 307, 1057, 422, 597, 3108, 198, 418, 13, 354, 15908, 7, 418, 13, 6978, 13, 27237, 6978, 7, 418, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 828, 28686, 13, 26037, 343, 22305, 198, 198, 4480, 1280, 10786, 8897, 18883, 13, 14116, 11537, 355, 277, 25, 198, 220, 220, 220, 2721, 62, 47911, 796, 277, 13, 961, 22446, 35312, 6615, 3419, 198, 198, 40406, 7, 198, 220, 220, 220, 1438, 11639, 19276, 7609, 12, 7015, 88, 12, 12945, 12, 1416, 704, 18173, 3256, 198, 220, 220, 220, 2196, 11639, 15, 13, 16, 13, 16, 13, 7959, 15, 3256, 198, 220, 220, 220, 10392, 28, 19796, 62, 43789, 10786, 10677, 3256, 19607, 28, 10786, 41989, 3256, 36911, 198, 220, 220, 220, 5301, 62, 15908, 34758, 7061, 25, 705, 10677, 6, 5512, 198, 220, 220, 220, 2291, 62, 26495, 62, 7890, 28, 17821, 11, 198, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 220, 220, 220, 6764, 16193, 198, 220, 220, 220, 220, 220, 220, 220, 705, 34, 417, 1924, 12568, 27774, 18173, 326, 7000, 262, 6038, 18173, 1366, 287, 2297, 271, 2637, 198, 220, 220, 220, 10612, 198, 220, 220, 220, 1772, 11639, 22245, 440, 43054, 35, 86, 9860, 3256, 198, 220, 220, 220, 1772, 62, 12888, 11639, 7527, 446, 31, 7527, 446, 13, 4598, 3256, 198, 220, 220, 220, 5964, 11639, 25189, 4891, 362, 3256, 198, 220, 220, 220, 890, 62, 11213, 11639, 5450, 1378, 12567, 13, 785, 14, 7527, 446, 292, 22302, 14, 19276, 7609, 12, 7015, 88, 12, 12945, 12, 1416, 704, 18173, 3256, 198, 220, 220, 220, 2721, 62, 47911, 28, 17350, 62, 47911, 11, 198, 220, 220, 220, 1398, 13350, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 705, 5317, 1631, 7591, 1240, 7904, 34152, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 18843, 803, 4482, 7904, 7294, 13362, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 17, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 18, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 20, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 33221, 7904, 4455, 7904, 13505, 54, 14, 40717, 3256, 198, 220, 220, 220, 16589, 198, 8, 198 ]
2.584466
515
import collections import unittest import driver from driver.protocol import * _server = ('localhost', 11211) _dead_retry = 30 _socket_timeout = 3 _max_receive_size = 4096 def _raise_exception(message): raise Exception(message)
[ 11748, 17268, 198, 11748, 555, 715, 395, 198, 11748, 4639, 198, 6738, 4639, 13, 11235, 4668, 1330, 1635, 198, 198, 62, 15388, 796, 19203, 36750, 3256, 13539, 1157, 8, 198, 62, 25124, 62, 1186, 563, 796, 1542, 198, 62, 44971, 62, 48678, 796, 513, 198, 62, 9806, 62, 260, 15164, 62, 7857, 796, 42479, 628, 628, 198, 4299, 4808, 40225, 62, 1069, 4516, 7, 20500, 2599, 198, 220, 220, 220, 5298, 35528, 7, 20500, 8, 198 ]
3.118421
76
# -------------- # Import packages import numpy as np import pandas as pd from scipy.stats import mode path # code starts here bank = pd.read_csv(path) categorical_var = bank.select_dtypes(include = 'object') print(categorical_var) numerical_var = bank.select_dtypes(include = 'number') print(numerical_var) # code ends here # -------------- # code starts here banks = bank.drop('Loan_ID',axis = 1) print(banks) print(banks.isnull().sum()) bank_mode = banks.mode().iloc[0] banks = banks.fillna(bank_mode) #code ends here # -------------- # Code starts here avg_loan_amount = banks.pivot_table(index=['Gender','Married','Self_Employed'],values = 'LoanAmount') # code ends here # -------------- # code starts here loan_approved_se = ((banks['Self_Employed']=='Yes') & (banks['Loan_Status']=='Y')).value_counts() #print(loan_approved_se) loan_approved_nse = ((banks['Self_Employed']=='No') & (banks['Loan_Status']=='Y')).value_counts() print(loan_approved_nse) Loan_Status = 614 percentage_se = (56/Loan_Status)*100 percentage_nse = (366/Loan_Status)*100 # code ends here # -------------- # code starts here loan_term = banks['Loan_Amount_Term'].apply (lambda x : int(x)/12) print(loan_term.value_counts()) big_loan = [i for i in loan_term if i >= 25] big_loan_term = len(big_loan) print(big_loan_term) #[loan_term.value_counts()[i] for i in range(len(loan_terms)) if loan_term.value_counts().index[i] >= 25] # code ends here # -------------- # code starts here loan_groupby = banks.groupby('Loan_Status') loan_groupby = loan_groupby['ApplicantIncome','Credit_History'] mean_values = loan_groupby.mean() # code ends here
[ 2, 220, 26171, 198, 2, 17267, 10392, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 629, 541, 88, 13, 34242, 1330, 4235, 220, 198, 220, 198, 198, 6978, 198, 198, 2, 2438, 4940, 994, 198, 17796, 796, 279, 67, 13, 961, 62, 40664, 7, 6978, 8, 198, 66, 2397, 12409, 62, 7785, 796, 3331, 13, 19738, 62, 67, 19199, 7, 17256, 796, 705, 15252, 11537, 198, 4798, 7, 66, 2397, 12409, 62, 7785, 8, 198, 77, 6975, 605, 62, 7785, 796, 3331, 13, 19738, 62, 67, 19199, 7, 17256, 796, 705, 17618, 11537, 198, 4798, 7, 77, 6975, 605, 62, 7785, 8, 198, 198, 2, 2438, 5645, 994, 628, 198, 2, 220, 26171, 198, 2, 2438, 4940, 994, 198, 43558, 796, 3331, 13, 14781, 10786, 43, 24611, 62, 2389, 3256, 22704, 796, 352, 8, 198, 4798, 7, 43558, 8, 198, 4798, 7, 43558, 13, 271, 8423, 22446, 16345, 28955, 198, 17796, 62, 14171, 796, 6341, 13, 14171, 22446, 346, 420, 58, 15, 60, 198, 43558, 796, 6341, 13, 20797, 2616, 7, 17796, 62, 14171, 8, 198, 198, 2, 8189, 5645, 994, 628, 198, 2, 220, 26171, 198, 2, 6127, 4940, 994, 198, 615, 70, 62, 5439, 272, 62, 17287, 796, 6341, 13, 79, 45785, 62, 11487, 7, 9630, 28, 17816, 41394, 41707, 7676, 2228, 41707, 24704, 62, 29733, 276, 6, 4357, 27160, 796, 705, 43, 24611, 31264, 11537, 628, 198, 198, 2, 2438, 5645, 994, 628, 198, 198, 2, 220, 26171, 198, 2, 2438, 4940, 994, 628, 198, 198, 5439, 272, 62, 29137, 62, 325, 796, 14808, 43558, 17816, 24704, 62, 29733, 276, 20520, 855, 6, 5297, 11537, 1222, 357, 43558, 17816, 43, 24611, 62, 19580, 20520, 855, 6, 56, 11537, 737, 8367, 62, 9127, 82, 3419, 198, 2, 4798, 7, 5439, 272, 62, 29137, 62, 325, 8, 198, 5439, 272, 62, 29137, 62, 77, 325, 796, 14808, 43558, 17816, 24704, 62, 29733, 276, 20520, 855, 6, 2949, 11537, 1222, 357, 43558, 17816, 43, 24611, 62, 19580, 20520, 855, 6, 56, 11537, 737, 8367, 62, 9127, 82, 3419, 198, 4798, 7, 5439, 272, 62, 29137, 62, 77, 325, 8, 198, 43, 24611, 62, 19580, 796, 718, 1415, 198, 25067, 496, 62, 325, 796, 357, 3980, 14, 43, 24611, 62, 19580, 27493, 3064, 198, 25067, 496, 62, 77, 325, 796, 357, 32459, 14, 43, 24611, 62, 19580, 27493, 3064, 628, 628, 198, 2, 2438, 5645, 994, 628, 198, 2, 220, 26171, 198, 2, 2438, 4940, 994, 198, 198, 5439, 272, 62, 4354, 796, 6341, 17816, 43, 24611, 62, 31264, 62, 40596, 6, 4083, 39014, 357, 50033, 2124, 1058, 493, 7, 87, 20679, 1065, 8, 198, 4798, 7, 5439, 272, 62, 4354, 13, 8367, 62, 9127, 82, 28955, 198, 14261, 62, 5439, 272, 796, 685, 72, 329, 1312, 287, 8063, 62, 4354, 611, 1312, 18189, 1679, 60, 198, 14261, 62, 5439, 272, 62, 4354, 796, 18896, 7, 14261, 62, 5439, 272, 8, 198, 4798, 7, 14261, 62, 5439, 272, 62, 4354, 8, 198, 198, 2, 58, 5439, 272, 62, 4354, 13, 8367, 62, 9127, 82, 3419, 58, 72, 60, 329, 1312, 287, 2837, 7, 11925, 7, 5439, 272, 62, 38707, 4008, 611, 8063, 62, 4354, 13, 8367, 62, 9127, 82, 22446, 9630, 58, 72, 60, 18189, 1679, 60, 198, 2, 2438, 5645, 994, 628, 628, 198, 2, 220, 26171, 198, 2, 2438, 4940, 994, 198, 5439, 272, 62, 8094, 1525, 796, 6341, 13, 8094, 1525, 10786, 43, 24611, 62, 19580, 11537, 198, 5439, 272, 62, 8094, 1525, 796, 8063, 62, 8094, 1525, 17816, 33583, 415, 818, 2958, 41707, 23690, 62, 18122, 20520, 198, 32604, 62, 27160, 796, 8063, 62, 8094, 1525, 13, 32604, 3419, 628, 198, 2, 2438, 5645, 994, 628, 198 ]
2.680713
617
# This file is part of Patsy # Copyright (C) 2013 Nathaniel Smith <njs@pobox.com> # See file LICENSE.txt for license information. # Regression tests for fixed bugs (when not otherwise better covered somewhere # else) from patsy import (EvalEnvironment, dmatrix, build_design_matrices, PatsyError, Origin)
[ 2, 770, 2393, 318, 636, 286, 47216, 88, 198, 2, 15069, 357, 34, 8, 2211, 49536, 4176, 1279, 77, 8457, 31, 79, 672, 1140, 13, 785, 29, 198, 2, 4091, 2393, 38559, 24290, 13, 14116, 329, 5964, 1321, 13, 198, 198, 2, 3310, 2234, 5254, 329, 5969, 11316, 357, 12518, 407, 4306, 1365, 5017, 7382, 198, 2, 2073, 8, 198, 198, 6738, 279, 1381, 88, 1330, 357, 36, 2100, 31441, 11, 288, 6759, 8609, 11, 1382, 62, 26124, 62, 6759, 45977, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47216, 88, 12331, 11, 19349, 8, 198 ]
3.018519
108
__all__ = ['imread', 'imsave'] import numpy as np from PIL import Image from ...util import img_as_ubyte, img_as_uint def imread(fname, dtype=None, img_num=None, **kwargs): """Load an image from file. Parameters ---------- fname : str or file File name or file-like-object. dtype : numpy dtype object or string specifier Specifies data type of array elements. img_num : int, optional Specifies which image to read in a file with multiple images (zero-indexed). kwargs : keyword pairs, optional Addition keyword arguments to pass through. Notes ----- Files are read using the Python Imaging Library. See PIL docs [1]_ for a list of supported formats. References ---------- .. [1] http://pillow.readthedocs.org/en/latest/handbook/image-file-formats.html """ if isinstance(fname, str): with open(fname, 'rb') as f: im = Image.open(f) return pil_to_ndarray(im, dtype=dtype, img_num=img_num) else: im = Image.open(fname) return pil_to_ndarray(im, dtype=dtype, img_num=img_num) def pil_to_ndarray(image, dtype=None, img_num=None): """Import a PIL Image object to an ndarray, in memory. Parameters ---------- Refer to ``imread``. """ try: # this will raise an IOError if the file is not readable image.getdata()[0] except IOError as e: site = "http://pillow.readthedocs.org/en/latest/installation.html#external-libraries" pillow_error_message = str(e) error_message = ('Could not load "%s" \n' 'Reason: "%s"\n' 'Please see documentation at: %s' % (image.filename, pillow_error_message, site)) raise ValueError(error_message) frames = [] grayscale = None i = 0 while 1: try: image.seek(i) except EOFError: break frame = image if img_num is not None and img_num != i: image.getdata()[0] i += 1 continue if image.format == 'PNG' and image.mode == 'I' and dtype is None: dtype = 'uint16' if image.mode == 'P': if grayscale is None: grayscale = _palette_is_grayscale(image) if grayscale: frame = image.convert('L') else: if image.format == 'PNG' and 'transparency' in image.info: frame = image.convert('RGBA') else: frame = image.convert('RGB') elif image.mode == '1': frame = image.convert('L') elif 'A' in image.mode: frame = image.convert('RGBA') elif image.mode == 'CMYK': frame = image.convert('RGB') if image.mode.startswith('I;16'): shape = image.size dtype = '>u2' if image.mode.endswith('B') else '<u2' if 'S' in image.mode: dtype = dtype.replace('u', 'i') frame = np.fromstring(frame.tobytes(), dtype) frame.shape = shape[::-1] else: frame = np.array(frame, dtype=dtype) frames.append(frame) i += 1 if img_num is not None: break if hasattr(image, 'fp') and image.fp: image.fp.close() if img_num is None and len(frames) > 1: return np.array(frames) elif frames: return frames[0] elif img_num: raise IndexError('Could not find image #%s' % img_num) def _palette_is_grayscale(pil_image): """Return True if PIL image in palette mode is grayscale. Parameters ---------- pil_image : PIL image PIL Image that is in Palette mode. Returns ------- is_grayscale : bool True if all colors in image palette are gray. """ assert pil_image.mode == 'P' # get palette as an array with R, G, B columns palette = np.asarray(pil_image.getpalette()).reshape((256, 3)) # Not all palette colors are used; unused colors have junk values. start, stop = pil_image.getextrema() valid_palette = palette[start:stop + 1] # Image is grayscale if channel differences (R - G and G - B) # are all zero. return np.allclose(np.diff(valid_palette), 0) def ndarray_to_pil(arr, format_str=None): """Export an ndarray to a PIL object. Parameters ---------- Refer to ``imsave``. """ if arr.ndim == 3: arr = img_as_ubyte(arr) mode = {3: 'RGB', 4: 'RGBA'}[arr.shape[2]] elif format_str in ['png', 'PNG']: mode = 'I;16' mode_base = 'I' if arr.dtype.kind == 'f': arr = img_as_uint(arr) elif arr.max() < 256 and arr.min() >= 0: arr = arr.astype(np.uint8) mode = mode_base = 'L' else: arr = img_as_uint(arr) else: arr = img_as_ubyte(arr) mode = 'L' mode_base = 'L' try: array_buffer = arr.tobytes() except AttributeError: array_buffer = arr.tostring() # Numpy < 1.9 if arr.ndim == 2: im = Image.new(mode_base, arr.T.shape) try: im.frombytes(array_buffer, 'raw', mode) except AttributeError: im.fromstring(array_buffer, 'raw', mode) # PIL 1.1.7 else: image_shape = (arr.shape[1], arr.shape[0]) try: im = Image.frombytes(mode, image_shape, array_buffer) except AttributeError: im = Image.fromstring(mode, image_shape, array_buffer) # PIL 1.1.7 return im def imsave(fname, arr, format_str=None, **kwargs): """Save an image to disk. Parameters ---------- fname : str or file-like object Name of destination file. arr : ndarray of uint8 or float Array (image) to save. Arrays of data-type uint8 should have values in [0, 255], whereas floating-point arrays must be in [0, 1]. format_str: str Format to save as, this is defaulted to PNG if using a file-like object; this will be derived from the extension if fname is a string kwargs: dict Keyword arguments to the Pillow save function (or tifffile save function, for Tiff files). These are format dependent. For example, Pillow's JPEG save function supports an integer ``quality`` argument with values in [1, 95], while TIFFFile supports a ``compress`` integer argument with values in [0, 9]. Notes ----- Use the Python Imaging Library. See PIL docs [1]_ for a list of other supported formats. All images besides single channel PNGs are converted using `img_as_uint8`. Single Channel PNGs have the following behavior: - Integer values in [0, 255] and Boolean types -> img_as_uint8 - Floating point and other integers -> img_as_uint16 References ---------- .. [1] http://pillow.readthedocs.org/en/latest/handbook/image-file-formats.html """ # default to PNG if file-like object if not isinstance(fname, str) and format_str is None: format_str = "PNG" # Check for png in filename if (isinstance(fname, str) and fname.lower().endswith(".png")): format_str = "PNG" arr = np.asanyarray(arr) if arr.dtype.kind == 'b': arr = arr.astype(np.uint8) if arr.ndim not in (2, 3): raise ValueError("Invalid shape for image array: %s" % (arr.shape, )) if arr.ndim == 3: if arr.shape[2] not in (3, 4): raise ValueError("Invalid number of channels in image array.") img = ndarray_to_pil(arr, format_str=format_str) img.save(fname, format=format_str, **kwargs)
[ 834, 439, 834, 796, 37250, 320, 961, 3256, 705, 12078, 1015, 20520, 198, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 350, 4146, 1330, 7412, 198, 198, 6738, 2644, 22602, 1330, 33705, 62, 292, 62, 549, 88, 660, 11, 33705, 62, 292, 62, 28611, 628, 198, 4299, 545, 961, 7, 69, 3672, 11, 288, 4906, 28, 14202, 11, 33705, 62, 22510, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 8912, 281, 2939, 422, 2393, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 277, 3672, 1058, 965, 393, 2393, 198, 220, 220, 220, 220, 220, 220, 9220, 1438, 393, 2393, 12, 2339, 12, 15252, 13, 198, 220, 220, 220, 288, 4906, 1058, 299, 32152, 288, 4906, 2134, 393, 4731, 1020, 7483, 198, 220, 220, 220, 220, 220, 220, 18291, 6945, 1366, 2099, 286, 7177, 4847, 13, 198, 220, 220, 220, 33705, 62, 22510, 1058, 493, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 18291, 6945, 543, 2939, 284, 1100, 287, 257, 2393, 351, 3294, 4263, 198, 220, 220, 220, 220, 220, 220, 357, 22570, 12, 9630, 276, 737, 198, 220, 220, 220, 479, 86, 22046, 1058, 21179, 14729, 11, 11902, 198, 220, 220, 220, 220, 220, 220, 220, 3060, 653, 21179, 7159, 284, 1208, 832, 13, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 13283, 389, 1100, 1262, 262, 11361, 48656, 10074, 13, 198, 220, 220, 220, 4091, 350, 4146, 34165, 685, 16, 60, 62, 329, 257, 1351, 286, 4855, 17519, 13, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 16, 60, 2638, 1378, 27215, 322, 13, 961, 83, 704, 420, 82, 13, 2398, 14, 268, 14, 42861, 14, 4993, 2070, 14, 9060, 12, 7753, 12, 687, 1381, 13, 6494, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 318, 39098, 7, 69, 3672, 11, 965, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 351, 1280, 7, 69, 3672, 11, 705, 26145, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 796, 7412, 13, 9654, 7, 69, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 5560, 62, 1462, 62, 358, 18747, 7, 320, 11, 288, 4906, 28, 67, 4906, 11, 33705, 62, 22510, 28, 9600, 62, 22510, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 545, 796, 7412, 13, 9654, 7, 69, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 5560, 62, 1462, 62, 358, 18747, 7, 320, 11, 288, 4906, 28, 67, 4906, 11, 33705, 62, 22510, 28, 9600, 62, 22510, 8, 628, 198, 4299, 5560, 62, 1462, 62, 358, 18747, 7, 9060, 11, 288, 4906, 28, 14202, 11, 33705, 62, 22510, 28, 14202, 2599, 198, 220, 220, 220, 37227, 20939, 257, 350, 4146, 7412, 2134, 284, 281, 299, 67, 18747, 11, 287, 4088, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 33973, 284, 7559, 320, 961, 15506, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 428, 481, 5298, 281, 24418, 12331, 611, 262, 2393, 318, 407, 31744, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 13, 1136, 7890, 3419, 58, 15, 60, 198, 220, 220, 220, 2845, 24418, 12331, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2524, 796, 366, 4023, 1378, 27215, 322, 13, 961, 83, 704, 420, 82, 13, 2398, 14, 268, 14, 42861, 14, 17350, 341, 13, 6494, 2, 22615, 12, 75, 11127, 1, 198, 220, 220, 220, 220, 220, 220, 220, 28774, 62, 18224, 62, 20500, 796, 965, 7, 68, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4049, 62, 20500, 796, 19203, 23722, 407, 3440, 36521, 82, 1, 3467, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 45008, 25, 36521, 82, 1, 59, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5492, 766, 10314, 379, 25, 4064, 82, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 9060, 13, 34345, 11, 28774, 62, 18224, 62, 20500, 11, 2524, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7, 18224, 62, 20500, 8, 198, 220, 220, 220, 13431, 796, 17635, 198, 220, 220, 220, 1036, 592, 38765, 796, 6045, 198, 220, 220, 220, 1312, 796, 657, 198, 220, 220, 220, 981, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 13, 36163, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 412, 19238, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 2939, 628, 220, 220, 220, 220, 220, 220, 220, 611, 33705, 62, 22510, 318, 407, 6045, 290, 33705, 62, 22510, 14512, 1312, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 13, 1136, 7890, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2939, 13, 18982, 6624, 705, 47, 10503, 6, 290, 2939, 13, 14171, 6624, 705, 40, 6, 290, 288, 4906, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 705, 28611, 1433, 6, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2939, 13, 14171, 6624, 705, 47, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1036, 592, 38765, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1036, 592, 38765, 796, 4808, 18596, 5857, 62, 271, 62, 2164, 592, 38765, 7, 9060, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1036, 592, 38765, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 2939, 13, 1102, 1851, 10786, 43, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2939, 13, 18982, 6624, 705, 47, 10503, 6, 290, 705, 7645, 11944, 6, 287, 2939, 13, 10951, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 2939, 13, 1102, 1851, 10786, 48192, 4339, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 2939, 13, 1102, 1851, 10786, 36982, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2939, 13, 14171, 6624, 705, 16, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 2939, 13, 1102, 1851, 10786, 43, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 705, 32, 6, 287, 2939, 13, 14171, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 2939, 13, 1102, 1851, 10786, 48192, 4339, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 2939, 13, 14171, 6624, 705, 24187, 56, 42, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 2939, 13, 1102, 1851, 10786, 36982, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2939, 13, 14171, 13, 9688, 2032, 342, 10786, 40, 26, 1433, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5485, 796, 2939, 13, 7857, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 705, 29, 84, 17, 6, 611, 2939, 13, 14171, 13, 437, 2032, 342, 10786, 33, 11537, 2073, 705, 27, 84, 17, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 705, 50, 6, 287, 2939, 13, 14171, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 4906, 796, 288, 4906, 13, 33491, 10786, 84, 3256, 705, 72, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 45941, 13, 6738, 8841, 7, 14535, 13, 83, 26730, 4879, 22784, 288, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 13, 43358, 796, 5485, 58, 3712, 12, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5739, 796, 45941, 13, 18747, 7, 14535, 11, 288, 4906, 28, 67, 4906, 8, 628, 220, 220, 220, 220, 220, 220, 220, 13431, 13, 33295, 7, 14535, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 611, 33705, 62, 22510, 318, 407, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 611, 468, 35226, 7, 9060, 11, 705, 46428, 11537, 290, 2939, 13, 46428, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 13, 46428, 13, 19836, 3419, 628, 220, 220, 220, 611, 33705, 62, 22510, 318, 6045, 290, 18896, 7, 37805, 8, 1875, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45941, 13, 18747, 7, 37805, 8, 198, 220, 220, 220, 1288, 361, 13431, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 13431, 58, 15, 60, 198, 220, 220, 220, 1288, 361, 33705, 62, 22510, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 12901, 12331, 10786, 23722, 407, 1064, 2939, 220, 1303, 4, 82, 6, 4064, 33705, 62, 22510, 8, 628, 198, 4299, 4808, 18596, 5857, 62, 271, 62, 2164, 592, 38765, 7, 79, 346, 62, 9060, 2599, 198, 220, 220, 220, 37227, 13615, 6407, 611, 350, 4146, 2939, 287, 27043, 4235, 318, 1036, 592, 38765, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 5560, 62, 9060, 1058, 350, 4146, 2939, 198, 220, 220, 220, 220, 220, 220, 220, 350, 4146, 7412, 326, 318, 287, 3175, 5857, 4235, 13, 628, 220, 220, 220, 16409, 198, 220, 220, 220, 35656, 198, 220, 220, 220, 318, 62, 2164, 592, 38765, 1058, 20512, 198, 220, 220, 220, 220, 220, 220, 220, 6407, 611, 477, 7577, 287, 2939, 27043, 389, 12768, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 5560, 62, 9060, 13, 14171, 6624, 705, 47, 6, 198, 220, 220, 220, 1303, 651, 27043, 355, 281, 7177, 351, 371, 11, 402, 11, 347, 15180, 198, 220, 220, 220, 27043, 796, 45941, 13, 292, 18747, 7, 79, 346, 62, 9060, 13, 1136, 18596, 5857, 3419, 737, 3447, 1758, 19510, 11645, 11, 513, 4008, 198, 220, 220, 220, 1303, 1892, 477, 27043, 7577, 389, 973, 26, 21958, 7577, 423, 18556, 3815, 13, 198, 220, 220, 220, 923, 11, 2245, 796, 5560, 62, 9060, 13, 1136, 2302, 260, 2611, 3419, 198, 220, 220, 220, 4938, 62, 18596, 5857, 796, 27043, 58, 9688, 25, 11338, 1343, 352, 60, 198, 220, 220, 220, 1303, 7412, 318, 1036, 592, 38765, 611, 6518, 5400, 357, 49, 532, 402, 290, 402, 532, 347, 8, 198, 220, 220, 220, 1303, 389, 477, 6632, 13, 198, 220, 220, 220, 1441, 45941, 13, 439, 19836, 7, 37659, 13, 26069, 7, 12102, 62, 18596, 5857, 828, 657, 8, 628, 198, 4299, 299, 67, 18747, 62, 1462, 62, 79, 346, 7, 3258, 11, 5794, 62, 2536, 28, 14202, 2599, 198, 220, 220, 220, 37227, 43834, 281, 299, 67, 18747, 284, 257, 350, 4146, 2134, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 33973, 284, 7559, 12078, 1015, 15506, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 5240, 13, 358, 320, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5240, 796, 33705, 62, 292, 62, 549, 88, 660, 7, 3258, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4235, 796, 1391, 18, 25, 705, 36982, 3256, 604, 25, 705, 48192, 4339, 6, 92, 58, 3258, 13, 43358, 58, 17, 11907, 628, 220, 220, 220, 1288, 361, 5794, 62, 2536, 287, 37250, 11134, 3256, 705, 47, 10503, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 4235, 796, 705, 40, 26, 1433, 6, 198, 220, 220, 220, 220, 220, 220, 220, 4235, 62, 8692, 796, 705, 40, 6, 628, 220, 220, 220, 220, 220, 220, 220, 611, 5240, 13, 67, 4906, 13, 11031, 6624, 705, 69, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5240, 796, 33705, 62, 292, 62, 28611, 7, 3258, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 5240, 13, 9806, 3419, 1279, 17759, 290, 5240, 13, 1084, 3419, 18189, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5240, 796, 5240, 13, 459, 2981, 7, 37659, 13, 28611, 23, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4235, 796, 4235, 62, 8692, 796, 705, 43, 6, 628, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5240, 796, 33705, 62, 292, 62, 28611, 7, 3258, 8, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5240, 796, 33705, 62, 292, 62, 549, 88, 660, 7, 3258, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4235, 796, 705, 43, 6, 198, 220, 220, 220, 220, 220, 220, 220, 4235, 62, 8692, 796, 705, 43, 6, 628, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 62, 22252, 796, 5240, 13, 83, 26730, 4879, 3419, 198, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 7177, 62, 22252, 796, 5240, 13, 83, 455, 1806, 3419, 220, 1303, 399, 32152, 1279, 352, 13, 24, 628, 220, 220, 220, 611, 5240, 13, 358, 320, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 545, 796, 7412, 13, 3605, 7, 14171, 62, 8692, 11, 5240, 13, 51, 13, 43358, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 13, 6738, 33661, 7, 18747, 62, 22252, 11, 705, 1831, 3256, 4235, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 13, 6738, 8841, 7, 18747, 62, 22252, 11, 705, 1831, 3256, 4235, 8, 220, 1303, 350, 4146, 352, 13, 16, 13, 22, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 62, 43358, 796, 357, 3258, 13, 43358, 58, 16, 4357, 5240, 13, 43358, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 796, 7412, 13, 6738, 33661, 7, 14171, 11, 2939, 62, 43358, 11, 7177, 62, 22252, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 3460, 4163, 12331, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 545, 796, 7412, 13, 6738, 8841, 7, 14171, 11, 2939, 62, 43358, 11, 7177, 62, 22252, 8, 220, 1303, 350, 4146, 352, 13, 16, 13, 22, 198, 220, 220, 220, 1441, 545, 628, 198, 4299, 545, 21928, 7, 69, 3672, 11, 5240, 11, 5794, 62, 2536, 28, 14202, 11, 12429, 46265, 22046, 2599, 198, 220, 220, 220, 37227, 16928, 281, 2939, 284, 11898, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 277, 3672, 1058, 965, 393, 2393, 12, 2339, 2134, 198, 220, 220, 220, 220, 220, 220, 220, 6530, 286, 10965, 2393, 13, 198, 220, 220, 220, 5240, 1058, 299, 67, 18747, 286, 20398, 23, 393, 12178, 198, 220, 220, 220, 220, 220, 220, 220, 15690, 357, 9060, 8, 284, 3613, 13, 220, 943, 20477, 286, 1366, 12, 4906, 20398, 23, 815, 423, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 287, 685, 15, 11, 14280, 4357, 9472, 12462, 12, 4122, 26515, 1276, 307, 198, 220, 220, 220, 220, 220, 220, 220, 287, 685, 15, 11, 352, 4083, 198, 220, 220, 220, 5794, 62, 2536, 25, 965, 198, 220, 220, 220, 220, 220, 220, 220, 18980, 284, 3613, 355, 11, 428, 318, 4277, 276, 284, 36182, 611, 1262, 257, 2393, 12, 2339, 198, 220, 220, 220, 220, 220, 220, 220, 2134, 26, 428, 481, 307, 10944, 422, 262, 7552, 611, 277, 3672, 318, 257, 4731, 198, 220, 220, 220, 479, 86, 22046, 25, 8633, 198, 220, 220, 220, 220, 220, 220, 220, 7383, 4775, 7159, 284, 262, 19770, 322, 3613, 2163, 357, 273, 256, 361, 487, 576, 3613, 198, 220, 220, 220, 220, 220, 220, 220, 2163, 11, 329, 35775, 3696, 737, 2312, 389, 5794, 10795, 13, 1114, 1672, 11, 198, 220, 220, 220, 220, 220, 220, 220, 19770, 322, 338, 48561, 3613, 2163, 6971, 281, 18253, 7559, 13237, 15506, 4578, 198, 220, 220, 220, 220, 220, 220, 220, 351, 3815, 287, 685, 16, 11, 6957, 4357, 981, 309, 5064, 5777, 576, 6971, 257, 7559, 5589, 601, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 18253, 4578, 351, 3815, 287, 685, 15, 11, 860, 4083, 628, 220, 220, 220, 11822, 198, 220, 220, 220, 37404, 198, 220, 220, 220, 5765, 262, 11361, 48656, 10074, 13, 198, 220, 220, 220, 4091, 350, 4146, 34165, 685, 16, 60, 62, 329, 257, 1351, 286, 584, 4855, 17519, 13, 198, 220, 220, 220, 1439, 4263, 13769, 2060, 6518, 36182, 82, 389, 11513, 1262, 4600, 9600, 62, 292, 62, 28611, 23, 44646, 198, 220, 220, 220, 14206, 11102, 36182, 82, 423, 262, 1708, 4069, 25, 198, 220, 220, 220, 532, 34142, 3815, 287, 685, 15, 11, 14280, 60, 290, 41146, 3858, 4613, 33705, 62, 292, 62, 28611, 23, 198, 220, 220, 220, 532, 49768, 966, 290, 584, 37014, 4613, 33705, 62, 292, 62, 28611, 1433, 628, 220, 220, 220, 31458, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 11485, 685, 16, 60, 2638, 1378, 27215, 322, 13, 961, 83, 704, 420, 82, 13, 2398, 14, 268, 14, 42861, 14, 4993, 2070, 14, 9060, 12, 7753, 12, 687, 1381, 13, 6494, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1303, 4277, 284, 36182, 611, 2393, 12, 2339, 2134, 198, 220, 220, 220, 611, 407, 318, 39098, 7, 69, 3672, 11, 965, 8, 290, 5794, 62, 2536, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5794, 62, 2536, 796, 366, 47, 10503, 1, 198, 220, 220, 220, 1303, 6822, 329, 279, 782, 287, 29472, 198, 220, 220, 220, 611, 357, 271, 39098, 7, 69, 3672, 11, 965, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 290, 277, 3672, 13, 21037, 22446, 437, 2032, 342, 7, 1911, 11134, 4943, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5794, 62, 2536, 796, 366, 47, 10503, 1, 628, 220, 220, 220, 5240, 796, 45941, 13, 292, 1092, 18747, 7, 3258, 8, 628, 220, 220, 220, 611, 5240, 13, 67, 4906, 13, 11031, 6624, 705, 65, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 5240, 796, 5240, 13, 459, 2981, 7, 37659, 13, 28611, 23, 8, 628, 220, 220, 220, 611, 5240, 13, 358, 320, 407, 287, 357, 17, 11, 513, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 5485, 329, 2939, 7177, 25, 4064, 82, 1, 4064, 357, 3258, 13, 43358, 11, 15306, 628, 220, 220, 220, 611, 5240, 13, 358, 320, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 5240, 13, 43358, 58, 17, 60, 407, 287, 357, 18, 11, 604, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 1271, 286, 9619, 287, 2939, 7177, 19570, 628, 220, 220, 220, 33705, 796, 299, 67, 18747, 62, 1462, 62, 79, 346, 7, 3258, 11, 5794, 62, 2536, 28, 18982, 62, 2536, 8, 198, 220, 220, 220, 33705, 13, 21928, 7, 69, 3672, 11, 5794, 28, 18982, 62, 2536, 11, 12429, 46265, 22046, 8, 198 ]
2.218286
3,500
# -*- coding: utf-8 -*- """ Linear chain of reactions. """ from __future__ import print_function, division import tellurium as te model = ''' model feedback() // Reactions: J0: $X0 -> S1; (VM1 * (X0 - S1/Keq1))/(1 + X0 + S1 + S4^h); J1: S1 -> S2; (10 * S1 - 2 * S2) / (1 + S1 + S2); J2: S2 -> S3; (10 * S2 - 2 * S3) / (1 + S2 + S3); J3: S3 -> S4; (10 * S3 - 2 * S4) / (1 + S3 + S4); J4: S4 -> $X1; (V4 * S4) / (KS4 + S4); // Species initializations: S1 = 0; S2 = 0; S3 = 0; S4 = 0; X0 = 10; X1 = 0; // Variable initialization: VM1 = 10; Keq1 = 10; h = 10; V4 = 2.5; KS4 = 0.5; end''' r = te.loada(model) result = r.simulate(0, 40, 500) r.plotWithLegend(result)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 198, 14993, 451, 6333, 286, 12737, 13, 198, 37811, 198, 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 11, 7297, 198, 11748, 1560, 333, 1505, 355, 573, 198, 198, 19849, 796, 705, 7061, 198, 19849, 7538, 3419, 198, 220, 220, 3373, 797, 4658, 25, 198, 220, 220, 449, 15, 25, 720, 55, 15, 4613, 311, 16, 26, 357, 15996, 16, 1635, 357, 55, 15, 532, 311, 16, 14, 8896, 80, 16, 4008, 29006, 16, 1343, 1395, 15, 1343, 311, 16, 1343, 220, 220, 311, 19, 61, 71, 1776, 198, 220, 220, 449, 16, 25, 311, 16, 4613, 311, 17, 26, 357, 940, 1635, 311, 16, 532, 362, 1635, 311, 17, 8, 1220, 357, 16, 1343, 311, 16, 1343, 311, 17, 1776, 198, 220, 220, 449, 17, 25, 311, 17, 4613, 311, 18, 26, 357, 940, 1635, 311, 17, 532, 362, 1635, 311, 18, 8, 1220, 357, 16, 1343, 311, 17, 1343, 311, 18, 1776, 198, 220, 220, 449, 18, 25, 311, 18, 4613, 311, 19, 26, 357, 940, 1635, 311, 18, 532, 362, 1635, 311, 19, 8, 1220, 357, 16, 1343, 311, 18, 1343, 311, 19, 1776, 198, 220, 220, 449, 19, 25, 311, 19, 4613, 720, 55, 16, 26, 357, 53, 19, 1635, 311, 19, 8, 1220, 357, 27015, 19, 1343, 311, 19, 1776, 628, 220, 3373, 28540, 4238, 4582, 25, 198, 220, 311, 16, 796, 657, 26, 311, 17, 796, 657, 26, 311, 18, 796, 657, 26, 198, 220, 311, 19, 796, 657, 26, 1395, 15, 796, 838, 26, 1395, 16, 796, 657, 26, 628, 220, 3373, 35748, 37588, 25, 198, 220, 16990, 16, 796, 838, 26, 3873, 80, 16, 796, 838, 26, 289, 796, 838, 26, 569, 19, 796, 362, 13, 20, 26, 34172, 19, 796, 657, 13, 20, 26, 198, 437, 7061, 6, 198, 198, 81, 796, 573, 13, 2220, 64, 7, 19849, 8, 198, 20274, 796, 374, 13, 14323, 5039, 7, 15, 11, 2319, 11, 5323, 8, 198, 81, 13, 29487, 3152, 21351, 7, 20274, 8, 198 ]
2.002882
347
from .users import User, UserCreate, UserUpdate from .transactions import Transaction, TransactionCreate, TransactionUpdate from .accounts import Account, AccountList, AccountSingle, AccountCreate, AccountUpdate from .categories import Category, CategoryCreate, CategoryUpdate
[ 6738, 764, 18417, 1330, 11787, 11, 11787, 16447, 11, 11787, 10260, 198, 6738, 764, 7645, 4658, 1330, 45389, 11, 45389, 16447, 11, 45389, 10260, 198, 6738, 764, 23317, 82, 1330, 10781, 11, 10781, 8053, 11, 10781, 28008, 11, 10781, 16447, 11, 10781, 10260, 198, 6738, 764, 66, 26129, 1330, 21743, 11, 21743, 16447, 11, 21743, 10260 ]
4.928571
56
def method_accepting_cls(cls, self): # Using plain `super()` is not valid here, since there's no `__class__` cell found # (Exact exception would be 'RuntimeError: super(): __class__ cell not found') # Instead, we expect to *not* see a warning about `super-with-arguments`. # Explicitly passing `cls`, and `self` to `super()` is what's required. super(cls, self).__init__()
[ 628, 628, 628, 198, 4299, 2446, 62, 13635, 278, 62, 565, 82, 7, 565, 82, 11, 2116, 2599, 198, 220, 220, 220, 1303, 8554, 8631, 4600, 16668, 3419, 63, 318, 407, 4938, 994, 11, 1201, 612, 338, 645, 4600, 834, 4871, 834, 63, 2685, 1043, 198, 220, 220, 220, 1303, 357, 3109, 529, 6631, 561, 307, 705, 41006, 12331, 25, 2208, 33529, 11593, 4871, 834, 2685, 407, 1043, 11537, 198, 220, 220, 220, 1303, 5455, 11, 356, 1607, 284, 1635, 1662, 9, 766, 257, 6509, 546, 4600, 16668, 12, 4480, 12, 853, 2886, 44646, 198, 220, 220, 220, 1303, 11884, 306, 6427, 4600, 565, 82, 47671, 290, 4600, 944, 63, 284, 4600, 16668, 3419, 63, 318, 644, 338, 2672, 13, 198, 220, 220, 220, 2208, 7, 565, 82, 11, 2116, 737, 834, 15003, 834, 3419, 198 ]
2.941176
136
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from flask import flash import numpy as np
[ 11748, 19798, 292, 355, 279, 67, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 384, 397, 1211, 355, 3013, 82, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 6738, 1341, 35720, 13, 3866, 36948, 1330, 36052, 27195, 12342, 198, 6738, 1341, 35720, 13, 1072, 11306, 1330, 14534, 34605, 9487, 7483, 198, 6738, 1341, 35720, 13, 4164, 10466, 1330, 9922, 62, 26675, 198, 6738, 42903, 1330, 7644, 198, 11748, 299, 32152, 355, 45941, 628, 628 ]
3.662791
86
# This version of the bitcoin experiment imports data preprocessed in Matlab, and uses the GCN baseline # The point of this script is to do link prediction # Imports and aliases import pickle import torch as t import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.datasets as datasets import numpy as np import matplotlib.pyplot as plt import cProfile import pandas as pd import datetime from scipy.sparse import csr_matrix import os.path import embedding_help_functions as ehf import scipy.io as sio unsq = t.unsqueeze sq = t.squeeze # Settings alpha_vec = [.75, .76, .77, .78, .79, .80, .81, .82, .83, .84, .85, .86, .87, .88, .89, .90, .91, .92, .93, .94, .95] no_layers = 1 dataset = "OTC" # OTC or Alpha no_epochs = 1000 mat_f_name = "saved_content_bitcoin_otc.mat" no_trials = 1 beta1 = 19 beta2 = 19 cutoff = 95 eval_type = "MAP-MRR" # "MAP-MRR" or "F1" data_loc = "data/Bitcoin_" + dataset + "/" S_train, S_val, S_test = 95, 20, 20 lr = 0.01 momentum = 0.9 # Load and return relevant data A, A_labels, C_train, C_val, C_test, N = ehf.load_data(data_loc, mat_f_name, S_train, S_val, S_test, transformed=False) # Create features for the nodes X_train, X_val, X_test = ehf.create_node_features(A, S_train, S_val, S_test, same_block_size=False) # Extract edges and labels from A_labels, and augment with nonexisting edges # edges, beta edges = A_labels._indices() edges_aug, labels = ehf.augment_edges(edges, N, beta1, beta2, cutoff) # Divide adjacency matrices and labels into training, validation and testing sets edges_train, target_train, e_train, edges_val, target_val, e_val, edges_test, target_test, e_test = ehf.split_data(edges_aug, labels, S_train, S_val, S_test, same_block_size = False) if no_trials > 1: ep_acc_loss_vec = [] for tr in range(no_trials): for alpha in alpha_vec: class_weights = t.tensor([alpha, 1.0-alpha]) save_res_fname = "results_BASELINE_layers" + str(no_layers) + "_w" + str(round(float(class_weights[0])*100)) + "_" + dataset + "_link_prediction" # Create gcn for training if no_layers == 2: gcn = ehf.EmbeddingKWGCN(C_train[:-1], X_train[:-1], e_train, [6,6,2], nonlin2="selu") elif no_layers == 1: gcn = ehf.EmbeddingKWGCN(C_train[:-1], X_train[:-1], e_train, [6,2]) # Train optimizer = t.optim.SGD(gcn.parameters(), lr=lr, momentum=momentum) criterion = nn.CrossEntropyLoss(weight=class_weights) # Takes arguments (output, target) if eval_type == "F1": ep_acc_loss = np.zeros((no_epochs,12)) # (precision_train, recall_train, f1_train, loss_train, precision_val, recall_val, f1_val, loss_val, precision_test, recall_test, f1_test, loss_test) elif eval_type == "MAP-MRR": ep_acc_loss = np.zeros((no_epochs,9)) # (MAP_train, MRR_train, loss_train, MAP_val, MRR_val, loss_val, MAP_test, MRR_test, loss_test) for ep in range(no_epochs): # Compute loss and take step optimizer.zero_grad() output_train = gcn() loss_train = criterion(output_train, target_train[edges_train[0]!=0]) loss_train.backward() optimizer.step() # Things that don't require gradient with t.no_grad(): if ep % 100 == 0: # Compute stats for training data; no point in doing more often than this guess_train = t.argmax(output_train, dim=1) if eval_type == "F1": precision_train, recall_train, f1_train = ehf.compute_f1(guess_train, target_train[edges_train[0]!=0]) elif eval_type == "MAP-MRR": MAP_train, MRR_train = ehf.compute_MAP_MRR(output_train, target_train[edges_train[0]!=0], edges_train[:, edges_train[0]!=0]) # Compute stats for validation data output_val = gcn(C_val[:-1], X_val[:-1], e_val) guess_val = t.argmax(output_val, dim=1) if eval_type == "F1": precision_val, recall_val, f1_val = ehf.compute_f1(guess_val, target_val[edges_val[0]!=0]) elif eval_type == "MAP-MRR": MAP_val, MRR_val = ehf.compute_MAP_MRR(output_val, target_val[edges_val[0]!=0], edges_val[:, edges_val[0]!=0]) loss_val = criterion(output_val, target_val[edges_val[0]!=0]) # Compute stats for test data output_test = gcn(C_test[:-1], X_test[:-1], e_test) guess_test = t.argmax(output_test, dim=1) if eval_type == "F1": precision_test, recall_test, f1_test = ehf.compute_f1(guess_test, target_test[edges_test[0]!=0]) elif eval_type == "MAP-MRR": MAP_test, MRR_test = ehf.compute_MAP_MRR(output_test, target_test[edges_test[0]!=0], edges_test[:, edges_test[0]!=0]) loss_test = criterion(output_test, target_test[edges_test[0]!=0]) # Print if eval_type == "F1": ehf.print_f1(precision_train, recall_train, f1_train, loss_train, precision_val, recall_val, f1_val, loss_val, precision_test, recall_test, f1_test, loss_test, alpha, tr, ep) elif eval_type == "MAP-MRR": print("alpha/Tr/Ep %.2f/%d/%d. Train MAP/MRR %.16f/%.16f. Train loss %.16f." % (alpha, tr, ep, MAP_train, MRR_train, loss_train)) print("alpha/Tr/Ep %.2f/%d/%d. Val MAP/MRR %.16f/%.16f. Val loss %.16f." % (alpha, tr, ep, MAP_val, MRR_val, loss_val)) print("alpha/Tr/Ep %.2f/%d/%d. Test MAP/MRR %.16f/%.16f. Test loss %.16f.\n" % (alpha, tr, ep, MAP_test, MRR_test, loss_test)) # Store values with results if eval_type == "F1": ep_acc_loss[ep] = [precision_train, recall_train, f1_train, loss_train, precision_val, recall_val, f1_val, loss_val, precision_test, recall_test, f1_test, loss_test] elif eval_type == "MAP-MRR": ep_acc_loss[ep] = [MAP_train, MRR_train, loss_train, MAP_val, MRR_val, loss_val, MAP_test, MRR_test, loss_test] if eval_type == "F1": ehf.print_f1(precision_train, recall_train, f1_train, loss_train, precision_val, recall_val, f1_val, loss_val, precision_test, recall_test, f1_test, loss_test, is_final=True) elif eval_type == "MAP-MRR": print("FINAL: Train MAP/MRR %.16f/%.16f. Train loss %.16f." % (MAP_train, MRR_train, loss_train)) print("FINAL: Val MAP/MRR %.16f/%.16f. Val loss %.16f." % (MAP_val, MRR_val, loss_val)) print("FINAL: Test MAP/MRR %.16f/%.16f. Test loss %.16f.\n" % (MAP_test, MRR_test, loss_test)) if no_trials == 1: pickle.dump(ep_acc_loss, open(save_res_fname, "wb")) print("Results saved for single trial") else: ep_acc_loss_vec.append(ep_acc_loss) if no_trials > 1: pickle.dump(ep_acc_loss_vec, open(save_res_fname + "_no_trials" + str(no_trials), "wb")) print("Results saved for all trials")
[ 2, 770, 2196, 286, 262, 8550, 6306, 17944, 1366, 662, 14681, 276, 287, 6550, 23912, 11, 290, 3544, 262, 20145, 45, 14805, 198, 2, 383, 966, 286, 428, 4226, 318, 284, 466, 2792, 17724, 198, 198, 2, 1846, 3742, 290, 47217, 198, 11748, 2298, 293, 198, 11748, 28034, 355, 256, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 28034, 13, 20471, 13, 45124, 355, 376, 198, 11748, 28034, 10178, 198, 11748, 28034, 10178, 13, 19608, 292, 1039, 355, 40522, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 11748, 269, 37046, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 4818, 8079, 198, 6738, 629, 541, 88, 13, 82, 29572, 1330, 269, 27891, 62, 6759, 8609, 198, 11748, 28686, 13, 6978, 198, 11748, 11525, 12083, 62, 16794, 62, 12543, 2733, 355, 32622, 69, 198, 11748, 629, 541, 88, 13, 952, 355, 264, 952, 198, 13271, 80, 796, 256, 13, 13271, 421, 1453, 2736, 198, 31166, 796, 256, 13, 16485, 1453, 2736, 198, 198, 2, 16163, 198, 26591, 62, 35138, 796, 685, 13, 2425, 11, 764, 4304, 11, 764, 3324, 11, 764, 3695, 11, 764, 3720, 11, 764, 1795, 11, 764, 6659, 11, 764, 6469, 11, 764, 5999, 11, 764, 5705, 11, 764, 5332, 11, 764, 4521, 11, 764, 5774, 11, 764, 3459, 11, 764, 4531, 11, 764, 3829, 11, 764, 6420, 11, 764, 5892, 11, 764, 6052, 11, 764, 5824, 11, 764, 3865, 60, 198, 3919, 62, 75, 6962, 796, 352, 198, 19608, 292, 316, 796, 366, 2394, 34, 1, 1303, 440, 4825, 393, 12995, 198, 3919, 62, 538, 5374, 82, 796, 8576, 198, 6759, 62, 69, 62, 3672, 796, 366, 82, 9586, 62, 11299, 62, 35395, 62, 313, 66, 13, 6759, 1, 198, 3919, 62, 28461, 874, 796, 352, 198, 31361, 16, 796, 678, 198, 31361, 17, 796, 678, 198, 8968, 2364, 796, 6957, 198, 18206, 62, 4906, 796, 366, 33767, 12, 13599, 49, 1, 1303, 366, 33767, 12, 13599, 49, 1, 393, 366, 37, 16, 1, 198, 198, 7890, 62, 17946, 796, 366, 7890, 14, 22614, 62, 1, 1343, 27039, 1343, 12813, 1, 198, 50, 62, 27432, 11, 311, 62, 2100, 11, 311, 62, 9288, 796, 6957, 11, 1160, 11, 1160, 198, 14050, 796, 657, 13, 486, 198, 32542, 298, 388, 796, 657, 13, 24, 198, 198, 2, 8778, 290, 1441, 5981, 1366, 198, 32, 11, 317, 62, 23912, 1424, 11, 327, 62, 27432, 11, 327, 62, 2100, 11, 327, 62, 9288, 11, 399, 796, 32622, 69, 13, 2220, 62, 7890, 7, 7890, 62, 17946, 11, 2603, 62, 69, 62, 3672, 11, 311, 62, 27432, 11, 311, 62, 2100, 11, 311, 62, 9288, 11, 14434, 28, 25101, 8, 198, 198, 2, 13610, 3033, 329, 262, 13760, 198, 55, 62, 27432, 11, 1395, 62, 2100, 11, 1395, 62, 9288, 796, 32622, 69, 13, 17953, 62, 17440, 62, 40890, 7, 32, 11, 311, 62, 27432, 11, 311, 62, 2100, 11, 311, 62, 9288, 11, 976, 62, 9967, 62, 7857, 28, 25101, 8, 198, 198, 2, 29677, 13015, 290, 14722, 422, 317, 62, 23912, 1424, 11, 290, 35016, 351, 36196, 9665, 13015, 198, 2, 13015, 11, 12159, 198, 276, 3212, 796, 317, 62, 23912, 1424, 13557, 521, 1063, 3419, 198, 276, 3212, 62, 7493, 11, 14722, 796, 32622, 69, 13, 559, 5154, 62, 276, 3212, 7, 276, 3212, 11, 399, 11, 12159, 16, 11, 12159, 17, 11, 45616, 8, 198, 198, 2, 46894, 9224, 330, 1387, 2603, 45977, 290, 14722, 656, 3047, 11, 21201, 290, 4856, 5621, 198, 276, 3212, 62, 27432, 11, 2496, 62, 27432, 11, 304, 62, 27432, 11, 13015, 62, 2100, 11, 2496, 62, 2100, 11, 304, 62, 2100, 11, 13015, 62, 9288, 11, 2496, 62, 9288, 11, 304, 62, 9288, 796, 32622, 69, 13, 35312, 62, 7890, 7, 276, 3212, 62, 7493, 11, 14722, 11, 311, 62, 27432, 11, 311, 62, 2100, 11, 311, 62, 9288, 11, 976, 62, 9967, 62, 7857, 796, 10352, 8, 198, 198, 361, 645, 62, 28461, 874, 1875, 352, 25, 198, 197, 538, 62, 4134, 62, 22462, 62, 35138, 796, 17635, 198, 198, 1640, 491, 287, 2837, 7, 3919, 62, 28461, 874, 2599, 198, 197, 1640, 17130, 287, 17130, 62, 35138, 25, 198, 197, 197, 4871, 62, 43775, 796, 256, 13, 83, 22854, 26933, 26591, 11, 352, 13, 15, 12, 26591, 12962, 198, 197, 197, 21928, 62, 411, 62, 69, 3672, 796, 366, 43420, 62, 33, 1921, 3698, 8881, 62, 75, 6962, 1, 1343, 965, 7, 3919, 62, 75, 6962, 8, 1343, 45434, 86, 1, 1343, 965, 7, 744, 7, 22468, 7, 4871, 62, 43775, 58, 15, 12962, 9, 3064, 4008, 1343, 45434, 1, 1343, 27039, 1343, 45434, 8726, 62, 28764, 2867, 1, 628, 197, 197, 2, 13610, 308, 31522, 329, 3047, 198, 197, 197, 361, 645, 62, 75, 6962, 6624, 362, 25, 198, 197, 197, 197, 70, 31522, 796, 32622, 69, 13, 31567, 6048, 278, 42, 54, 15916, 45, 7, 34, 62, 27432, 58, 21912, 16, 4357, 1395, 62, 27432, 58, 21912, 16, 4357, 304, 62, 27432, 11, 685, 21, 11, 21, 11, 17, 4357, 1729, 2815, 17, 2625, 741, 84, 4943, 198, 197, 197, 417, 361, 645, 62, 75, 6962, 6624, 352, 25, 198, 197, 197, 197, 70, 31522, 796, 32622, 69, 13, 31567, 6048, 278, 42, 54, 15916, 45, 7, 34, 62, 27432, 58, 21912, 16, 4357, 1395, 62, 27432, 58, 21912, 16, 4357, 304, 62, 27432, 11, 685, 21, 11, 17, 12962, 628, 197, 197, 2, 16835, 198, 197, 197, 40085, 7509, 796, 256, 13, 40085, 13, 38475, 35, 7, 70, 31522, 13, 17143, 7307, 22784, 300, 81, 28, 14050, 11, 12858, 28, 32542, 298, 388, 8, 198, 197, 197, 22213, 28019, 796, 299, 77, 13, 21544, 14539, 28338, 43, 793, 7, 6551, 28, 4871, 62, 43775, 8, 1303, 33687, 7159, 357, 22915, 11, 2496, 8, 198, 197, 197, 361, 5418, 62, 4906, 6624, 366, 37, 16, 1298, 198, 197, 197, 197, 538, 62, 4134, 62, 22462, 796, 45941, 13, 9107, 418, 19510, 3919, 62, 538, 5374, 82, 11, 1065, 4008, 1303, 357, 3866, 16005, 62, 27432, 11, 10014, 62, 27432, 11, 277, 16, 62, 27432, 11, 2994, 62, 27432, 11, 15440, 62, 2100, 11, 10014, 62, 2100, 11, 277, 16, 62, 2100, 11, 2994, 62, 2100, 11, 15440, 62, 9288, 11, 10014, 62, 9288, 11, 277, 16, 62, 9288, 11, 2994, 62, 9288, 8, 198, 197, 197, 417, 361, 5418, 62, 4906, 6624, 366, 33767, 12, 13599, 49, 1298, 198, 197, 197, 197, 538, 62, 4134, 62, 22462, 796, 45941, 13, 9107, 418, 19510, 3919, 62, 538, 5374, 82, 11, 24, 4008, 1303, 357, 33767, 62, 27432, 11, 17242, 49, 62, 27432, 11, 2994, 62, 27432, 11, 34645, 62, 2100, 11, 17242, 49, 62, 2100, 11, 2994, 62, 2100, 11, 34645, 62, 9288, 11, 17242, 49, 62, 9288, 11, 2994, 62, 9288, 8, 628, 197, 197, 1640, 2462, 287, 2837, 7, 3919, 62, 538, 5374, 82, 2599, 198, 197, 197, 197, 2, 3082, 1133, 2994, 290, 1011, 2239, 198, 197, 197, 197, 40085, 7509, 13, 22570, 62, 9744, 3419, 198, 197, 197, 197, 22915, 62, 27432, 796, 308, 31522, 3419, 198, 197, 197, 197, 22462, 62, 27432, 796, 34054, 7, 22915, 62, 27432, 11, 2496, 62, 27432, 58, 276, 3212, 62, 27432, 58, 15, 60, 0, 28, 15, 12962, 198, 197, 197, 197, 22462, 62, 27432, 13, 1891, 904, 3419, 198, 197, 197, 197, 40085, 7509, 13, 9662, 3419, 628, 197, 197, 197, 2, 11597, 326, 836, 470, 2421, 31312, 198, 197, 197, 197, 4480, 256, 13, 3919, 62, 9744, 33529, 198, 197, 197, 197, 197, 361, 2462, 4064, 1802, 6624, 657, 25, 198, 197, 197, 197, 197, 197, 2, 3082, 1133, 9756, 329, 3047, 1366, 26, 645, 966, 287, 1804, 517, 1690, 621, 428, 198, 197, 197, 197, 197, 197, 5162, 408, 62, 27432, 796, 256, 13, 853, 9806, 7, 22915, 62, 27432, 11, 5391, 28, 16, 8, 198, 197, 197, 197, 197, 197, 361, 5418, 62, 4906, 6624, 366, 37, 16, 1298, 198, 197, 197, 197, 197, 197, 197, 3866, 16005, 62, 27432, 11, 10014, 62, 27432, 11, 277, 16, 62, 27432, 796, 32622, 69, 13, 5589, 1133, 62, 69, 16, 7, 5162, 408, 62, 27432, 11, 2496, 62, 27432, 58, 276, 3212, 62, 27432, 58, 15, 60, 0, 28, 15, 12962, 198, 197, 197, 197, 197, 197, 417, 361, 5418, 62, 4906, 6624, 366, 33767, 12, 13599, 49, 1298, 198, 197, 197, 197, 197, 197, 197, 33767, 62, 27432, 11, 17242, 49, 62, 27432, 796, 32622, 69, 13, 5589, 1133, 62, 33767, 62, 13599, 49, 7, 22915, 62, 27432, 11, 2496, 62, 27432, 58, 276, 3212, 62, 27432, 58, 15, 60, 0, 28, 15, 4357, 13015, 62, 27432, 58, 45299, 13015, 62, 27432, 58, 15, 60, 0, 28, 15, 12962, 628, 197, 197, 197, 197, 197, 2, 3082, 1133, 9756, 329, 21201, 1366, 198, 197, 197, 197, 197, 197, 22915, 62, 2100, 796, 308, 31522, 7, 34, 62, 2100, 58, 21912, 16, 4357, 1395, 62, 2100, 58, 21912, 16, 4357, 304, 62, 2100, 8, 198, 197, 197, 197, 197, 197, 5162, 408, 62, 2100, 796, 256, 13, 853, 9806, 7, 22915, 62, 2100, 11, 5391, 28, 16, 8, 198, 197, 197, 197, 197, 197, 361, 5418, 62, 4906, 6624, 366, 37, 16, 1298, 198, 197, 197, 197, 197, 197, 197, 3866, 16005, 62, 2100, 11, 10014, 62, 2100, 11, 277, 16, 62, 2100, 796, 32622, 69, 13, 5589, 1133, 62, 69, 16, 7, 5162, 408, 62, 2100, 11, 2496, 62, 2100, 58, 276, 3212, 62, 2100, 58, 15, 60, 0, 28, 15, 12962, 198, 197, 197, 197, 197, 197, 417, 361, 5418, 62, 4906, 6624, 366, 33767, 12, 13599, 49, 1298, 198, 197, 197, 197, 197, 197, 197, 33767, 62, 2100, 11, 17242, 49, 62, 2100, 796, 32622, 69, 13, 5589, 1133, 62, 33767, 62, 13599, 49, 7, 22915, 62, 2100, 11, 2496, 62, 2100, 58, 276, 3212, 62, 2100, 58, 15, 60, 0, 28, 15, 4357, 13015, 62, 2100, 58, 45299, 13015, 62, 2100, 58, 15, 60, 0, 28, 15, 12962, 198, 197, 197, 197, 197, 197, 22462, 62, 2100, 796, 34054, 7, 22915, 62, 2100, 11, 2496, 62, 2100, 58, 276, 3212, 62, 2100, 58, 15, 60, 0, 28, 15, 12962, 198, 197, 197, 197, 197, 197, 198, 197, 197, 197, 197, 197, 2, 3082, 1133, 9756, 329, 1332, 1366, 198, 197, 197, 197, 197, 197, 22915, 62, 9288, 796, 308, 31522, 7, 34, 62, 9288, 58, 21912, 16, 4357, 1395, 62, 9288, 58, 21912, 16, 4357, 304, 62, 9288, 8, 198, 197, 197, 197, 197, 197, 5162, 408, 62, 9288, 796, 256, 13, 853, 9806, 7, 22915, 62, 9288, 11, 5391, 28, 16, 8, 198, 197, 197, 197, 197, 197, 361, 5418, 62, 4906, 6624, 366, 37, 16, 1298, 198, 197, 197, 197, 197, 197, 197, 3866, 16005, 62, 9288, 11, 10014, 62, 9288, 11, 277, 16, 62, 9288, 796, 32622, 69, 13, 5589, 1133, 62, 69, 16, 7, 5162, 408, 62, 9288, 11, 2496, 62, 9288, 58, 276, 3212, 62, 9288, 58, 15, 60, 0, 28, 15, 12962, 198, 197, 197, 197, 197, 197, 417, 361, 5418, 62, 4906, 6624, 366, 33767, 12, 13599, 49, 1298, 198, 197, 197, 197, 197, 197, 197, 33767, 62, 9288, 11, 17242, 49, 62, 9288, 796, 32622, 69, 13, 5589, 1133, 62, 33767, 62, 13599, 49, 7, 22915, 62, 9288, 11, 2496, 62, 9288, 58, 276, 3212, 62, 9288, 58, 15, 60, 0, 28, 15, 4357, 13015, 62, 9288, 58, 45299, 13015, 62, 9288, 58, 15, 60, 0, 28, 15, 12962, 198, 197, 197, 197, 197, 197, 22462, 62, 9288, 796, 34054, 7, 22915, 62, 9288, 11, 2496, 62, 9288, 58, 276, 3212, 62, 9288, 58, 15, 60, 0, 28, 15, 12962, 628, 197, 197, 197, 197, 197, 2, 12578, 198, 197, 197, 197, 197, 197, 361, 5418, 62, 4906, 6624, 366, 37, 16, 1298, 198, 197, 197, 197, 197, 197, 197, 17231, 69, 13, 4798, 62, 69, 16, 7, 3866, 16005, 62, 27432, 11, 10014, 62, 27432, 11, 277, 16, 62, 27432, 11, 2994, 62, 27432, 11, 15440, 62, 2100, 11, 10014, 62, 2100, 11, 277, 16, 62, 2100, 11, 2994, 62, 2100, 11, 15440, 62, 9288, 11, 10014, 62, 9288, 11, 277, 16, 62, 9288, 11, 2994, 62, 9288, 11, 17130, 11, 491, 11, 2462, 8, 198, 197, 197, 197, 197, 197, 417, 361, 5418, 62, 4906, 6624, 366, 33767, 12, 13599, 49, 1298, 198, 197, 197, 197, 197, 197, 197, 4798, 7203, 26591, 14, 2898, 14, 13807, 4064, 13, 17, 69, 14, 4, 67, 14, 4, 67, 13, 16835, 34645, 14, 13599, 49, 4064, 13, 1433, 69, 14, 7225, 1433, 69, 13, 16835, 2994, 4064, 13, 1433, 69, 526, 4064, 357, 26591, 11, 491, 11, 2462, 11, 34645, 62, 27432, 11, 17242, 49, 62, 27432, 11, 2994, 62, 27432, 4008, 198, 197, 197, 197, 197, 197, 197, 4798, 7203, 26591, 14, 2898, 14, 13807, 4064, 13, 17, 69, 14, 4, 67, 14, 4, 67, 13, 3254, 34645, 14, 13599, 49, 4064, 13, 1433, 69, 14, 7225, 1433, 69, 13, 3254, 2994, 4064, 13, 1433, 69, 526, 4064, 357, 26591, 11, 491, 11, 2462, 11, 34645, 62, 2100, 11, 17242, 49, 62, 2100, 11, 2994, 62, 2100, 4008, 198, 197, 197, 197, 197, 197, 197, 4798, 7203, 26591, 14, 2898, 14, 13807, 4064, 13, 17, 69, 14, 4, 67, 14, 4, 67, 13, 6208, 34645, 14, 13599, 49, 4064, 13, 1433, 69, 14, 7225, 1433, 69, 13, 6208, 2994, 4064, 13, 1433, 69, 13, 59, 77, 1, 4064, 357, 26591, 11, 491, 11, 2462, 11, 34645, 62, 9288, 11, 17242, 49, 62, 9288, 11, 2994, 62, 9288, 4008, 628, 197, 197, 197, 197, 2, 9363, 3815, 351, 2482, 198, 197, 197, 197, 197, 361, 5418, 62, 4906, 6624, 366, 37, 16, 1298, 197, 197, 197, 197, 197, 197, 197, 198, 197, 197, 197, 197, 197, 538, 62, 4134, 62, 22462, 58, 538, 60, 796, 685, 3866, 16005, 62, 27432, 11, 10014, 62, 27432, 11, 277, 16, 62, 27432, 11, 2994, 62, 27432, 11, 15440, 62, 2100, 11, 10014, 62, 2100, 11, 277, 16, 62, 2100, 11, 2994, 62, 2100, 11, 15440, 62, 9288, 11, 10014, 62, 9288, 11, 277, 16, 62, 9288, 11, 2994, 62, 9288, 60, 198, 197, 197, 197, 197, 417, 361, 5418, 62, 4906, 6624, 366, 33767, 12, 13599, 49, 1298, 198, 197, 197, 197, 197, 197, 538, 62, 4134, 62, 22462, 58, 538, 60, 796, 685, 33767, 62, 27432, 11, 17242, 49, 62, 27432, 11, 2994, 62, 27432, 11, 34645, 62, 2100, 11, 17242, 49, 62, 2100, 11, 2994, 62, 2100, 11, 34645, 62, 9288, 11, 17242, 49, 62, 9288, 11, 2994, 62, 9288, 60, 628, 197, 197, 361, 5418, 62, 4906, 6624, 366, 37, 16, 1298, 198, 197, 197, 197, 17231, 69, 13, 4798, 62, 69, 16, 7, 3866, 16005, 62, 27432, 11, 10014, 62, 27432, 11, 277, 16, 62, 27432, 11, 2994, 62, 27432, 11, 15440, 62, 2100, 11, 10014, 62, 2100, 11, 277, 16, 62, 2100, 11, 2994, 62, 2100, 11, 15440, 62, 9288, 11, 10014, 62, 9288, 11, 277, 16, 62, 9288, 11, 2994, 62, 9288, 11, 318, 62, 20311, 28, 17821, 8, 198, 197, 197, 417, 361, 5418, 62, 4906, 6624, 366, 33767, 12, 13599, 49, 1298, 198, 197, 197, 197, 4798, 7203, 37, 17961, 25, 16835, 34645, 14, 13599, 49, 4064, 13, 1433, 69, 14, 7225, 1433, 69, 13, 16835, 2994, 4064, 13, 1433, 69, 526, 4064, 357, 33767, 62, 27432, 11, 17242, 49, 62, 27432, 11, 2994, 62, 27432, 4008, 198, 197, 197, 197, 4798, 7203, 37, 17961, 25, 3254, 34645, 14, 13599, 49, 4064, 13, 1433, 69, 14, 7225, 1433, 69, 13, 3254, 2994, 4064, 13, 1433, 69, 526, 4064, 357, 33767, 62, 2100, 11, 17242, 49, 62, 2100, 11, 2994, 62, 2100, 4008, 198, 197, 197, 197, 4798, 7203, 37, 17961, 25, 6208, 34645, 14, 13599, 49, 4064, 13, 1433, 69, 14, 7225, 1433, 69, 13, 6208, 2994, 4064, 13, 1433, 69, 13, 59, 77, 1, 4064, 357, 33767, 62, 9288, 11, 17242, 49, 62, 9288, 11, 2994, 62, 9288, 4008, 628, 197, 197, 361, 645, 62, 28461, 874, 6624, 352, 25, 198, 197, 197, 197, 27729, 293, 13, 39455, 7, 538, 62, 4134, 62, 22462, 11, 1280, 7, 21928, 62, 411, 62, 69, 3672, 11, 366, 39346, 48774, 198, 197, 197, 197, 4798, 7203, 25468, 7448, 329, 2060, 4473, 4943, 198, 197, 197, 17772, 25, 198, 197, 197, 197, 538, 62, 4134, 62, 22462, 62, 35138, 13, 33295, 7, 538, 62, 4134, 62, 22462, 8, 198, 198, 361, 645, 62, 28461, 874, 1875, 352, 25, 198, 197, 27729, 293, 13, 39455, 7, 538, 62, 4134, 62, 22462, 62, 35138, 11, 1280, 7, 21928, 62, 411, 62, 69, 3672, 1343, 45434, 3919, 62, 28461, 874, 1, 1343, 965, 7, 3919, 62, 28461, 874, 828, 366, 39346, 48774, 198, 197, 4798, 7203, 25468, 7448, 329, 477, 9867, 4943 ]
2.290851
2,809
import cPickle import numpy as np from elm import ELMClassifier from sklearn import linear_model if __name__ == '__main__': # Load data sets train_x, train_y, val_x, val_y, test_x, test_y = get_datasets(load_mnist()) # Build ELM cls = ELMClassifier(n_hidden=7000, alpha=0.93, activation_func='multiquadric', regressor=linear_model.Ridge(), random_state=21398023) cls.fit(train_x, train_y) # Evaluate model print 'Validation error:', cls.score(val_x, val_y) print 'Test error:', cls.score(test_x, test_y)
[ 11748, 269, 31686, 293, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1288, 76, 1330, 17852, 44, 9487, 7483, 198, 6738, 1341, 35720, 1330, 14174, 62, 19849, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1303, 8778, 1366, 5621, 198, 220, 220, 220, 4512, 62, 87, 11, 4512, 62, 88, 11, 1188, 62, 87, 11, 1188, 62, 88, 11, 1332, 62, 87, 11, 1332, 62, 88, 796, 651, 62, 19608, 292, 1039, 7, 2220, 62, 10295, 396, 28955, 198, 220, 220, 220, 1303, 10934, 17852, 44, 198, 220, 220, 220, 537, 82, 796, 17852, 44, 9487, 7483, 7, 77, 62, 30342, 28, 22, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 15, 13, 6052, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14916, 62, 20786, 11639, 16680, 1557, 324, 1173, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 842, 44292, 28, 29127, 62, 19849, 13, 49, 3130, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4738, 62, 5219, 28, 17, 20219, 1795, 1954, 8, 198, 220, 220, 220, 537, 82, 13, 11147, 7, 27432, 62, 87, 11, 4512, 62, 88, 8, 198, 220, 220, 220, 1303, 26439, 4985, 2746, 198, 220, 220, 220, 3601, 705, 7762, 24765, 4049, 25, 3256, 537, 82, 13, 26675, 7, 2100, 62, 87, 11, 1188, 62, 88, 8, 198, 220, 220, 220, 3601, 705, 14402, 4049, 25, 3256, 537, 82, 13, 26675, 7, 9288, 62, 87, 11, 1332, 62, 88, 8, 198 ]
2.006309
317
# -*- coding: utf-8 -*- #!/usr/bin/env python3 from PKC_Classes import NetworkUser, KDC from DES import DES from RSA_Class import RSA import socket import os import sys import threading import time if sys.version_info[0] < 3: raise Exception("Must be using Python 3") bob = NetworkUser('Alice', DES(), RSA(9973, 97), 200) print('bob:', bob.uid) # socket communication kdc_host, kdc_port = 'localhost', 9999 bob_host, bob_port = 'localhost', 9200 # talk to kdc for sess key try: sock_with_kdc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock_with_kdc.connect((kdc_host, kdc_port)) print(sock_with_kdc.recv(1024)) # send cipher_key bob_cipher_key_packet = bob.send_cipher_key() sock_with_kdc.send(bob_cipher_key_packet.encode()) kdc_bob_cipher_key_packet = sock_with_kdc.recv(1024).decode() print(kdc_bob_cipher_key_packet) bob.process_packet(kdc_bob_cipher_key_packet) except socket.error as msg: print(msg); sys.exit(1) # sock_with_kdc.shutdown(socket.SHUT_WR) # talk to bob try: sock_self = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock_self.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock_self.bind((bob_host, bob_port)) sock_self.listen(10) except socket.error as msg: print(msg); sys.exit(1) while 1: conn, addr = sock_self.accept() thread = threading.Thread(target=reply_conn, args=(conn, addr)) thread.start() # sock_self.close()
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 6738, 29673, 34, 62, 9487, 274, 1330, 7311, 12982, 11, 509, 9697, 198, 6738, 22196, 1330, 22196, 198, 6738, 42319, 62, 9487, 1330, 42319, 198, 198, 11748, 17802, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 4704, 278, 198, 11748, 640, 198, 198, 361, 25064, 13, 9641, 62, 10951, 58, 15, 60, 1279, 513, 25, 198, 220, 220, 220, 5298, 35528, 7203, 34320, 307, 1262, 11361, 513, 4943, 198, 198, 65, 672, 796, 7311, 12982, 10786, 44484, 3256, 22196, 22784, 42319, 7, 2079, 4790, 11, 10111, 828, 939, 8, 198, 4798, 10786, 65, 672, 25, 3256, 29202, 13, 27112, 8, 198, 2, 17802, 6946, 198, 74, 17896, 62, 4774, 11, 479, 17896, 62, 634, 796, 705, 36750, 3256, 860, 17032, 198, 65, 672, 62, 4774, 11, 29202, 62, 634, 796, 705, 36750, 3256, 860, 2167, 198, 2, 1561, 284, 479, 17896, 329, 264, 408, 1994, 198, 28311, 25, 198, 220, 220, 220, 32263, 62, 4480, 62, 74, 17896, 796, 17802, 13, 44971, 7, 44971, 13, 8579, 62, 1268, 2767, 11, 17802, 13, 50, 11290, 62, 2257, 32235, 8, 198, 220, 220, 220, 32263, 62, 4480, 62, 74, 17896, 13, 8443, 19510, 74, 17896, 62, 4774, 11, 479, 17896, 62, 634, 4008, 198, 220, 220, 220, 3601, 7, 82, 735, 62, 4480, 62, 74, 17896, 13, 8344, 85, 7, 35500, 4008, 198, 220, 220, 220, 1303, 3758, 38012, 62, 2539, 198, 220, 220, 220, 29202, 62, 66, 10803, 62, 2539, 62, 8002, 316, 796, 29202, 13, 21280, 62, 66, 10803, 62, 2539, 3419, 198, 220, 220, 220, 32263, 62, 4480, 62, 74, 17896, 13, 21280, 7, 65, 672, 62, 66, 10803, 62, 2539, 62, 8002, 316, 13, 268, 8189, 28955, 628, 220, 220, 220, 479, 17896, 62, 65, 672, 62, 66, 10803, 62, 2539, 62, 8002, 316, 796, 32263, 62, 4480, 62, 74, 17896, 13, 8344, 85, 7, 35500, 737, 12501, 1098, 3419, 198, 220, 220, 220, 3601, 7, 74, 17896, 62, 65, 672, 62, 66, 10803, 62, 2539, 62, 8002, 316, 8, 198, 220, 220, 220, 29202, 13, 14681, 62, 8002, 316, 7, 74, 17896, 62, 65, 672, 62, 66, 10803, 62, 2539, 62, 8002, 316, 8, 198, 198, 16341, 17802, 13, 18224, 355, 31456, 25, 198, 220, 220, 220, 3601, 7, 19662, 1776, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 198, 2, 32263, 62, 4480, 62, 74, 17896, 13, 49625, 2902, 7, 44971, 13, 9693, 3843, 62, 18564, 8, 198, 198, 2, 1561, 284, 29202, 198, 28311, 25, 198, 220, 220, 220, 32263, 62, 944, 796, 17802, 13, 44971, 7, 44971, 13, 8579, 62, 1268, 2767, 11, 17802, 13, 50, 11290, 62, 2257, 32235, 8, 198, 220, 220, 220, 32263, 62, 944, 13, 28709, 735, 8738, 7, 44971, 13, 50, 3535, 62, 50, 11290, 2767, 11, 17802, 13, 15821, 62, 2200, 19108, 2885, 7707, 11, 352, 8, 198, 220, 220, 220, 32263, 62, 944, 13, 21653, 19510, 65, 672, 62, 4774, 11, 29202, 62, 634, 4008, 198, 220, 220, 220, 32263, 62, 944, 13, 4868, 268, 7, 940, 8, 198, 198, 16341, 17802, 13, 18224, 355, 31456, 25, 198, 220, 220, 220, 3601, 7, 19662, 1776, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 198, 4514, 352, 25, 198, 220, 220, 220, 48260, 11, 37817, 796, 32263, 62, 944, 13, 13635, 3419, 198, 220, 220, 220, 4704, 796, 4704, 278, 13, 16818, 7, 16793, 28, 47768, 62, 37043, 11, 26498, 16193, 37043, 11, 37817, 4008, 198, 220, 220, 220, 4704, 13, 9688, 3419, 198, 198, 2, 32263, 62, 944, 13, 19836, 3419, 198 ]
2.368506
616
from __future__ import print_function import argparse import itertools import os import pickle import sys from datetime import datetime import matplotlib import numpy as np import torch matplotlib.use('Agg') import matplotlib.pyplot as plt import proj.archs as archs from proj.utils.cluster.general import config_to_str, get_opt, update_lr from proj.utils.cluster.baselines.triplets import make_triplets_data, \ triplets_eval, triplets_loss """ Triplets. Makes output distribution same as that of attractor, and different to that of repeller. Greyscale version (no sobel). """ # Options ---------------------------------------------------------------------- parser = argparse.ArgumentParser() parser.add_argument("--model_ind", type=int, required=True) parser.add_argument("--arch", type=str, required=True) parser.add_argument("--opt", type=str, default="Adam") parser.add_argument("--dataset", type=str, required=True) parser.add_argument("--dataset_root", type=str, required=True) parser.add_argument("--gt_k", type=int, required=True) parser.add_argument("--output_k", type=int, required=True) parser.add_argument("--lr", type=float, default=0.01) parser.add_argument("--lr_schedule", type=int, nargs="+", default=[]) parser.add_argument("--lr_mult", type=float, default=0.1) parser.add_argument("--num_epochs", type=int, default=1000) parser.add_argument("--batch_sz", type=int, required=True) # num pairs parser.add_argument("--out_root", type=str, default="/scratch/shared/slow/xuji/iid_private") parser.add_argument("--restart", dest="restart", default=False, action="store_true") parser.add_argument("--test_code", dest="test_code", default=False, action="store_true") parser.add_argument("--save_freq", type=int, default=10) parser.add_argument("--kmeans_on_features", default=False, action="store_true") # transforms # used for "positive" sample parser.add_argument("--demean", dest="demean", default=False, action="store_true") parser.add_argument("--per_img_demean", dest="per_img_demean", default=False, action="store_true") parser.add_argument("--data_mean", type=float, nargs="+", default=[0.5, 0.5, 0.5]) parser.add_argument("--data_std", type=float, nargs="+", default=[0.5, 0.5, 0.5]) parser.add_argument("--crop_orig", dest="crop_orig", default=False, action="store_true") parser.add_argument("--crop_other", dest="crop_other", default=False, action="store_true") parser.add_argument("--tf1_crop", type=str, default="random") # type name parser.add_argument("--tf2_crop", type=str, default="random") parser.add_argument("--tf1_crop_sz", type=int, default=84) parser.add_argument("--tf2_crop_szs", type=int, nargs="+", default=[84]) # allow diff crop for imgs_tf parser.add_argument("--tf3_crop_diff", dest="tf3_crop_diff", default=False, action="store_true") parser.add_argument("--tf3_crop_sz", type=int, default=0) parser.add_argument("--input_sz", type=int, default=96) parser.add_argument("--rot_val", type=float, default=0.) parser.add_argument("--always_rot", dest="always_rot", default=False, action="store_true") parser.add_argument("--no_jitter", dest="no_jitter", default=False, action="store_true") parser.add_argument("--no_flip", dest="no_flip", default=False, action="store_true") config = parser.parse_args() # Fixed settings and checks ---------------------------------------------------- config.in_channels = 1 if config.output_k != config.gt_k: assert (config.output_k > config.gt_k) assert (config.kmeans_on_features) config.out_dir = os.path.join(config.out_root, str(config.model_ind)) config.dataloader_batch_sz = config.batch_sz config.num_dataloaders = 1 if not os.path.exists(config.out_dir): os.makedirs(config.out_dir) if config.restart: given_config = config reloaded_config_path = os.path.join(given_config.out_dir, "config.pickle") print("Loading restarting config from: %s" % reloaded_config_path) with open(reloaded_config_path, "rb") as config_f: config = pickle.load(config_f) assert (config.model_ind == given_config.model_ind) config.restart = True # copy over new num_epochs and lr schedule config.num_epochs = given_config.num_epochs config.lr_schedule = given_config.lr_schedule if not hasattr(config, "kmeans_on_features"): config.kmeans_on_features = False else: print("Config: %s" % config_to_str(config)) # Data, nets, optimisers ------------------------------------------------------- dataloader_original, dataloader_positive, dataloader_negative, \ dataloader_test = make_triplets_data(config) train_dataloaders = [dataloader_original, dataloader_positive, dataloader_negative] net = archs.__dict__[config.arch](config) if config.restart: model_path = os.path.join(config.out_dir, "latest_net.pytorch") taking_best = not os.path.exists(model_path) if taking_best: print("using best instead of latest") model_path = os.path.join(config.out_dir, "best_net.pytorch") net.load_state_dict( torch.load(model_path, map_location=lambda storage, loc: storage)) net.cuda() net = torch.nn.DataParallel(net) net.train() optimiser = get_opt(config.opt)(net.module.parameters(), lr=config.lr) if config.restart: opt_path = os.path.join(config.out_dir, "latest_optimiser.pytorch") if taking_best: opt_path = os.path.join(config.out_dir, "best_optimiser.pytorch") optimiser.load_state_dict(torch.load(opt_path)) # Results storage -------------------------------------------------------------- if config.restart: if not taking_best: next_epoch = config.last_epoch + 1 # corresponds to last saved model else: next_epoch = np.argmax(np.array(config.epoch_acc)) + 1 print("starting from epoch %d" % next_epoch) config.epoch_acc = config.epoch_acc[:next_epoch] # in case we overshot config.epoch_loss = config.epoch_loss[:next_epoch] config.masses = config.masses[:next_epoch, :] config.per_class_acc = config.per_class_acc[:next_epoch, :] else: config.epoch_acc = [] config.epoch_loss = [] config.masses = None config.per_class_acc = None _ = triplets_eval(config, net, dataloader_test=dataloader_test, sobel=False) print("Pre: time %s: \n %s" % (datetime.now(), config.epoch_acc[-1])) sys.stdout.flush() next_epoch = 1 fig, axarr = plt.subplots(4, sharex=False, figsize=(20, 20)) # Train ------------------------------------------------------------------------ for e_i in xrange(next_epoch, config.num_epochs): print("Starting e_i: %d" % (e_i)) if e_i in config.lr_schedule: optimiser = update_lr(optimiser, lr_mult=config.lr_mult) avg_loss = 0. # over heads and head_epochs (and sub_heads) avg_loss_count = 0 sys.stdout.flush() iterators = (d for d in train_dataloaders) b_i = 0 for tup in itertools.izip(*iterators): net.module.zero_grad() imgs_orig = tup[0][0].cuda() imgs_pos = tup[1][0].cuda() imgs_neg = tup[2][0].cuda() outs_orig = net(imgs_orig) outs_pos = net(imgs_pos) outs_neg = net(imgs_neg) curr_loss = triplets_loss(outs_orig, outs_pos, outs_neg) if ((b_i % 100) == 0) or (e_i == next_epoch and b_i < 10): print("Model ind %d epoch %d batch %d " "loss %f time %s" % \ (config.model_ind, e_i, b_i, curr_loss.item(), datetime.now())) sys.stdout.flush() if not np.isfinite(float(curr_loss.item())): print("Loss is not finite... %s:" % str(curr_loss.item())) exit(1) avg_loss += curr_loss.item() avg_loss_count += 1 curr_loss.backward() optimiser.step() b_i += 1 if b_i == 2 and config.test_code: break avg_loss = float(avg_loss / avg_loss_count) config.epoch_loss.append(avg_loss) # Eval and storage ----------------------------------------------------------- # when epoch over both heads is finished is_best = triplets_eval(config, net, dataloader_test=dataloader_test, sobel=False) print("Time %s, acc %s" % (datetime.now(), config.epoch_acc[-1])) sys.stdout.flush() axarr[0].clear() axarr[0].plot(config.epoch_acc) axarr[0].set_title("acc, top: %f" % max(config.epoch_acc)) axarr[1].clear() axarr[1].plot(config.epoch_loss) axarr[1].set_title("Loss") axarr[2].clear() for c in xrange(config.gt_k): axarr[2].plot(config.masses[:, c]) axarr[2].set_title("masses") axarr[3].clear() for c in xrange(config.gt_k): axarr[3].plot(config.per_class_acc[:, c]) axarr[3].set_title("per_class_acc") fig.tight_layout() fig.canvas.draw_idle() fig.savefig(os.path.join(config.out_dir, "plots.png")) if is_best or (e_i % config.save_freq == 0): net.module.cpu() if is_best: torch.save(net.module.state_dict(), os.path.join(config.out_dir, "best_net.pytorch")) torch.save(optimiser.state_dict(), os.path.join(config.out_dir, "best_optimiser.pytorch")) if e_i % config.save_freq == 0: torch.save(net.module.state_dict(), os.path.join(config.out_dir, "latest_net.pytorch")) torch.save(optimiser.state_dict(), os.path.join(config.out_dir, "latest_optimiser.pytorch")) config.last_epoch = e_i # for last saved version net.module.cuda() with open(os.path.join(config.out_dir, "config.pickle"), 'wb') as outfile: pickle.dump(config, outfile) with open(os.path.join(config.out_dir, "config.txt"), "w") as text_file: text_file.write("%s" % config) if config.test_code: exit(0)
[ 6738, 11593, 37443, 834, 1330, 3601, 62, 8818, 198, 198, 11748, 1822, 29572, 198, 11748, 340, 861, 10141, 198, 11748, 28686, 198, 11748, 2298, 293, 198, 11748, 25064, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 11748, 2603, 29487, 8019, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 198, 6759, 29487, 8019, 13, 1904, 10786, 46384, 11537, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 11748, 386, 73, 13, 34592, 355, 3934, 82, 198, 6738, 386, 73, 13, 26791, 13, 565, 5819, 13, 24622, 1330, 4566, 62, 1462, 62, 2536, 11, 651, 62, 8738, 11, 4296, 62, 14050, 198, 6738, 386, 73, 13, 26791, 13, 565, 5819, 13, 12093, 20655, 13, 28461, 46916, 1330, 787, 62, 28461, 46916, 62, 7890, 11, 3467, 198, 220, 220, 220, 15055, 912, 62, 18206, 11, 15055, 912, 62, 22462, 198, 198, 37811, 198, 220, 19817, 912, 13, 198, 220, 27433, 5072, 6082, 976, 355, 326, 286, 4729, 273, 11, 290, 1180, 284, 326, 220, 198, 220, 286, 3172, 6051, 13, 198, 220, 11955, 28349, 1000, 2196, 357, 3919, 523, 6667, 737, 198, 37811, 198, 198, 2, 18634, 16529, 23031, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 19849, 62, 521, 1600, 2099, 28, 600, 11, 2672, 28, 17821, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 998, 1600, 2099, 28, 2536, 11, 2672, 28, 17821, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 8738, 1600, 2099, 28, 2536, 11, 4277, 2625, 23159, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 19608, 292, 316, 1600, 2099, 28, 2536, 11, 2672, 28, 17821, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 19608, 292, 316, 62, 15763, 1600, 2099, 28, 2536, 11, 2672, 28, 17821, 8, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 13655, 62, 74, 1600, 2099, 28, 600, 11, 2672, 28, 17821, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 22915, 62, 74, 1600, 2099, 28, 600, 11, 2672, 28, 17821, 8, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 14050, 1600, 2099, 28, 22468, 11, 4277, 28, 15, 13, 486, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 14050, 62, 15952, 5950, 1600, 2099, 28, 600, 11, 299, 22046, 2625, 10, 1600, 4277, 41888, 12962, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 14050, 62, 16680, 1600, 2099, 28, 22468, 11, 4277, 28, 15, 13, 16, 8, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 22510, 62, 538, 5374, 82, 1600, 2099, 28, 600, 11, 4277, 28, 12825, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 43501, 62, 82, 89, 1600, 2099, 28, 600, 11, 2672, 28, 17821, 8, 220, 1303, 997, 14729, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 448, 62, 15763, 1600, 2099, 28, 2536, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 35922, 1416, 36722, 14, 28710, 14, 38246, 14, 87, 84, 7285, 14, 72, 312, 62, 19734, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 2118, 433, 1600, 2244, 2625, 2118, 433, 1600, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 9288, 62, 8189, 1600, 2244, 2625, 9288, 62, 8189, 1600, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 21928, 62, 19503, 80, 1600, 2099, 28, 600, 11, 4277, 28, 940, 8, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 74, 1326, 504, 62, 261, 62, 40890, 1600, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 198, 198, 2, 31408, 198, 2, 973, 329, 366, 24561, 1, 6291, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 9536, 11025, 1600, 2244, 2625, 9536, 11025, 1600, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 525, 62, 9600, 62, 9536, 11025, 1600, 2244, 2625, 525, 62, 9600, 62, 9536, 11025, 1600, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 7890, 62, 32604, 1600, 2099, 28, 22468, 11, 299, 22046, 2625, 10, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 41888, 15, 13, 20, 11, 657, 13, 20, 11, 657, 13, 20, 12962, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 7890, 62, 19282, 1600, 2099, 28, 22468, 11, 299, 22046, 2625, 10, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 41888, 15, 13, 20, 11, 657, 13, 20, 11, 657, 13, 20, 12962, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 31476, 62, 11612, 1600, 2244, 2625, 31476, 62, 11612, 1600, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 31476, 62, 847, 1600, 2244, 2625, 31476, 62, 847, 1600, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 27110, 16, 62, 31476, 1600, 2099, 28, 2536, 11, 4277, 2625, 25120, 4943, 220, 1303, 2099, 1438, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 27110, 17, 62, 31476, 1600, 2099, 28, 2536, 11, 4277, 2625, 25120, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 27110, 16, 62, 31476, 62, 82, 89, 1600, 2099, 28, 600, 11, 4277, 28, 5705, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 27110, 17, 62, 31476, 62, 82, 89, 82, 1600, 2099, 28, 600, 11, 299, 22046, 2625, 10, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4277, 41888, 5705, 12962, 220, 1303, 1249, 814, 13833, 329, 545, 14542, 62, 27110, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 27110, 18, 62, 31476, 62, 26069, 1600, 2244, 2625, 27110, 18, 62, 31476, 62, 26069, 1600, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 27110, 18, 62, 31476, 62, 82, 89, 1600, 2099, 28, 600, 11, 4277, 28, 15, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 15414, 62, 82, 89, 1600, 2099, 28, 600, 11, 4277, 28, 4846, 8, 198, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 10599, 62, 2100, 1600, 2099, 28, 22468, 11, 4277, 28, 15, 2014, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 33770, 62, 10599, 1600, 2244, 2625, 33770, 62, 10599, 1600, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 3919, 62, 73, 1967, 1600, 2244, 2625, 3919, 62, 73, 1967, 1600, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 438, 3919, 62, 2704, 541, 1600, 2244, 2625, 3919, 62, 2704, 541, 1600, 4277, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2223, 2625, 8095, 62, 7942, 4943, 198, 198, 11250, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 198, 2, 10832, 6460, 290, 8794, 20368, 19351, 198, 198, 11250, 13, 259, 62, 354, 8961, 796, 352, 198, 198, 361, 4566, 13, 22915, 62, 74, 14512, 4566, 13, 13655, 62, 74, 25, 198, 220, 220, 220, 6818, 357, 11250, 13, 22915, 62, 74, 1875, 4566, 13, 13655, 62, 74, 8, 198, 220, 220, 220, 6818, 357, 11250, 13, 74, 1326, 504, 62, 261, 62, 40890, 8, 198, 198, 11250, 13, 448, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 13, 448, 62, 15763, 11, 965, 7, 11250, 13, 19849, 62, 521, 4008, 198, 11250, 13, 67, 10254, 1170, 263, 62, 43501, 62, 82, 89, 796, 4566, 13, 43501, 62, 82, 89, 198, 11250, 13, 22510, 62, 67, 10254, 1170, 364, 796, 352, 198, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 11250, 13, 448, 62, 15908, 2599, 198, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 11250, 13, 448, 62, 15908, 8, 198, 198, 361, 4566, 13, 2118, 433, 25, 198, 220, 220, 220, 1813, 62, 11250, 796, 4566, 198, 220, 220, 220, 18126, 276, 62, 11250, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 35569, 62, 11250, 13, 448, 62, 15908, 11, 366, 11250, 13, 27729, 293, 4943, 198, 220, 220, 220, 3601, 7203, 19031, 15765, 278, 4566, 422, 25, 4064, 82, 1, 4064, 18126, 276, 62, 11250, 62, 6978, 8, 198, 220, 220, 220, 351, 1280, 7, 260, 14578, 62, 11250, 62, 6978, 11, 366, 26145, 4943, 355, 4566, 62, 69, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 796, 2298, 293, 13, 2220, 7, 11250, 62, 69, 8, 198, 220, 220, 220, 6818, 357, 11250, 13, 19849, 62, 521, 6624, 1813, 62, 11250, 13, 19849, 62, 521, 8, 198, 220, 220, 220, 4566, 13, 2118, 433, 796, 6407, 628, 220, 220, 220, 1303, 4866, 625, 649, 997, 62, 538, 5374, 82, 290, 300, 81, 7269, 198, 220, 220, 220, 4566, 13, 22510, 62, 538, 5374, 82, 796, 1813, 62, 11250, 13, 22510, 62, 538, 5374, 82, 198, 220, 220, 220, 4566, 13, 14050, 62, 15952, 5950, 796, 1813, 62, 11250, 13, 14050, 62, 15952, 5950, 628, 220, 220, 220, 611, 407, 468, 35226, 7, 11250, 11, 366, 74, 1326, 504, 62, 261, 62, 40890, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 74, 1326, 504, 62, 261, 62, 40890, 796, 10352, 198, 198, 17772, 25, 198, 220, 220, 220, 3601, 7203, 16934, 25, 4064, 82, 1, 4064, 4566, 62, 1462, 62, 2536, 7, 11250, 4008, 198, 198, 2, 6060, 11, 31720, 11, 6436, 21572, 20368, 19351, 6329, 198, 198, 67, 10254, 1170, 263, 62, 14986, 11, 4818, 282, 1170, 263, 62, 24561, 11, 4818, 282, 1170, 263, 62, 31591, 11, 3467, 198, 67, 10254, 1170, 263, 62, 9288, 796, 787, 62, 28461, 46916, 62, 7890, 7, 11250, 8, 198, 198, 27432, 62, 67, 10254, 1170, 364, 796, 685, 67, 10254, 1170, 263, 62, 14986, 11, 4818, 282, 1170, 263, 62, 24561, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 282, 1170, 263, 62, 31591, 60, 198, 198, 3262, 796, 3934, 82, 13, 834, 11600, 834, 58, 11250, 13, 998, 16151, 11250, 8, 198, 361, 4566, 13, 2118, 433, 25, 198, 220, 220, 220, 2746, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 13, 448, 62, 15908, 11, 366, 42861, 62, 3262, 13, 9078, 13165, 354, 4943, 198, 220, 220, 220, 2263, 62, 13466, 796, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 19849, 62, 6978, 8, 198, 220, 220, 220, 611, 2263, 62, 13466, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 3500, 1266, 2427, 286, 3452, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2746, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 13, 448, 62, 15908, 11, 366, 13466, 62, 3262, 13, 9078, 13165, 354, 4943, 628, 220, 220, 220, 2010, 13, 2220, 62, 5219, 62, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 2220, 7, 19849, 62, 6978, 11, 3975, 62, 24886, 28, 50033, 6143, 11, 1179, 25, 6143, 4008, 198, 3262, 13, 66, 15339, 3419, 198, 3262, 796, 28034, 13, 20471, 13, 6601, 10044, 29363, 7, 3262, 8, 198, 3262, 13, 27432, 3419, 198, 198, 40085, 5847, 796, 651, 62, 8738, 7, 11250, 13, 8738, 5769, 3262, 13, 21412, 13, 17143, 7307, 22784, 300, 81, 28, 11250, 13, 14050, 8, 198, 361, 4566, 13, 2118, 433, 25, 198, 220, 220, 220, 2172, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 13, 448, 62, 15908, 11, 366, 42861, 62, 40085, 5847, 13, 9078, 13165, 354, 4943, 198, 220, 220, 220, 611, 2263, 62, 13466, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2172, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 11250, 13, 448, 62, 15908, 11, 366, 13466, 62, 40085, 5847, 13, 9078, 13165, 354, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 5847, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 8738, 62, 6978, 4008, 198, 198, 2, 15691, 6143, 20368, 1783, 26171, 198, 198, 361, 4566, 13, 2118, 433, 25, 198, 220, 220, 220, 611, 407, 2263, 62, 13466, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 538, 5374, 796, 4566, 13, 12957, 62, 538, 5374, 1343, 352, 220, 1303, 24866, 284, 938, 7448, 2746, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1306, 62, 538, 5374, 796, 45941, 13, 853, 9806, 7, 37659, 13, 18747, 7, 11250, 13, 538, 5374, 62, 4134, 4008, 1343, 352, 198, 220, 220, 220, 3601, 7203, 38690, 422, 36835, 4064, 67, 1, 4064, 1306, 62, 538, 5374, 8, 628, 220, 220, 220, 4566, 13, 538, 5374, 62, 4134, 796, 4566, 13, 538, 5374, 62, 4134, 58, 25, 19545, 62, 538, 5374, 60, 220, 1303, 287, 1339, 356, 625, 9442, 198, 220, 220, 220, 4566, 13, 538, 5374, 62, 22462, 796, 4566, 13, 538, 5374, 62, 22462, 58, 25, 19545, 62, 538, 5374, 60, 198, 220, 220, 220, 4566, 13, 76, 13978, 796, 4566, 13, 76, 13978, 58, 25, 19545, 62, 538, 5374, 11, 1058, 60, 198, 220, 220, 220, 4566, 13, 525, 62, 4871, 62, 4134, 796, 4566, 13, 525, 62, 4871, 62, 4134, 58, 25, 19545, 62, 538, 5374, 11, 1058, 60, 198, 17772, 25, 198, 220, 220, 220, 4566, 13, 538, 5374, 62, 4134, 796, 17635, 198, 220, 220, 220, 4566, 13, 538, 5374, 62, 22462, 796, 17635, 628, 220, 220, 220, 4566, 13, 76, 13978, 796, 6045, 198, 220, 220, 220, 4566, 13, 525, 62, 4871, 62, 4134, 796, 6045, 628, 220, 220, 220, 4808, 796, 15055, 912, 62, 18206, 7, 11250, 11, 2010, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 282, 1170, 263, 62, 9288, 28, 67, 10254, 1170, 263, 62, 9288, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 523, 6667, 28, 25101, 8, 628, 220, 220, 220, 3601, 7203, 6719, 25, 640, 4064, 82, 25, 3467, 77, 4064, 82, 1, 4064, 357, 19608, 8079, 13, 2197, 22784, 4566, 13, 538, 5374, 62, 4134, 58, 12, 16, 60, 4008, 198, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 198, 220, 220, 220, 1306, 62, 538, 5374, 796, 352, 198, 198, 5647, 11, 7877, 3258, 796, 458, 83, 13, 7266, 489, 1747, 7, 19, 11, 2648, 87, 28, 25101, 11, 2336, 7857, 16193, 1238, 11, 1160, 4008, 198, 198, 2, 16835, 16529, 982, 198, 198, 1640, 304, 62, 72, 287, 2124, 9521, 7, 19545, 62, 538, 5374, 11, 4566, 13, 22510, 62, 538, 5374, 82, 2599, 198, 220, 220, 220, 3601, 7203, 22851, 304, 62, 72, 25, 4064, 67, 1, 4064, 357, 68, 62, 72, 4008, 628, 220, 220, 220, 611, 304, 62, 72, 287, 4566, 13, 14050, 62, 15952, 5950, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 5847, 796, 4296, 62, 14050, 7, 40085, 5847, 11, 300, 81, 62, 16680, 28, 11250, 13, 14050, 62, 16680, 8, 628, 220, 220, 220, 42781, 62, 22462, 796, 657, 13, 220, 1303, 625, 6665, 290, 1182, 62, 538, 5374, 82, 357, 392, 850, 62, 16600, 8, 198, 220, 220, 220, 42781, 62, 22462, 62, 9127, 796, 657, 628, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 628, 220, 220, 220, 11629, 2024, 796, 357, 67, 329, 288, 287, 4512, 62, 67, 10254, 1170, 364, 8, 628, 220, 220, 220, 275, 62, 72, 796, 657, 198, 220, 220, 220, 329, 256, 929, 287, 340, 861, 10141, 13, 528, 541, 46491, 2676, 2024, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 13, 21412, 13, 22570, 62, 9744, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 545, 14542, 62, 11612, 796, 256, 929, 58, 15, 7131, 15, 4083, 66, 15339, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 545, 14542, 62, 1930, 796, 256, 929, 58, 16, 7131, 15, 4083, 66, 15339, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 545, 14542, 62, 12480, 796, 256, 929, 58, 17, 7131, 15, 4083, 66, 15339, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 12198, 62, 11612, 796, 2010, 7, 9600, 82, 62, 11612, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12198, 62, 1930, 796, 2010, 7, 9600, 82, 62, 1930, 8, 198, 220, 220, 220, 220, 220, 220, 220, 12198, 62, 12480, 796, 2010, 7, 9600, 82, 62, 12480, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 22462, 796, 15055, 912, 62, 22462, 7, 5269, 62, 11612, 11, 12198, 62, 1930, 11, 12198, 62, 12480, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 14808, 65, 62, 72, 4064, 1802, 8, 6624, 657, 8, 393, 357, 68, 62, 72, 6624, 1306, 62, 538, 5374, 290, 275, 62, 72, 1279, 838, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 17633, 773, 4064, 67, 36835, 4064, 67, 15458, 4064, 67, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 22462, 4064, 69, 640, 4064, 82, 1, 4064, 3467, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 11250, 13, 19849, 62, 521, 11, 304, 62, 72, 11, 275, 62, 72, 11, 1090, 81, 62, 22462, 13, 9186, 22784, 4818, 8079, 13, 2197, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 45941, 13, 4468, 9504, 7, 22468, 7, 22019, 81, 62, 22462, 13, 9186, 28955, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7203, 43, 793, 318, 407, 27454, 986, 4064, 82, 11097, 4064, 965, 7, 22019, 81, 62, 22462, 13, 9186, 3419, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 16, 8, 628, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 22462, 15853, 1090, 81, 62, 22462, 13, 9186, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 42781, 62, 22462, 62, 9127, 15853, 352, 628, 220, 220, 220, 220, 220, 220, 220, 1090, 81, 62, 22462, 13, 1891, 904, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 6436, 5847, 13, 9662, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 275, 62, 72, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 611, 275, 62, 72, 6624, 362, 290, 4566, 13, 9288, 62, 8189, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 42781, 62, 22462, 796, 12178, 7, 615, 70, 62, 22462, 1220, 42781, 62, 22462, 62, 9127, 8, 628, 220, 220, 220, 4566, 13, 538, 5374, 62, 22462, 13, 33295, 7, 615, 70, 62, 22462, 8, 628, 220, 220, 220, 1303, 26439, 290, 6143, 20368, 22369, 6329, 628, 220, 220, 220, 1303, 618, 36835, 625, 1111, 6665, 318, 5201, 198, 220, 220, 220, 318, 62, 13466, 796, 15055, 912, 62, 18206, 7, 11250, 11, 2010, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4818, 282, 1170, 263, 62, 9288, 28, 67, 10254, 1170, 263, 62, 9288, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 523, 6667, 28, 25101, 8, 628, 220, 220, 220, 3601, 7203, 7575, 4064, 82, 11, 697, 4064, 82, 1, 4064, 357, 19608, 8079, 13, 2197, 22784, 4566, 13, 538, 5374, 62, 4134, 58, 12, 16, 60, 4008, 198, 220, 220, 220, 25064, 13, 19282, 448, 13, 25925, 3419, 628, 220, 220, 220, 7877, 3258, 58, 15, 4083, 20063, 3419, 198, 220, 220, 220, 7877, 3258, 58, 15, 4083, 29487, 7, 11250, 13, 538, 5374, 62, 4134, 8, 198, 220, 220, 220, 7877, 3258, 58, 15, 4083, 2617, 62, 7839, 7203, 4134, 11, 1353, 25, 4064, 69, 1, 4064, 3509, 7, 11250, 13, 538, 5374, 62, 4134, 4008, 628, 220, 220, 220, 7877, 3258, 58, 16, 4083, 20063, 3419, 198, 220, 220, 220, 7877, 3258, 58, 16, 4083, 29487, 7, 11250, 13, 538, 5374, 62, 22462, 8, 198, 220, 220, 220, 7877, 3258, 58, 16, 4083, 2617, 62, 7839, 7203, 43, 793, 4943, 628, 220, 220, 220, 7877, 3258, 58, 17, 4083, 20063, 3419, 198, 220, 220, 220, 329, 269, 287, 2124, 9521, 7, 11250, 13, 13655, 62, 74, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 3258, 58, 17, 4083, 29487, 7, 11250, 13, 76, 13978, 58, 45299, 269, 12962, 198, 220, 220, 220, 7877, 3258, 58, 17, 4083, 2617, 62, 7839, 7203, 76, 13978, 4943, 628, 220, 220, 220, 7877, 3258, 58, 18, 4083, 20063, 3419, 198, 220, 220, 220, 329, 269, 287, 2124, 9521, 7, 11250, 13, 13655, 62, 74, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 7877, 3258, 58, 18, 4083, 29487, 7, 11250, 13, 525, 62, 4871, 62, 4134, 58, 45299, 269, 12962, 198, 220, 220, 220, 7877, 3258, 58, 18, 4083, 2617, 62, 7839, 7203, 525, 62, 4871, 62, 4134, 4943, 628, 220, 220, 220, 2336, 13, 33464, 62, 39786, 3419, 198, 220, 220, 220, 2336, 13, 5171, 11017, 13, 19334, 62, 312, 293, 3419, 198, 220, 220, 220, 2336, 13, 21928, 5647, 7, 418, 13, 6978, 13, 22179, 7, 11250, 13, 448, 62, 15908, 11, 366, 489, 1747, 13, 11134, 48774, 628, 220, 220, 220, 611, 318, 62, 13466, 393, 357, 68, 62, 72, 4064, 4566, 13, 21928, 62, 19503, 80, 6624, 657, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 2010, 13, 21412, 13, 36166, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 611, 318, 62, 13466, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 21928, 7, 3262, 13, 21412, 13, 5219, 62, 11600, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 11250, 13, 448, 62, 15908, 11, 366, 13466, 62, 3262, 13, 9078, 13165, 354, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 21928, 7, 40085, 5847, 13, 5219, 62, 11600, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 11250, 13, 448, 62, 15908, 11, 366, 13466, 62, 40085, 5847, 13, 9078, 13165, 354, 48774, 628, 220, 220, 220, 220, 220, 220, 220, 611, 304, 62, 72, 4064, 4566, 13, 21928, 62, 19503, 80, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 21928, 7, 3262, 13, 21412, 13, 5219, 62, 11600, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 11250, 13, 448, 62, 15908, 11, 366, 42861, 62, 3262, 13, 9078, 13165, 354, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28034, 13, 21928, 7, 40085, 5847, 13, 5219, 62, 11600, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 11250, 13, 448, 62, 15908, 11, 366, 42861, 62, 40085, 5847, 13, 9078, 13165, 354, 48774, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4566, 13, 12957, 62, 538, 5374, 796, 304, 62, 72, 220, 1303, 329, 938, 7448, 2196, 628, 220, 220, 220, 220, 220, 220, 220, 2010, 13, 21412, 13, 66, 15339, 3419, 628, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 11250, 13, 448, 62, 15908, 11, 366, 11250, 13, 27729, 293, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 39346, 11537, 355, 503, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 13, 39455, 7, 11250, 11, 503, 7753, 8, 628, 220, 220, 220, 351, 1280, 7, 418, 13, 6978, 13, 22179, 7, 11250, 13, 448, 62, 15908, 11, 366, 11250, 13, 14116, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 86, 4943, 355, 2420, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2420, 62, 7753, 13, 13564, 7203, 4, 82, 1, 4064, 4566, 8, 628, 220, 220, 220, 611, 4566, 13, 9288, 62, 8189, 25, 198, 220, 220, 220, 220, 220, 220, 220, 8420, 7, 15, 8, 198 ]
2.323216
4,415
"""empty message Revision ID: 0084_add_job_stats Revises: 0083_add_perm_types_and_svc_perm Create Date: 2017-05-12 13:16:14.147368 """ # revision identifiers, used by Alembic. revision = "0084_add_job_stats" down_revision = "0083_add_perm_types_and_svc_perm" import sqlalchemy as sa from alembic import op from sqlalchemy.dialects import postgresql
[ 37811, 28920, 3275, 198, 198, 18009, 1166, 4522, 25, 3571, 5705, 62, 2860, 62, 21858, 62, 34242, 198, 18009, 2696, 25, 3571, 5999, 62, 2860, 62, 16321, 62, 19199, 62, 392, 62, 21370, 66, 62, 16321, 198, 16447, 7536, 25, 2177, 12, 2713, 12, 1065, 1511, 25, 1433, 25, 1415, 13, 20198, 27412, 198, 198, 37811, 198, 198, 2, 18440, 42814, 11, 973, 416, 9300, 2022, 291, 13, 198, 260, 10178, 796, 366, 405, 5705, 62, 2860, 62, 21858, 62, 34242, 1, 198, 2902, 62, 260, 10178, 796, 366, 405, 5999, 62, 2860, 62, 16321, 62, 19199, 62, 392, 62, 21370, 66, 62, 16321, 1, 198, 198, 11748, 44161, 282, 26599, 355, 473, 198, 6738, 31341, 2022, 291, 1330, 1034, 198, 6738, 44161, 282, 26599, 13, 38969, 478, 82, 1330, 1281, 34239, 13976, 628, 198 ]
2.62963
135
import unittest from future.moves.urllib.parse import urlparse, urljoin, parse_qs import pytest from addons.twofactor.tests.utils import _valid_code from nose.tools import (assert_equal, assert_false, assert_is_none, assert_is_not_none, assert_true) from osf_tests.factories import UserFactory pytestmark = pytest.mark.django_db
[ 11748, 555, 715, 395, 198, 6738, 2003, 13, 76, 5241, 13, 333, 297, 571, 13, 29572, 1330, 19016, 29572, 11, 19016, 22179, 11, 21136, 62, 48382, 198, 198, 11748, 12972, 9288, 198, 6738, 751, 684, 13, 4246, 1659, 11218, 13, 41989, 13, 26791, 1330, 4808, 12102, 62, 8189, 198, 6738, 9686, 13, 31391, 1330, 357, 30493, 62, 40496, 11, 6818, 62, 9562, 11, 6818, 62, 271, 62, 23108, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6818, 62, 271, 62, 1662, 62, 23108, 11, 6818, 62, 7942, 8, 198, 6738, 267, 28202, 62, 41989, 13, 22584, 1749, 1330, 11787, 22810, 198, 198, 9078, 9288, 4102, 796, 12972, 9288, 13, 4102, 13, 28241, 14208, 62, 9945, 628, 198 ]
2.664179
134
import numpy as np from torchvision import transforms np.random.seed(1)
[ 11748, 299, 32152, 355, 45941, 198, 6738, 28034, 10178, 1330, 31408, 198, 37659, 13, 25120, 13, 28826, 7, 16, 8 ]
3.55
20
import torch import os from torch import nn import numpy as np import torch.nn.functional from termcolor import colored from .logger import get_logger
[ 11748, 28034, 198, 11748, 28686, 198, 6738, 28034, 1330, 299, 77, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 13, 20471, 13, 45124, 198, 6738, 3381, 8043, 1330, 16396, 198, 6738, 764, 6404, 1362, 1330, 651, 62, 6404, 1362, 628, 198 ]
3.642857
42
from django.apps import AppConfig #pragma: no cover
[ 6738, 42625, 14208, 13, 18211, 1330, 2034, 16934, 1303, 1050, 363, 2611, 25, 645, 3002, 628 ]
3.3125
16
from __future__ import division from timeit import default_timer as timer import csv import numpy as np import itertools from munkres import Munkres, print_matrix, make_cost_matrix import sys from classes import * from functions import * from math import sqrt import Tkinter as tk import tkFileDialog as filedialog root = tk.Tk() root.withdraw() p_file = filedialog.askopenfilename(title='Please select the posting file') c_file = filedialog.askopenfilename(title='Please select the candidate file') """for use with /users/java_jonathan/postings_lge.csv and /Users/java_jonathan/candidates_lge.csv""" # p_file = raw_input("Please enter the path for the postings file: ") # p_file = p_file.strip() # c_file = raw_input("Please enter the path for the candidate file: ") # c_file = c_file.strip() start = timer() with open(p_file,'r') as f: #with open('/Users/Jonathan/Google Drive/CPD/Python/postings.csv','r') as f: reader = csv.reader(f) postingsAll = list(reader) with open(c_file,'r') as f: reader = csv.reader(f) candidatesAll = list(reader) """create empty lists to fill with lists of lists output by iterating function below""" names = [] totalMatrix = [] for list in candidatesAll: candidate = Candidate(*list) names.append(candidate.name) n = 0 for list in postingsAll: posting = Posting(*list) totalMatrix.append(matchDept(posting,candidate) + matchAnchor(posting,candidate) +matchLocation(posting,candidate) + matchCompetency(posting,candidate) + matchSkill(posting,candidate)+matchCohort(posting,candidate)) n += 1 l = len(names) names.extend([0] * (n-l)) totalMatrix.extend([0] * (n**2 - len(totalMatrix))) totalMatrix = np.asarray(totalMatrix) totalMatrix = np.reshape(totalMatrix,(n,-1)) #at this point the matrix is structured as candidates down and jobs across totalMatrix = np.transpose(totalMatrix) #now it's switched! totalMatrix = np.subtract(np.amax(totalMatrix),totalMatrix) totalMatrix = np.array(totalMatrix) minSuitability = 18 check = [] result = [] m = Munkres() indexes = m.compute(totalMatrix) #print_matrix(totalMatrix, msg='Lowest cost through this matrix:') total = 0.0 unhappy_candidates = 0 medium_candidates = 0 tenpc_candidates = 0 qs_candidates = 0 vs_candidates = 0 f = open('output.txt', 'w') for row, column in indexes: if column < l: value = totalMatrix[row][column] if value > minSuitability*0.9: tenpc_candidates += 1 elif value > minSuitability*0.75: medium_candidates += 1 elif value > minSuitability/2: unhappy_candidates += 1 elif value > minSuitability*0.25: qs_candidates += 1 elif value > minSuitability*0.1: vs_candidates += 1 total += value check.append(column+1) result.append((row,column)) f.write('For candidate %s: \nOptimal position: %d (score %s)\n' % (names[column], column+1, value)) else: pass globalSatisfaction = 100*(1-(total/(l*minSuitability))) print('Global satisfaction: %.2f%%' % globalSatisfaction) print('Candidates who are more than 90%% suitable: %d' % vs_candidates) print('Candidates who are more than 75%% suitable: %d' % qs_candidates) print('Candidates who are more than 50%% suitable: %d' % (l-unhappy_candidates)) print('Candidates who are more than 75%% unsuitable: %d' % medium_candidates) print('Candidates who are more than 90%% unsuitable: %d' % tenpc_candidates) #output from excel: correct = [1,3,5,9,10,2,4,8,6,7] #this function tests output above against Excel: #test(correct,check) topMatrix = topFive(names,totalMatrix) #print(topMatrix) np.savetxt('/Users/java_jonathan/test.csv',topMatrix, fmt='%s', delimiter=',', newline='\n', header='', footer='', comments='# ') np.savetxt('/Users/java_jonathan/test2.csv',totalMatrix, fmt='%s', delimiter=',', newline='\n', header='', footer='', comments='# ') end = timer() print(end-start) """ #posting = [Posting(*postingsAll)] #print(posting[0].anchor) #print(posting) #print(candidatesAll) #print(postingsAll) #print(postingsAll[0].name) #print(preferences) #print(postings) #split up files into relative blocks postCode = [lists[0] for lists in postings] postDept = [lists[1] for lists in postings] postAnchor = [lists[2] for lists in postings] postSkills = [lists[3:5] for lists in postings] postLocation = [lists[5] for lists in postings] postCompetencies = [lists[7:10] for lists in postings] postSecurity = [lists[10] for lists in postings] #with open('/Users/Jonathan/Google Drive/CPD/Python/candidates.csv','r') as f: #gives first column ie candidate a a=totalMatrix[:,[0]] #b = totalMatrix[:,[0]] #print(a) #converts 1D matrix to list for ease a = np.array(a).tolist() #print(a) #creates list called output containing rank of score output = [0] * len(a) for i, x in enumerate(sorted(range(len(a)), key=lambda y: a[y])): output[x] = i print(output) #creates tuples of rank, job and appends to list jobRank = [] # for rank, b in zip(output, postCode): # jobScore = (rank,b) # list(jobScore) # jobRank.append(jobScore) # print(jobRank) output = [0] * len(a) for i, x in enumerate(sorted(range(len(a)), key=lambda y: a[y])): output[x] = i print(output) # #print(a) # jobRank = sorted(jobRank, reverse=False) # print(jobRank) # print('For candidate a, the best position is %s') % (jobRank[0][1]) # print(candidate[0].skills) """
[ 6738, 11593, 37443, 834, 1330, 7297, 198, 6738, 640, 270, 1330, 4277, 62, 45016, 355, 19781, 198, 11748, 269, 21370, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 340, 861, 10141, 198, 6738, 285, 2954, 411, 1330, 337, 2954, 411, 11, 3601, 62, 6759, 8609, 11, 787, 62, 15805, 62, 6759, 8609, 198, 11748, 25064, 198, 6738, 6097, 1330, 1635, 198, 6738, 5499, 1330, 1635, 198, 6738, 10688, 1330, 19862, 17034, 198, 11748, 309, 74, 3849, 355, 256, 74, 198, 11748, 256, 74, 8979, 44204, 355, 5717, 498, 519, 198, 198, 15763, 796, 256, 74, 13, 51, 74, 3419, 198, 15763, 13, 4480, 19334, 3419, 198, 79, 62, 7753, 796, 5717, 498, 519, 13, 2093, 9654, 34345, 7, 7839, 11639, 5492, 2922, 262, 10754, 2393, 11537, 198, 66, 62, 7753, 796, 5717, 498, 519, 13, 2093, 9654, 34345, 7, 7839, 11639, 5492, 2922, 262, 4540, 2393, 11537, 628, 198, 37811, 1640, 779, 351, 1220, 18417, 14, 12355, 62, 46286, 6696, 14, 7353, 654, 62, 75, 469, 13, 40664, 290, 198, 14, 14490, 14, 12355, 62, 46286, 6696, 14, 46188, 37051, 62, 75, 469, 13, 40664, 37811, 198, 198, 2, 279, 62, 7753, 796, 8246, 62, 15414, 7203, 5492, 3802, 262, 3108, 329, 262, 44656, 2393, 25, 366, 8, 198, 2, 279, 62, 7753, 796, 279, 62, 7753, 13, 36311, 3419, 198, 2, 269, 62, 7753, 796, 8246, 62, 15414, 7203, 5492, 3802, 262, 3108, 329, 262, 4540, 2393, 25, 366, 8, 198, 2, 269, 62, 7753, 796, 269, 62, 7753, 13, 36311, 3419, 198, 9688, 796, 19781, 3419, 198, 4480, 1280, 7, 79, 62, 7753, 4032, 81, 11537, 355, 277, 25, 198, 2, 4480, 1280, 10786, 14, 14490, 14, 30365, 14, 11708, 9974, 14, 34, 5760, 14, 37906, 14, 7353, 654, 13, 40664, 41707, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 8, 198, 220, 220, 220, 44656, 3237, 796, 1351, 7, 46862, 8, 198, 198, 4480, 1280, 7, 66, 62, 7753, 4032, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 9173, 796, 269, 21370, 13, 46862, 7, 69, 8, 198, 220, 220, 220, 5871, 3237, 796, 1351, 7, 46862, 8, 628, 198, 37811, 17953, 6565, 8341, 284, 6070, 351, 8341, 286, 8341, 5072, 416, 11629, 803, 2163, 198, 35993, 37811, 198, 14933, 796, 17635, 198, 23350, 46912, 796, 17635, 198, 1640, 1351, 287, 5871, 3237, 25, 198, 220, 220, 220, 4540, 796, 40327, 46491, 4868, 8, 198, 220, 220, 220, 3891, 13, 33295, 7, 46188, 20540, 13, 3672, 8, 198, 220, 220, 220, 299, 796, 657, 198, 220, 220, 220, 329, 1351, 287, 44656, 3237, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10754, 796, 2947, 278, 46491, 4868, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 46912, 13, 33295, 7, 15699, 5005, 457, 7, 7353, 278, 11, 46188, 20540, 8, 1343, 2872, 2025, 354, 273, 7, 7353, 278, 11, 46188, 20540, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1343, 15699, 14749, 7, 7353, 278, 11, 46188, 20540, 8, 1343, 2872, 7293, 316, 1387, 7, 7353, 278, 11, 46188, 20540, 8, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 2872, 35040, 7, 7353, 278, 11, 46188, 20540, 47762, 15699, 34, 1219, 419, 7, 7353, 278, 11, 46188, 20540, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 299, 15853, 352, 198, 75, 796, 18896, 7, 14933, 8, 198, 14933, 13, 2302, 437, 26933, 15, 60, 1635, 357, 77, 12, 75, 4008, 198, 198, 23350, 46912, 13, 2302, 437, 26933, 15, 60, 1635, 357, 77, 1174, 17, 532, 18896, 7, 23350, 46912, 22305, 198, 23350, 46912, 796, 45941, 13, 292, 18747, 7, 23350, 46912, 8, 198, 198, 23350, 46912, 796, 45941, 13, 3447, 1758, 7, 23350, 46912, 11, 7, 77, 12095, 16, 4008, 198, 2, 265, 428, 966, 262, 17593, 318, 20793, 355, 5871, 866, 290, 3946, 1973, 198, 23350, 46912, 796, 45941, 13, 7645, 3455, 7, 23350, 46912, 8, 198, 2, 2197, 340, 338, 15293, 0, 198, 23350, 46912, 796, 45941, 13, 7266, 83, 974, 7, 37659, 13, 321, 897, 7, 23350, 46912, 828, 23350, 46912, 8, 198, 23350, 46912, 796, 45941, 13, 18747, 7, 23350, 46912, 8, 198, 1084, 50, 5013, 1799, 796, 1248, 198, 9122, 796, 17635, 198, 20274, 796, 17635, 198, 76, 796, 337, 2954, 411, 3419, 198, 9630, 274, 796, 285, 13, 5589, 1133, 7, 23350, 46912, 8, 198, 2, 4798, 62, 6759, 8609, 7, 23350, 46912, 11, 31456, 11639, 20535, 395, 1575, 832, 428, 17593, 25, 11537, 198, 23350, 796, 657, 13, 15, 198, 403, 34191, 62, 46188, 37051, 796, 657, 198, 24132, 62, 46188, 37051, 796, 657, 198, 1452, 14751, 62, 46188, 37051, 796, 657, 198, 48382, 62, 46188, 37051, 796, 657, 198, 14259, 62, 46188, 37051, 796, 657, 198, 69, 796, 1280, 10786, 22915, 13, 14116, 3256, 705, 86, 11537, 198, 1640, 5752, 11, 5721, 287, 39199, 25, 198, 220, 220, 220, 611, 5721, 1279, 300, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 2472, 46912, 58, 808, 7131, 28665, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1988, 1875, 949, 50, 5013, 1799, 9, 15, 13, 24, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3478, 14751, 62, 46188, 37051, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1988, 1875, 949, 50, 5013, 1799, 9, 15, 13, 2425, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7090, 62, 46188, 37051, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1988, 1875, 949, 50, 5013, 1799, 14, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19283, 62, 46188, 37051, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1988, 1875, 949, 50, 5013, 1799, 9, 15, 13, 1495, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10662, 82, 62, 46188, 37051, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1988, 1875, 949, 50, 5013, 1799, 9, 15, 13, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3691, 62, 46188, 37051, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 2472, 15853, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 2198, 13, 33295, 7, 28665, 10, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 33295, 19510, 808, 11, 28665, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 277, 13, 13564, 10786, 1890, 4540, 4064, 82, 25, 3467, 77, 27871, 4402, 2292, 25, 4064, 67, 357, 26675, 4064, 82, 19415, 77, 6, 198, 220, 220, 220, 220, 220, 220, 220, 4064, 357, 14933, 58, 28665, 4357, 5721, 10, 16, 11, 1988, 4008, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 20541, 50, 17403, 2673, 796, 1802, 9, 7, 16, 30420, 23350, 29006, 75, 9, 1084, 50, 5013, 1799, 22305, 198, 4798, 10786, 22289, 14676, 25, 4064, 13, 17, 69, 16626, 6, 4064, 3298, 50, 17403, 2673, 8, 198, 4798, 10786, 41572, 37051, 508, 389, 517, 621, 4101, 16626, 11080, 25, 4064, 67, 6, 4064, 3691, 62, 46188, 37051, 8, 198, 4798, 10786, 41572, 37051, 508, 389, 517, 621, 5441, 16626, 11080, 25, 4064, 67, 6, 4064, 10662, 82, 62, 46188, 37051, 8, 198, 4798, 10786, 41572, 37051, 508, 389, 517, 621, 2026, 16626, 11080, 25, 4064, 67, 6, 4064, 357, 75, 12, 403, 34191, 62, 46188, 37051, 4008, 198, 4798, 10786, 41572, 37051, 508, 389, 517, 621, 5441, 16626, 48092, 4674, 25, 4064, 67, 6, 4064, 7090, 62, 46188, 37051, 8, 198, 4798, 10786, 41572, 37051, 508, 389, 517, 621, 4101, 16626, 48092, 4674, 25, 4064, 67, 6, 4064, 3478, 14751, 62, 46188, 37051, 8, 198, 198, 2, 22915, 422, 27336, 25, 198, 30283, 796, 685, 16, 11, 18, 11, 20, 11, 24, 11, 940, 11, 17, 11, 19, 11, 23, 11, 21, 11, 22, 60, 198, 198, 2, 5661, 2163, 5254, 5072, 2029, 1028, 24134, 25, 198, 2, 9288, 7, 30283, 11, 9122, 8, 198, 4852, 46912, 796, 1353, 20029, 7, 14933, 11, 23350, 46912, 8, 198, 2, 4798, 7, 4852, 46912, 8, 198, 198, 37659, 13, 21928, 14116, 10786, 14, 14490, 14, 12355, 62, 46286, 6696, 14, 9288, 13, 40664, 3256, 4852, 46912, 11, 46996, 11639, 4, 82, 3256, 46728, 2676, 28, 3256, 3256, 198, 3605, 1370, 11639, 59, 77, 3256, 13639, 11639, 3256, 2366, 263, 11639, 3256, 3651, 11639, 2, 705, 8, 198, 37659, 13, 21928, 14116, 10786, 14, 14490, 14, 12355, 62, 46286, 6696, 14, 9288, 17, 13, 40664, 3256, 23350, 46912, 11, 46996, 11639, 4, 82, 3256, 46728, 2676, 28, 3256, 3256, 198, 3605, 1370, 11639, 59, 77, 3256, 13639, 11639, 3256, 2366, 263, 11639, 3256, 3651, 11639, 2, 705, 8, 198, 437, 796, 19781, 3419, 198, 4798, 7, 437, 12, 9688, 8, 198, 198, 37811, 198, 2, 7353, 278, 796, 685, 6307, 278, 46491, 7353, 654, 3237, 15437, 198, 2, 4798, 7, 7353, 278, 58, 15, 4083, 3702, 273, 8, 198, 2, 4798, 7, 7353, 278, 8, 198, 2, 4798, 7, 46188, 37051, 3237, 8, 198, 2, 4798, 7, 7353, 654, 3237, 8, 198, 2, 4798, 7, 7353, 654, 3237, 58, 15, 4083, 3672, 8, 198, 220, 220, 220, 1303, 4798, 7, 3866, 69, 4972, 8, 198, 2, 4798, 7, 7353, 654, 8, 198, 2, 35312, 510, 3696, 656, 3585, 7021, 198, 198, 7353, 10669, 796, 685, 20713, 58, 15, 60, 329, 8341, 287, 44656, 60, 198, 7353, 5005, 457, 796, 685, 20713, 58, 16, 60, 329, 8341, 287, 44656, 60, 198, 7353, 2025, 354, 273, 796, 685, 20713, 58, 17, 60, 329, 8341, 287, 44656, 60, 198, 7353, 15739, 2171, 796, 685, 20713, 58, 18, 25, 20, 60, 329, 8341, 287, 44656, 60, 198, 7353, 14749, 796, 685, 20713, 58, 20, 60, 329, 8341, 287, 44656, 60, 198, 7353, 7293, 316, 3976, 796, 685, 20713, 58, 22, 25, 940, 60, 329, 8341, 287, 44656, 60, 198, 7353, 24074, 796, 685, 20713, 58, 940, 60, 329, 8341, 287, 44656, 60, 628, 198, 2, 4480, 1280, 10786, 14, 14490, 14, 30365, 14, 11708, 9974, 14, 34, 5760, 14, 37906, 14, 46188, 37051, 13, 40664, 41707, 81, 11537, 355, 277, 25, 628, 628, 198, 198, 2, 70, 1083, 717, 5721, 37941, 4540, 257, 198, 64, 28, 23350, 46912, 58, 25, 17414, 15, 11907, 198, 2, 65, 796, 2472, 46912, 58, 25, 17414, 15, 11907, 198, 2, 4798, 7, 64, 8, 198, 2, 1102, 24040, 352, 35, 17593, 284, 1351, 329, 10152, 198, 64, 796, 45941, 13, 18747, 7, 64, 737, 83, 349, 396, 3419, 198, 2, 4798, 7, 64, 8, 198, 2, 20123, 274, 1351, 1444, 5072, 7268, 4279, 286, 4776, 198, 22915, 796, 685, 15, 60, 1635, 18896, 7, 64, 8, 198, 1640, 1312, 11, 2124, 287, 27056, 378, 7, 82, 9741, 7, 9521, 7, 11925, 7, 64, 36911, 1994, 28, 50033, 331, 25, 257, 58, 88, 12962, 2599, 198, 220, 220, 220, 5072, 58, 87, 60, 796, 1312, 198, 4798, 7, 22915, 8, 198, 2, 20123, 274, 12777, 2374, 286, 4279, 11, 1693, 290, 598, 2412, 284, 1351, 198, 21858, 27520, 796, 17635, 198, 2, 329, 4279, 11, 275, 287, 19974, 7, 22915, 11, 1281, 10669, 2599, 198, 2, 220, 220, 220, 220, 1693, 26595, 796, 357, 43027, 11, 65, 8, 198, 2, 220, 220, 220, 220, 1351, 7, 21858, 26595, 8, 198, 2, 220, 220, 220, 220, 1693, 27520, 13, 33295, 7, 21858, 26595, 8, 198, 2, 3601, 7, 21858, 27520, 8, 628, 198, 22915, 796, 685, 15, 60, 1635, 18896, 7, 64, 8, 198, 1640, 1312, 11, 2124, 287, 27056, 378, 7, 82, 9741, 7, 9521, 7, 11925, 7, 64, 36911, 1994, 28, 50033, 331, 25, 257, 58, 88, 12962, 2599, 198, 220, 220, 220, 5072, 58, 87, 60, 796, 1312, 198, 4798, 7, 22915, 8, 198, 198, 2, 1303, 4798, 7, 64, 8, 198, 2, 1693, 27520, 796, 23243, 7, 21858, 27520, 11, 9575, 28, 25101, 8, 198, 2, 3601, 7, 21858, 27520, 8, 198, 2, 3601, 10786, 1890, 4540, 257, 11, 262, 1266, 2292, 318, 4064, 82, 11537, 4064, 357, 21858, 27520, 58, 15, 7131, 16, 12962, 198, 2, 3601, 7, 46188, 20540, 58, 15, 4083, 8135, 2171, 8, 198, 37811, 198 ]
2.662274
2,049
"""Setup script for PySyReNN. Adapted from: https://hynek.me/articles/sharing-your-labor-of-love-pypi-quick-and-dirty/ """ import codecs import os import re from setuptools import setup, find_packages ################################################################### NAME = "pysyrenn" PACKAGES = [ "syrenn_proto", "pysyrenn", "pysyrenn.frontend", "pysyrenn.helpers", ] META_PATH = "__metadata__.py" KEYWORDS = ["class", "attribute", "boilerplate"] CLASSIFIERS = [ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Natural Language :: English", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Software Development :: Libraries :: Python Modules", ] INSTALL_REQUIRES = ["torch"] with open("requirements.txt") as requirements: reading = False for line in requirements.readlines(): if line.startswith("# PYSYRENN"): reading = True elif line.startswith("# END"): reading = False elif line.startswith("#"): pass elif reading: INSTALL_REQUIRES.append(line.strip().split("==")[0]) ################################################################### HERE = os.path.abspath(os.path.dirname(__file__)) def read(*parts): """ Build an absolute path from *parts* and and return the contents of the resulting file. Assume UTF-8 encoding. """ with codecs.open(os.path.join(HERE, *parts), "rb", "utf-8") as f: return f.read() META_FILE = read(META_PATH) def find_meta(meta): """Extract __*meta*__ from META_FILE. """ meta_match = re.search( r"^__{meta}__ = ['\"]([^'\"]*)['\"]".format(meta=meta), META_FILE, re.M ) if meta_match: return meta_match.group(1) raise RuntimeError("Unable to find __{meta}__ string.".format(meta=meta)) if __name__ == "__main__": setup( name=NAME, description=find_meta("description"), license=find_meta("license"), url=find_meta("uri"), version=find_meta("version"), author=find_meta("author"), author_email=find_meta("email"), maintainer=find_meta("author"), maintainer_email=find_meta("email"), keywords=KEYWORDS, long_description=read("README.md"), long_description_content_type="text/markdown", packages=PACKAGES, package_dir={"": "."}, package_data={"": ["pysyrenn/**/*.py"]}, zip_safe=False, classifiers=CLASSIFIERS, install_requires=INSTALL_REQUIRES, )
[ 37811, 40786, 4226, 329, 9485, 13940, 3041, 6144, 13, 198, 198, 48003, 276, 422, 25, 198, 5450, 1378, 12114, 710, 74, 13, 1326, 14, 26845, 14, 21987, 12, 14108, 12, 75, 4820, 12, 1659, 12, 23205, 12, 79, 4464, 72, 12, 24209, 12, 392, 12, 49075, 14, 198, 37811, 198, 11748, 40481, 82, 198, 11748, 28686, 198, 11748, 302, 198, 198, 6738, 900, 37623, 10141, 1330, 9058, 11, 1064, 62, 43789, 198, 198, 29113, 29113, 21017, 198, 198, 20608, 796, 366, 79, 893, 88, 918, 77, 1, 198, 47, 8120, 25552, 796, 685, 198, 220, 220, 220, 366, 1837, 918, 77, 62, 1676, 1462, 1600, 198, 220, 220, 220, 366, 79, 893, 88, 918, 77, 1600, 198, 220, 220, 220, 366, 79, 893, 88, 918, 77, 13, 8534, 437, 1600, 198, 220, 220, 220, 366, 79, 893, 88, 918, 77, 13, 16794, 364, 1600, 198, 60, 198, 44, 20892, 62, 34219, 796, 366, 834, 38993, 834, 13, 9078, 1, 198, 20373, 45359, 5258, 796, 14631, 4871, 1600, 366, 42348, 1600, 366, 2127, 5329, 6816, 8973, 198, 31631, 5064, 40, 4877, 796, 685, 198, 220, 220, 220, 366, 41206, 12678, 7904, 642, 532, 19174, 14, 1273, 540, 1600, 198, 220, 220, 220, 366, 5317, 1631, 7591, 1240, 7904, 34152, 1600, 198, 220, 220, 220, 366, 35364, 15417, 7904, 3594, 1600, 198, 220, 220, 220, 366, 34156, 7904, 7294, 40, 20010, 1079, 7904, 17168, 13789, 1600, 198, 220, 220, 220, 366, 18843, 803, 4482, 7904, 7294, 13362, 1600, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 1600, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 362, 1600, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 362, 13, 22, 1600, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 1600, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 18, 1600, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 19, 1600, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 20, 1600, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 21, 1600, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 513, 13, 22, 1600, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 46333, 7904, 16932, 7535, 1600, 198, 220, 220, 220, 366, 15167, 2229, 15417, 7904, 11361, 7904, 46333, 7904, 9485, 20519, 1600, 198, 220, 220, 220, 366, 33221, 7904, 10442, 7712, 7904, 46267, 7904, 11361, 3401, 5028, 1600, 198, 60, 198, 38604, 7036, 62, 2200, 10917, 4663, 1546, 796, 14631, 13165, 354, 8973, 198, 4480, 1280, 7203, 8897, 18883, 13, 14116, 4943, 355, 5359, 25, 198, 220, 220, 220, 3555, 796, 10352, 198, 220, 220, 220, 329, 1627, 287, 5359, 13, 961, 6615, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1627, 13, 9688, 2032, 342, 7203, 2, 350, 16309, 38162, 34571, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3555, 796, 6407, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1627, 13, 9688, 2032, 342, 7203, 2, 23578, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3555, 796, 10352, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 1627, 13, 9688, 2032, 342, 7203, 2, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 3555, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 40589, 7036, 62, 2200, 10917, 4663, 1546, 13, 33295, 7, 1370, 13, 36311, 22446, 35312, 7203, 855, 4943, 58, 15, 12962, 198, 198, 29113, 29113, 21017, 198, 198, 39, 9338, 796, 28686, 13, 6978, 13, 397, 2777, 776, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198, 198, 4299, 1100, 46491, 42632, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 10934, 281, 4112, 3108, 422, 1635, 42632, 9, 290, 290, 1441, 262, 10154, 286, 262, 198, 220, 220, 220, 7186, 2393, 13, 220, 2195, 2454, 41002, 12, 23, 21004, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 40481, 82, 13, 9654, 7, 418, 13, 6978, 13, 22179, 7, 39, 9338, 11, 1635, 42632, 828, 366, 26145, 1600, 366, 40477, 12, 23, 4943, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 277, 13, 961, 3419, 198, 198, 44, 20892, 62, 25664, 796, 1100, 7, 44, 20892, 62, 34219, 8, 198, 198, 4299, 1064, 62, 28961, 7, 28961, 2599, 198, 220, 220, 220, 37227, 11627, 974, 11593, 9, 28961, 9, 834, 422, 337, 20892, 62, 25664, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 13634, 62, 15699, 796, 302, 13, 12947, 7, 198, 220, 220, 220, 220, 220, 220, 220, 374, 1, 61, 834, 90, 28961, 92, 834, 796, 37250, 7879, 16151, 58, 61, 6, 7879, 60, 28104, 17816, 7879, 60, 1911, 18982, 7, 28961, 28, 28961, 828, 198, 220, 220, 220, 220, 220, 220, 220, 337, 20892, 62, 25664, 11, 302, 13, 44, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 611, 13634, 62, 15699, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 13634, 62, 15699, 13, 8094, 7, 16, 8, 198, 220, 220, 220, 5298, 43160, 12331, 7203, 3118, 540, 284, 1064, 11593, 90, 28961, 92, 834, 4731, 526, 13, 18982, 7, 28961, 28, 28961, 4008, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 9058, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 20608, 11, 198, 220, 220, 220, 220, 220, 220, 220, 6764, 28, 19796, 62, 28961, 7203, 11213, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 5964, 28, 19796, 62, 28961, 7203, 43085, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 19016, 28, 19796, 62, 28961, 7203, 9900, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 2196, 28, 19796, 62, 28961, 7203, 9641, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 1772, 28, 19796, 62, 28961, 7203, 9800, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 1772, 62, 12888, 28, 19796, 62, 28961, 7203, 12888, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 5529, 263, 28, 19796, 62, 28961, 7203, 9800, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 5529, 263, 62, 12888, 28, 19796, 62, 28961, 7203, 12888, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 26286, 28, 20373, 45359, 5258, 11, 198, 220, 220, 220, 220, 220, 220, 220, 890, 62, 11213, 28, 961, 7203, 15675, 11682, 13, 9132, 12340, 198, 220, 220, 220, 220, 220, 220, 220, 890, 62, 11213, 62, 11299, 62, 4906, 2625, 5239, 14, 4102, 2902, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 10392, 28, 47, 8120, 25552, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5301, 62, 15908, 28, 4895, 1298, 366, 526, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 5301, 62, 7890, 28, 4895, 1298, 14631, 79, 893, 88, 918, 77, 35343, 15211, 13, 9078, 8973, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 19974, 62, 21230, 28, 25101, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 13350, 28, 31631, 5064, 40, 4877, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2721, 62, 47911, 28, 38604, 7036, 62, 2200, 10917, 4663, 1546, 11, 198, 220, 220, 220, 1267, 198 ]
2.533871
1,240
REST_PATH = u"" WS_PATH = u"/api/notifications/v1"
[ 49, 6465, 62, 34219, 796, 334, 15931, 198, 19416, 62, 34219, 796, 334, 1, 14, 15042, 14, 1662, 6637, 14, 85, 16, 1, 198 ]
2.125
24
__all__ = ["load"] import imp import importlib def load(name, path): """Load and initialize a module implemented as a Python source file and return its module object""" if hasattr(importlib, "machinery"): loader = importlib.machinery.SourceFileLoader(name, path) return loader.load_module() return imp.load_source(name, path)
[ 834, 439, 834, 796, 14631, 2220, 8973, 628, 198, 11748, 848, 198, 11748, 1330, 8019, 628, 198, 4299, 3440, 7, 3672, 11, 3108, 2599, 198, 220, 220, 220, 37227, 8912, 290, 41216, 257, 8265, 9177, 355, 257, 11361, 2723, 2393, 290, 1441, 663, 8265, 2134, 37811, 198, 220, 220, 220, 611, 468, 35226, 7, 11748, 8019, 11, 366, 76, 620, 15451, 1, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 40213, 796, 1330, 8019, 13, 76, 620, 15451, 13, 37226, 17401, 7, 3672, 11, 3108, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 40213, 13, 2220, 62, 21412, 3419, 198, 220, 220, 220, 1441, 848, 13, 2220, 62, 10459, 7, 3672, 11, 3108, 8, 198 ]
3.033898
118
import itertools from pygears.common.sieve import sieve from pygears.svgen.inst import SVGenInstPlugin from pygears.svgen.svmod import SVModuleGen from functools import partial from pygears.svgen.svgen import SVGenPlugin from pygears.svgen.util import svgen_visitor from pygears.core.hier_node import HierVisitorBase from pygears.svgen.inst import svgen_inst from pygears.rtl.gear import RTLGearHierVisitor, is_gear_instance class SVGenSievePlugin(SVGenInstPlugin, SVGenPlugin):
[ 11748, 340, 861, 10141, 198, 198, 6738, 12972, 70, 4127, 13, 11321, 13, 82, 12311, 1330, 264, 12311, 198, 6738, 12972, 70, 4127, 13, 21370, 5235, 13, 8625, 1330, 20546, 13746, 6310, 37233, 198, 6738, 12972, 70, 4127, 13, 21370, 5235, 13, 21370, 4666, 1330, 20546, 26796, 13746, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 6738, 12972, 70, 4127, 13, 21370, 5235, 13, 21370, 5235, 1330, 20546, 13746, 37233, 198, 6738, 12972, 70, 4127, 13, 21370, 5235, 13, 22602, 1330, 38487, 5235, 62, 4703, 2072, 198, 6738, 12972, 70, 4127, 13, 7295, 13, 71, 959, 62, 17440, 1330, 36496, 15854, 2072, 14881, 198, 6738, 12972, 70, 4127, 13, 21370, 5235, 13, 8625, 1330, 38487, 5235, 62, 8625, 198, 6738, 12972, 70, 4127, 13, 17034, 75, 13, 31763, 1330, 11923, 43, 38141, 39, 959, 15854, 2072, 11, 318, 62, 31763, 62, 39098, 628, 628, 628, 198, 4871, 20546, 13746, 50, 12311, 37233, 7, 50, 53, 13746, 6310, 37233, 11, 20546, 13746, 37233, 2599, 198 ]
2.963415
164
#encoding=utf-8 import qlib import pandas as pd import pickle import xgboost as xgb import numpy as np import re from qlib.constant import REG_US from qlib.utils import exists_qlib_data, init_instance_by_config from qlib.workflow import R from qlib.workflow.record_temp import SignalRecord, PortAnaRecord from qlib.utils import flatten_dict from qlib.data import LocalExpressionProvider from qlib.data.ops import Operators, OpsList from qlib.data.base import Feature from pyecharts import options as opts from pyecharts.charts import Kline, Line, Grid from my_data_handler import MyAlphaHandler # model_file = r'.\mlruns\1\d6536b056ba84a74be6b33971f443cf6\artifacts\trained_model' model_file = r'.\mlruns\1\148ef1cd7acd48deac3eadc339ad3008\artifacts\trained_model' with open(model_file, 'rb') as fi: model = pickle.load(fi) exprs, columns = MyAlphaHandler.get_custom_config() raw_data = pd.read_csv('../stock_data/TSLA.csv', parse_dates=['time']) raw_data['data_time'] = raw_data['time'].dt.strftime("%Y-%m-%d %H:%M:00") raw_data.set_index('time', inplace=True) raw_data["vwap"] = np.nan raw_data.sort_index(inplace=True) # print(raw_data) Operators.register(OpsList + [MyFeature]) obj = dict() for field in exprs: expression = eval(my_parse_field(field)) series = expression.load('TSLA', "2022-01-02", "2022-02-28", "1min") series = series.astype(np.float32) obj[field] = series data = pd.DataFrame(obj) data.columns = columns view_time_start = '2022-02-11' view_time_end = '2022-02-12' pre_data = raw_data.loc[view_time_start:view_time_end].copy() pred=model.model.predict(xgb.DMatrix(data.loc[view_time_start:view_time_end])) pre_data['pred_score'] = pred records = pre_data.to_dict("records") cash = 50000 position = {} hold_thresh = 5 score_thresh = 0.001 x_axises, y_axises, mark_points, money = [], [], [], [] for record in records: x_axises.append(record['data_time']) y_axises.append([ record['open'], record['close'], record['low'], record['high'] ]) if 'hold_cnt' in position: position['hold_cnt'] += 1 if position and (record['open'] >= position['close'] * 1.01 or record['open'] < position['close'] * 0.995 or record['pred_score'] < -score_thresh or position['hold_cnt'] >= hold_thresh): cash += position['amount'] * record['open'] position = {} #print("sell") mark_points.append(opts.MarkPointItem( coord=[record['data_time'], record['high']], symbol='triangle', symbol_size=7, itemstyle_opts=opts.ItemStyleOpts(color="green") )) elif record['pred_score'] > score_thresh and not position: position = dict(record) position['amount'] = int(cash / position['open']) cash -= position['amount'] * position['open'] # buy #print("buy") position['hold_cnt'] = 0 mark_points.append(opts.MarkPointItem( coord=[record['data_time'], record['high']], symbol='arrow', symbol_size=7, itemstyle_opts=opts.ItemStyleOpts(color="yellow") )) cur_money = cash if position: cur_money += position['amount'] * record['close'] money.append(cur_money) if position: cash += position['amount'] * records[-1]['close'] print("cash:", cash) kline_graph = ( Kline() .add_xaxis(x_axises) .add_yaxis( "kline", y_axises, markpoint_opts=opts.MarkPointOpts( data=mark_points ), ) .set_global_opts( xaxis_opts=opts.AxisOpts(is_scale=True), yaxis_opts=opts.AxisOpts( is_scale=True, splitarea_opts=opts.SplitAreaOpts( is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1) ), ), title_opts=opts.TitleOpts(title="%s_%s" % (view_time_start, view_time_end)), datazoom_opts=[opts.DataZoomOpts(type_="inside", xaxis_index=[0, 1],)], ) ) kline_line = ( Line() .add_xaxis(xaxis_data=x_axises) .add_yaxis( series_name="cur_money", y_axis=money, is_smooth=True, linestyle_opts=opts.LineStyleOpts(opacity=0.5), label_opts=opts.LabelOpts(is_show=False), markline_opts=opts.MarkLineOpts( data=[opts.MarkLineItem(y=50000)] ), ) .set_global_opts( xaxis_opts=opts.AxisOpts( type_="category", grid_index=2, axislabel_opts=opts.LabelOpts(is_show=False), ), yaxis_opts=opts.AxisOpts( min_='dataMin' ) ) ) grid_chart = Grid(init_opts=opts.InitOpts(width='2000px', height='900px')) grid_chart.add( kline_graph, grid_opts=opts.GridOpts(pos_left="3%", pos_right="10%", height="50%"), ) grid_chart.add( kline_line, grid_opts=opts.GridOpts( pos_left="3%", pos_right="10%", pos_top="60%", height="30%" ), ) grid_chart.render("kline_markline.html")
[ 2, 12685, 7656, 28, 40477, 12, 23, 198, 11748, 10662, 8019, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 2298, 293, 198, 11748, 2124, 70, 39521, 355, 2124, 22296, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 302, 198, 6738, 10662, 8019, 13, 9979, 415, 1330, 23337, 62, 2937, 198, 6738, 10662, 8019, 13, 26791, 1330, 7160, 62, 80, 8019, 62, 7890, 11, 2315, 62, 39098, 62, 1525, 62, 11250, 198, 6738, 10662, 8019, 13, 1818, 11125, 1330, 371, 198, 6738, 10662, 8019, 13, 1818, 11125, 13, 22105, 62, 29510, 1330, 26484, 23739, 11, 4347, 2025, 64, 23739, 198, 6738, 10662, 8019, 13, 26791, 1330, 27172, 268, 62, 11600, 198, 6738, 10662, 8019, 13, 7890, 1330, 10714, 16870, 2234, 29495, 198, 6738, 10662, 8019, 13, 7890, 13, 2840, 1330, 6564, 2024, 11, 26123, 8053, 198, 6738, 10662, 8019, 13, 7890, 13, 8692, 1330, 27018, 198, 6738, 12972, 3055, 5889, 1330, 3689, 355, 2172, 82, 198, 6738, 12972, 3055, 5889, 13, 354, 5889, 1330, 509, 1370, 11, 6910, 11, 24846, 198, 6738, 616, 62, 7890, 62, 30281, 1330, 2011, 38077, 25060, 198, 198, 2, 2746, 62, 7753, 796, 374, 4458, 59, 4029, 48381, 59, 16, 59, 67, 2996, 2623, 65, 2713, 21, 7012, 5705, 64, 4524, 1350, 21, 65, 29626, 4869, 69, 34938, 12993, 21, 59, 50179, 59, 35311, 62, 19849, 6, 198, 19849, 62, 7753, 796, 374, 4458, 59, 4029, 48381, 59, 16, 59, 18294, 891, 16, 10210, 22, 330, 67, 2780, 2934, 330, 18, 1329, 66, 29626, 324, 6200, 23, 59, 50179, 59, 35311, 62, 19849, 6, 198, 4480, 1280, 7, 19849, 62, 7753, 11, 705, 26145, 11537, 355, 25912, 25, 198, 220, 220, 220, 2746, 796, 2298, 293, 13, 2220, 7, 12463, 8, 198, 198, 31937, 82, 11, 15180, 796, 2011, 38077, 25060, 13, 1136, 62, 23144, 62, 11250, 3419, 628, 198, 1831, 62, 7890, 796, 279, 67, 13, 961, 62, 40664, 10786, 40720, 13578, 62, 7890, 14, 4694, 13534, 13, 40664, 3256, 21136, 62, 19581, 28, 17816, 2435, 6, 12962, 198, 1831, 62, 7890, 17816, 7890, 62, 2435, 20520, 796, 8246, 62, 7890, 17816, 2435, 6, 4083, 28664, 13, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 4064, 39, 25, 4, 44, 25, 405, 4943, 198, 1831, 62, 7890, 13, 2617, 62, 9630, 10786, 2435, 3256, 287, 5372, 28, 17821, 8, 198, 1831, 62, 7890, 14692, 85, 86, 499, 8973, 796, 45941, 13, 12647, 198, 1831, 62, 7890, 13, 30619, 62, 9630, 7, 259, 5372, 28, 17821, 8, 198, 2, 3601, 7, 1831, 62, 7890, 8, 198, 18843, 2024, 13, 30238, 7, 41472, 8053, 1343, 685, 3666, 38816, 12962, 198, 198, 26801, 796, 8633, 3419, 198, 1640, 2214, 287, 1033, 3808, 25, 198, 220, 220, 220, 5408, 796, 5418, 7, 1820, 62, 29572, 62, 3245, 7, 3245, 4008, 198, 220, 220, 220, 2168, 796, 5408, 13, 2220, 10786, 4694, 13534, 3256, 366, 1238, 1828, 12, 486, 12, 2999, 1600, 366, 1238, 1828, 12, 2999, 12, 2078, 1600, 366, 16, 1084, 4943, 198, 220, 220, 220, 2168, 796, 2168, 13, 459, 2981, 7, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 26181, 58, 3245, 60, 796, 2168, 198, 7890, 796, 279, 67, 13, 6601, 19778, 7, 26801, 8, 198, 7890, 13, 28665, 82, 796, 15180, 198, 198, 1177, 62, 2435, 62, 9688, 796, 705, 1238, 1828, 12, 2999, 12, 1157, 6, 198, 1177, 62, 2435, 62, 437, 796, 705, 1238, 1828, 12, 2999, 12, 1065, 6, 198, 198, 3866, 62, 7890, 796, 8246, 62, 7890, 13, 17946, 58, 1177, 62, 2435, 62, 9688, 25, 1177, 62, 2435, 62, 437, 4083, 30073, 3419, 198, 28764, 28, 19849, 13, 19849, 13, 79, 17407, 7, 87, 22296, 13, 35, 46912, 7, 7890, 13, 17946, 58, 1177, 62, 2435, 62, 9688, 25, 1177, 62, 2435, 62, 437, 60, 4008, 198, 3866, 62, 7890, 17816, 28764, 62, 26675, 20520, 796, 2747, 198, 8344, 3669, 796, 662, 62, 7890, 13, 1462, 62, 11600, 7203, 8344, 3669, 4943, 198, 198, 30350, 796, 642, 2388, 198, 9150, 796, 23884, 198, 2946, 62, 400, 3447, 796, 642, 198, 26675, 62, 400, 3447, 796, 657, 13, 8298, 198, 87, 62, 897, 2696, 11, 331, 62, 897, 2696, 11, 1317, 62, 13033, 11, 1637, 796, 685, 4357, 685, 4357, 685, 4357, 17635, 198, 1640, 1700, 287, 4406, 25, 198, 220, 220, 220, 2124, 62, 897, 2696, 13, 33295, 7, 22105, 17816, 7890, 62, 2435, 6, 12962, 198, 220, 220, 220, 331, 62, 897, 2696, 13, 33295, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 1700, 17816, 9654, 6, 4357, 1700, 17816, 19836, 6, 4357, 1700, 17816, 9319, 6, 4357, 1700, 17816, 8929, 20520, 198, 220, 220, 220, 33761, 198, 220, 220, 220, 611, 705, 2946, 62, 66, 429, 6, 287, 2292, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 17816, 2946, 62, 66, 429, 20520, 15853, 352, 198, 220, 220, 220, 611, 2292, 290, 357, 22105, 17816, 9654, 20520, 18189, 2292, 17816, 19836, 20520, 1635, 352, 13, 486, 393, 1700, 17816, 9654, 20520, 1279, 2292, 17816, 19836, 20520, 1635, 657, 13, 33438, 393, 1700, 17816, 28764, 62, 26675, 20520, 1279, 532, 26675, 62, 400, 3447, 393, 2292, 17816, 2946, 62, 66, 429, 20520, 18189, 1745, 62, 400, 3447, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5003, 15853, 2292, 17816, 17287, 20520, 1635, 1700, 17816, 9654, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 796, 23884, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 7255, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 1317, 62, 13033, 13, 33295, 7, 404, 912, 13, 9704, 12727, 7449, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6349, 41888, 22105, 17816, 7890, 62, 2435, 6, 4357, 1700, 17816, 8929, 20520, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 11639, 28461, 9248, 3256, 6194, 62, 7857, 28, 22, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 7635, 62, 404, 912, 28, 404, 912, 13, 7449, 21466, 27871, 82, 7, 8043, 2625, 14809, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 1288, 361, 1700, 17816, 28764, 62, 26675, 20520, 1875, 4776, 62, 400, 3447, 290, 407, 2292, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 796, 8633, 7, 22105, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 17816, 17287, 20520, 796, 493, 7, 30350, 1220, 2292, 17816, 9654, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 5003, 48185, 2292, 17816, 17287, 20520, 1635, 2292, 17816, 9654, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2822, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 4798, 7203, 17846, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 2292, 17816, 2946, 62, 66, 429, 20520, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1317, 62, 13033, 13, 33295, 7, 404, 912, 13, 9704, 12727, 7449, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6349, 41888, 22105, 17816, 7890, 62, 2435, 6, 4357, 1700, 17816, 8929, 20520, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 11639, 6018, 3256, 6194, 62, 7857, 28, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2378, 7635, 62, 404, 912, 28, 404, 912, 13, 7449, 21466, 27871, 82, 7, 8043, 2625, 36022, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 1090, 62, 26316, 796, 5003, 198, 220, 220, 220, 611, 2292, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1090, 62, 26316, 15853, 2292, 17816, 17287, 20520, 1635, 1700, 17816, 19836, 20520, 198, 220, 220, 220, 1637, 13, 33295, 7, 22019, 62, 26316, 8, 198, 361, 2292, 25, 198, 220, 220, 220, 5003, 15853, 2292, 17816, 17287, 20520, 1635, 4406, 58, 12, 16, 7131, 6, 19836, 20520, 198, 4798, 7203, 30350, 25, 1600, 5003, 8, 198, 198, 74, 1370, 62, 34960, 796, 357, 198, 220, 220, 220, 509, 1370, 3419, 198, 220, 220, 220, 764, 2860, 62, 87, 22704, 7, 87, 62, 897, 2696, 8, 198, 220, 220, 220, 764, 2860, 62, 88, 22704, 7, 198, 220, 220, 220, 220, 220, 220, 220, 366, 74, 1370, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 897, 2696, 11, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1317, 4122, 62, 404, 912, 28, 404, 912, 13, 9704, 12727, 27871, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 28, 4102, 62, 13033, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 764, 2617, 62, 20541, 62, 404, 912, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 22704, 62, 404, 912, 28, 404, 912, 13, 31554, 271, 27871, 82, 7, 271, 62, 9888, 28, 17821, 828, 198, 220, 220, 220, 220, 220, 220, 220, 331, 22704, 62, 404, 912, 28, 404, 912, 13, 31554, 271, 27871, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 9888, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6626, 20337, 62, 404, 912, 28, 404, 912, 13, 41205, 30547, 27871, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 318, 62, 12860, 28, 17821, 11, 389, 459, 2349, 62, 404, 912, 28, 404, 912, 13, 30547, 21466, 27871, 82, 7, 404, 4355, 28, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 3670, 62, 404, 912, 28, 404, 912, 13, 19160, 27871, 82, 7, 7839, 2625, 4, 82, 62, 4, 82, 1, 4064, 357, 1177, 62, 2435, 62, 9688, 11, 1570, 62, 2435, 62, 437, 36911, 198, 220, 220, 220, 220, 220, 220, 220, 4818, 1031, 4207, 62, 404, 912, 41888, 404, 912, 13, 6601, 57, 4207, 27871, 82, 7, 4906, 62, 2625, 48787, 1600, 2124, 22704, 62, 9630, 41888, 15, 11, 352, 4357, 8, 4357, 198, 220, 220, 220, 1267, 198, 8, 198, 198, 74, 1370, 62, 1370, 796, 357, 198, 220, 220, 220, 6910, 3419, 198, 220, 220, 220, 764, 2860, 62, 87, 22704, 7, 87, 22704, 62, 7890, 28, 87, 62, 897, 2696, 8, 198, 220, 220, 220, 764, 2860, 62, 88, 22704, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2168, 62, 3672, 2625, 22019, 62, 26316, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 22704, 28, 26316, 11, 198, 220, 220, 220, 220, 220, 220, 220, 318, 62, 5796, 5226, 28, 17821, 11, 198, 220, 220, 220, 220, 220, 220, 220, 9493, 10992, 62, 404, 912, 28, 404, 912, 13, 13949, 21466, 27871, 82, 7, 404, 4355, 28, 15, 13, 20, 828, 198, 220, 220, 220, 220, 220, 220, 220, 6167, 62, 404, 912, 28, 404, 912, 13, 33986, 27871, 82, 7, 271, 62, 12860, 28, 25101, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1317, 1370, 62, 404, 912, 28, 404, 912, 13, 9704, 13949, 27871, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 41888, 404, 912, 13, 9704, 13949, 7449, 7, 88, 28, 20, 2388, 15437, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 764, 2617, 62, 20541, 62, 404, 912, 7, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 22704, 62, 404, 912, 28, 404, 912, 13, 31554, 271, 27871, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 62, 2625, 22872, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10706, 62, 9630, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7877, 3044, 9608, 62, 404, 912, 28, 404, 912, 13, 33986, 27871, 82, 7, 271, 62, 12860, 28, 25101, 828, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 331, 22704, 62, 404, 912, 28, 404, 912, 13, 31554, 271, 27871, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 62, 11639, 7890, 9452, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 1267, 198, 8, 198, 198, 25928, 62, 40926, 796, 24846, 7, 15003, 62, 404, 912, 28, 404, 912, 13, 31768, 27871, 82, 7, 10394, 11639, 11024, 8416, 3256, 6001, 11639, 12865, 8416, 6, 4008, 198, 25928, 62, 40926, 13, 2860, 7, 198, 220, 220, 220, 479, 1370, 62, 34960, 11, 198, 220, 220, 220, 10706, 62, 404, 912, 28, 404, 912, 13, 41339, 27871, 82, 7, 1930, 62, 9464, 2625, 18, 4, 1600, 1426, 62, 3506, 2625, 940, 4, 1600, 6001, 2625, 1120, 4, 12340, 198, 8, 198, 25928, 62, 40926, 13, 2860, 7, 198, 220, 220, 220, 479, 1370, 62, 1370, 11, 198, 220, 220, 220, 10706, 62, 404, 912, 28, 404, 912, 13, 41339, 27871, 82, 7, 198, 220, 220, 220, 220, 220, 220, 220, 1426, 62, 9464, 2625, 18, 4, 1600, 1426, 62, 3506, 2625, 940, 4, 1600, 1426, 62, 4852, 2625, 1899, 4, 1600, 6001, 2625, 1270, 39658, 198, 220, 220, 220, 10612, 198, 8, 198, 25928, 62, 40926, 13, 13287, 7203, 74, 1370, 62, 4102, 1370, 13, 6494, 4943 ]
2.186313
2,265
from fastapi import APIRouter router = APIRouter()
[ 6738, 3049, 15042, 1330, 3486, 4663, 39605, 198, 198, 472, 353, 796, 3486, 4663, 39605, 3419, 628 ]
3.117647
17
import numpy as np import scipy.sparse as sp import torch import torch.nn as nn import networkx as nx import time from embed_methods.dgi.models import DGI, LogReg from embed_methods.dgi.utils import process
[ 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 82, 29572, 355, 599, 198, 11748, 28034, 198, 11748, 28034, 13, 20471, 355, 299, 77, 198, 11748, 3127, 87, 355, 299, 87, 198, 11748, 640, 198, 198, 6738, 11525, 62, 24396, 82, 13, 67, 12397, 13, 27530, 1330, 360, 18878, 11, 5972, 8081, 198, 6738, 11525, 62, 24396, 82, 13, 67, 12397, 13, 26791, 1330, 1429, 198 ]
3.058824
68
"""Deploys binaries to a GitHub release given the specified tag name.""" import argparse import os import time from github import Github THIS_FILE_DIRECTORY = os.path.dirname(os.path.realpath(__file__)) GH_REPO_IDENT = "ETCLabs/RDMnet" GH_USERNAME = "svc-etclabs" GH_API_TOKEN = os.getenv("SVC_ETCLABS_REPO_TOKEN") def deploy_binaries(version: str): """Deploys staged binaries to a new GitHub Release.""" g = Github(login_or_token=GH_USERNAME, password=GH_API_TOKEN) repo = g.get_repo(GH_REPO_IDENT) print(f"Waiting for the correct GitHub tag v{version} to become available...") keep_trying = True while keep_trying: for tag in repo.get_tags(): if tag.name == f"v{version}": keep_trying = False # Tag now exists break if keep_trying: time.sleep(5) print(f"Tag v{version} available. Creating release...") new_release = repo.create_git_release( tag=f"v{version}", name=f"RDMnet v{version}", message=f"Automated release of RDMnet for v{version}", ) new_release.upload_asset("RDMnetSetup_x86.msi") new_release.upload_asset("RDMnetSetup_x64.msi") new_release.upload_asset("RDMnet.pkg") if __name__ == "__main__": main()
[ 37811, 49322, 82, 38640, 284, 257, 21722, 2650, 1813, 262, 7368, 7621, 1438, 526, 15931, 198, 11748, 1822, 29572, 198, 11748, 28686, 198, 11748, 640, 198, 198, 6738, 33084, 1330, 38994, 198, 198, 43559, 62, 25664, 62, 17931, 23988, 15513, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 5305, 6978, 7, 834, 7753, 834, 4008, 198, 17511, 62, 2200, 16402, 62, 25256, 796, 366, 2767, 5097, 8937, 14, 49, 23127, 3262, 1, 198, 17511, 62, 29904, 20608, 796, 366, 21370, 66, 12, 316, 565, 8937, 1, 198, 17511, 62, 17614, 62, 10468, 43959, 796, 28686, 13, 1136, 24330, 7203, 50, 15922, 62, 2767, 16827, 4462, 62, 2200, 16402, 62, 10468, 43959, 4943, 198, 198, 4299, 6061, 62, 8800, 3166, 7, 9641, 25, 965, 2599, 198, 220, 220, 220, 37227, 49322, 82, 23393, 38640, 284, 257, 649, 21722, 13868, 526, 15931, 198, 220, 220, 220, 308, 796, 38994, 7, 38235, 62, 273, 62, 30001, 28, 17511, 62, 29904, 20608, 11, 9206, 28, 17511, 62, 17614, 62, 10468, 43959, 8, 198, 220, 220, 220, 29924, 796, 308, 13, 1136, 62, 260, 7501, 7, 17511, 62, 2200, 16402, 62, 25256, 8, 628, 220, 220, 220, 3601, 7, 69, 1, 33484, 1780, 329, 262, 3376, 21722, 7621, 410, 90, 9641, 92, 284, 1716, 1695, 9313, 8, 628, 220, 220, 220, 1394, 62, 83, 14992, 796, 6407, 198, 220, 220, 220, 981, 1394, 62, 83, 14992, 25, 198, 220, 220, 220, 220, 220, 220, 220, 329, 7621, 287, 29924, 13, 1136, 62, 31499, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7621, 13, 3672, 6624, 277, 1, 85, 90, 9641, 92, 1298, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1394, 62, 83, 14992, 796, 10352, 220, 1303, 17467, 783, 7160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 628, 220, 220, 220, 220, 220, 220, 220, 611, 1394, 62, 83, 14992, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 20, 8, 628, 220, 220, 220, 3601, 7, 69, 1, 24835, 410, 90, 9641, 92, 1695, 13, 30481, 2650, 9313, 8, 198, 220, 220, 220, 649, 62, 20979, 796, 29924, 13, 17953, 62, 18300, 62, 20979, 7, 198, 220, 220, 220, 220, 220, 220, 220, 7621, 28, 69, 1, 85, 90, 9641, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 28, 69, 1, 49, 23127, 3262, 410, 90, 9641, 92, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3275, 28, 69, 1, 38062, 515, 2650, 286, 371, 23127, 3262, 329, 410, 90, 9641, 92, 1600, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 649, 62, 20979, 13, 25850, 62, 562, 316, 7203, 49, 23127, 3262, 40786, 62, 87, 4521, 13, 907, 72, 4943, 198, 220, 220, 220, 649, 62, 20979, 13, 25850, 62, 562, 316, 7203, 49, 23127, 3262, 40786, 62, 87, 2414, 13, 907, 72, 4943, 198, 220, 220, 220, 649, 62, 20979, 13, 25850, 62, 562, 316, 7203, 49, 23127, 3262, 13, 35339, 4943, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.350554
542
import logging import numpy from ..Fragments import Fragments from ..typing import SpectrumType logger = logging.getLogger("matchms") def add_losses(spectrum_in: SpectrumType, loss_mz_from=0.0, loss_mz_to=1000.0) -> SpectrumType: """Derive losses based on precursor mass. Parameters ---------- spectrum_in: Input spectrum. loss_mz_from: Minimum allowed m/z value for losses. Default is 0.0. loss_mz_to: Maximum allowed m/z value for losses. Default is 1000.0. """ if spectrum_in is None: return None spectrum = spectrum_in.clone() precursor_mz = spectrum.get("precursor_mz", None) if precursor_mz: assert isinstance(precursor_mz, (float, int)), ("Expected 'precursor_mz' to be a scalar number.", "Consider applying 'add_precursor_mz' filter first.") peaks_mz, peaks_intensities = spectrum.peaks.mz, spectrum.peaks.intensities losses_mz = (precursor_mz - peaks_mz)[::-1] losses_intensities = peaks_intensities[::-1] # Add losses which are within given boundaries mask = numpy.where((losses_mz >= loss_mz_from) & (losses_mz <= loss_mz_to)) spectrum.losses = Fragments(mz=losses_mz[mask], intensities=losses_intensities[mask]) else: logger.warning("No precursor_mz found. Consider applying 'add_precursor_mz' filter first.") return spectrum
[ 11748, 18931, 198, 11748, 299, 32152, 198, 6738, 11485, 42974, 902, 1330, 24229, 902, 198, 6738, 11485, 774, 13886, 1330, 27217, 6030, 628, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 15699, 907, 4943, 628, 198, 4299, 751, 62, 22462, 274, 7, 4443, 6582, 62, 259, 25, 27217, 6030, 11, 2994, 62, 76, 89, 62, 6738, 28, 15, 13, 15, 11, 2994, 62, 76, 89, 62, 1462, 28, 12825, 13, 15, 8, 4613, 27217, 6030, 25, 198, 220, 220, 220, 37227, 28532, 425, 9089, 1912, 319, 34826, 2347, 13, 628, 220, 220, 220, 40117, 198, 220, 220, 220, 24200, 438, 198, 220, 220, 220, 10958, 62, 259, 25, 198, 220, 220, 220, 220, 220, 220, 220, 23412, 10958, 13, 198, 220, 220, 220, 2994, 62, 76, 89, 62, 6738, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26265, 3142, 285, 14, 89, 1988, 329, 9089, 13, 15161, 318, 657, 13, 15, 13, 198, 220, 220, 220, 2994, 62, 76, 89, 62, 1462, 25, 198, 220, 220, 220, 220, 220, 220, 220, 22246, 3142, 285, 14, 89, 1988, 329, 9089, 13, 15161, 318, 8576, 13, 15, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 10958, 62, 259, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 6045, 628, 220, 220, 220, 10958, 796, 10958, 62, 259, 13, 21018, 3419, 628, 220, 220, 220, 34826, 62, 76, 89, 796, 10958, 13, 1136, 7203, 3866, 66, 21471, 62, 76, 89, 1600, 6045, 8, 198, 220, 220, 220, 611, 34826, 62, 76, 89, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 318, 39098, 7, 3866, 66, 21471, 62, 76, 89, 11, 357, 22468, 11, 493, 36911, 5855, 3109, 7254, 705, 3866, 66, 21471, 62, 76, 89, 6, 284, 307, 257, 16578, 283, 1271, 33283, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 19626, 11524, 705, 2860, 62, 3866, 66, 21471, 62, 76, 89, 6, 8106, 717, 19570, 198, 220, 220, 220, 220, 220, 220, 220, 25740, 62, 76, 89, 11, 25740, 62, 600, 641, 871, 796, 10958, 13, 431, 4730, 13, 76, 89, 11, 10958, 13, 431, 4730, 13, 600, 641, 871, 198, 220, 220, 220, 220, 220, 220, 220, 9089, 62, 76, 89, 796, 357, 3866, 66, 21471, 62, 76, 89, 532, 25740, 62, 76, 89, 38381, 3712, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 9089, 62, 600, 641, 871, 796, 25740, 62, 600, 641, 871, 58, 3712, 12, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 3060, 9089, 543, 389, 1626, 1813, 13215, 198, 220, 220, 220, 220, 220, 220, 220, 9335, 796, 299, 32152, 13, 3003, 19510, 22462, 274, 62, 76, 89, 18189, 2994, 62, 76, 89, 62, 6738, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1222, 357, 22462, 274, 62, 76, 89, 19841, 2994, 62, 76, 89, 62, 1462, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 10958, 13, 22462, 274, 796, 24229, 902, 7, 76, 89, 28, 22462, 274, 62, 76, 89, 58, 27932, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17509, 871, 28, 22462, 274, 62, 600, 641, 871, 58, 27932, 12962, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 49706, 13, 43917, 7203, 2949, 34826, 62, 76, 89, 1043, 13, 12642, 11524, 705, 2860, 62, 3866, 66, 21471, 62, 76, 89, 6, 8106, 717, 19570, 628, 220, 220, 220, 1441, 10958, 198 ]
2.258209
670
import re from .dict_functions import gen_schema, ParameterSchema, sort_dict from cornflow_client.constants import JSON_TYPES, DATASCHEMA
[ 11748, 302, 198, 6738, 764, 11600, 62, 12543, 2733, 1330, 2429, 62, 15952, 2611, 11, 25139, 2357, 27054, 2611, 11, 3297, 62, 11600, 198, 6738, 11676, 11125, 62, 16366, 13, 9979, 1187, 1330, 19449, 62, 9936, 47, 1546, 11, 360, 1404, 1921, 3398, 27630, 628 ]
3.088889
45
#! /usr/bin/env python3 # -*- coding: utf-8 -*- import os import platform import unittest import rspub.util.resourcefilter as rf
[ 2, 0, 1220, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 11748, 28686, 198, 11748, 3859, 198, 11748, 555, 715, 395, 198, 198, 11748, 374, 2777, 549, 13, 22602, 13, 31092, 24455, 355, 374, 69, 628, 628, 628, 628, 628, 198 ]
2.545455
55
import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') def test_package(host): """ check if packages are installed """ assert host.package('grafana').is_installed def test_service(host): """ Testing whether the service is running and enabled """ assert host.service('grafana-server').is_enabled assert host.service('grafana-server').is_running
[ 11748, 28686, 198, 198, 11748, 1332, 10745, 430, 13, 26791, 13, 504, 856, 62, 16737, 198, 198, 9288, 10745, 430, 62, 4774, 82, 796, 1332, 10745, 430, 13, 26791, 13, 504, 856, 62, 16737, 13, 2025, 82, 856, 49493, 7, 198, 220, 220, 220, 28686, 13, 268, 2268, 17816, 11770, 2538, 34, 24212, 62, 1268, 53, 3525, 15513, 62, 25664, 20520, 737, 1136, 62, 4774, 82, 10786, 439, 11537, 628, 198, 4299, 1332, 62, 26495, 7, 4774, 2599, 198, 220, 220, 220, 37227, 2198, 611, 10392, 389, 6589, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 2583, 13, 26495, 10786, 70, 32188, 2271, 27691, 271, 62, 37050, 628, 198, 4299, 1332, 62, 15271, 7, 4774, 2599, 198, 220, 220, 220, 37227, 23983, 1771, 262, 2139, 318, 2491, 290, 9343, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 6818, 2583, 13, 15271, 10786, 70, 32188, 2271, 12, 15388, 27691, 271, 62, 25616, 198, 220, 220, 220, 6818, 2583, 13, 15271, 10786, 70, 32188, 2271, 12, 15388, 27691, 271, 62, 20270, 198 ]
2.861272
173
"""Class representations of heatsinks.""" import math from scipy import constants as const from materials import Aluminium_6063 as aluminium
[ 37811, 9487, 24612, 286, 37876, 2973, 526, 15931, 198, 198, 11748, 10688, 198, 6738, 629, 541, 88, 1330, 38491, 355, 1500, 198, 198, 6738, 5696, 1330, 978, 35241, 62, 1899, 5066, 355, 40412, 628, 198 ]
4.142857
35
import inspect foo()
[ 11748, 10104, 220, 198, 220, 198, 21943, 3419 ]
2.875
8
import base58 from plenum.common.signer_did import DidSigner from plenum.common.verifier import DidVerifier from plenum.common.eventually import eventually from plenum.test.helper import assertEquality from sovrin.common.identity import Identity MsgForSigning = {'sender': 'Mario', 'msg': 'Lorem ipsum'}
[ 11748, 2779, 3365, 198, 6738, 458, 44709, 13, 11321, 13, 12683, 263, 62, 20839, 1330, 7731, 11712, 263, 198, 6738, 458, 44709, 13, 11321, 13, 332, 7483, 1330, 7731, 13414, 7483, 198, 6738, 458, 44709, 13, 11321, 13, 15596, 935, 1330, 4191, 198, 6738, 458, 44709, 13, 9288, 13, 2978, 525, 1330, 6818, 36, 13237, 198, 198, 6738, 523, 85, 12769, 13, 11321, 13, 738, 414, 1330, 27207, 198, 198, 50108, 1890, 11712, 278, 796, 1391, 6, 82, 2194, 10354, 705, 42315, 3256, 705, 19662, 10354, 705, 43, 29625, 220, 2419, 388, 6, 92, 628, 628, 628, 628, 628 ]
3.181818
99
import astropy import datetime import numpy as np from edibles.utils.edibles_spectrum import EdiblesSpectrum if __name__ == "__main__": filename = "HD170740_w860_redl_20140915_O12.fits" testEdiblesSpectrum(filename=filename)
[ 11748, 6468, 28338, 198, 11748, 4818, 8079, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 1225, 18764, 13, 26791, 13, 276, 18764, 62, 4443, 6582, 1330, 1717, 18764, 49738, 6582, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 29472, 796, 366, 10227, 1558, 2998, 1821, 62, 86, 45039, 62, 445, 75, 62, 1264, 29416, 1314, 62, 46, 1065, 13, 21013, 1, 198, 220, 220, 220, 1332, 7407, 18764, 49738, 6582, 7, 34345, 28, 34345, 8, 198 ]
2.788235
85
# Copyright (c) 2010-2013 OpenStack, LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """Methods & Attributes for shared 'on-disk' data layouts.""" import os import sys import errno from hashlib import md5 from random import shuffle from ConfigParser import ConfigParser, NoSectionError, NoOptionError from swift import gettext_ as _ from swift.common.utils import listdir, quote # Used by hash_path to offer a bit more security when generating hashes for # paths. It simply appends this value to all paths; guessing the hash a path # will end up with would also require knowing this suffix. _hash_conf = ConfigParser() HASH_PATH_SUFFIX = '' HASH_PATH_PREFIX = '' if _hash_conf.read('/etc/swift/swift.conf'): try: HASH_PATH_SUFFIX = _hash_conf.get('swift-hash', 'swift_hash_path_suffix') except (NoSectionError, NoOptionError): pass try: HASH_PATH_PREFIX = _hash_conf.get('swift-hash', 'swift_hash_path_prefix') except (NoSectionError, NoOptionError): pass def hash_path(account, container=None, object=None, raw_digest=False): """ Get the canonical hash for an account/container/object :param account: Account :param container: Container :param object: Object :param raw_digest: If True, return the raw version rather than a hex digest :returns: hash string """ if object and not container: raise ValueError('container is required if object is provided') paths = [account] if container: paths.append(container) if object: paths.append(object) if raw_digest: return md5(HASH_PATH_PREFIX + '/' + '/'.join(paths) + HASH_PATH_SUFFIX).digest() else: return md5(HASH_PATH_PREFIX + '/' + '/'.join(paths) + HASH_PATH_SUFFIX).hexdigest() def normalize_timestamp(timestamp): """ Format a timestamp (string or numeric) into a standardized xxxxxxxxxx.xxxxx (10.5) format. Note that timestamps using values greater than or equal to November 20th, 2286 at 17:46 UTC will use 11 digits to represent the number of seconds. :param timestamp: unix timestamp :returns: normalized timestamp as a string """ return "%016.05f" % (float(timestamp)) def validate_device_partition(device, partition): """ Validate that a device and a partition are valid and won't lead to directory traversal when used. :param device: device to validate :param partition: partition to validate :raises: ValueError if given an invalid device or partition """ invalid_device = False invalid_partition = False if not device or '/' in device or device in ['.', '..']: invalid_device = True if not partition or '/' in partition or partition in ['.', '..']: invalid_partition = True if invalid_device: raise ValueError('Invalid device: %s' % quote(device or '')) elif invalid_partition: raise ValueError('Invalid partition: %s' % quote(partition or '')) def storage_directory(datadir, partition, name_hash): """ Get the storage directory :param datadir: Base data directory :param partition: Partition :param name_hash: Account, container or object name hash :returns: Storage directory """ return os.path.join(datadir, str(partition), name_hash[-3:], name_hash)
[ 2, 15069, 357, 66, 8, 3050, 12, 6390, 4946, 25896, 11, 11419, 13, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 198, 2, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 198, 37811, 46202, 1222, 49213, 329, 4888, 705, 261, 12, 39531, 6, 1366, 38489, 526, 15931, 198, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 11454, 3919, 198, 198, 6738, 12234, 8019, 1330, 45243, 20, 198, 6738, 4738, 1330, 36273, 198, 6738, 17056, 46677, 1330, 17056, 46677, 11, 1400, 16375, 12331, 11, 1400, 19722, 12331, 198, 198, 6738, 14622, 1330, 651, 5239, 62, 355, 4808, 198, 6738, 14622, 13, 11321, 13, 26791, 1330, 1351, 15908, 11, 9577, 198, 198, 2, 16718, 416, 12234, 62, 6978, 284, 2897, 257, 1643, 517, 2324, 618, 15453, 46621, 329, 198, 2, 13532, 13, 632, 2391, 598, 2412, 428, 1988, 284, 477, 13532, 26, 25260, 262, 12234, 257, 3108, 198, 2, 481, 886, 510, 351, 561, 635, 2421, 6970, 428, 35488, 13, 198, 62, 17831, 62, 10414, 796, 17056, 46677, 3419, 198, 39, 11211, 62, 34219, 62, 12564, 5777, 10426, 796, 10148, 198, 39, 11211, 62, 34219, 62, 47, 31688, 10426, 796, 10148, 198, 361, 4808, 17831, 62, 10414, 13, 961, 10786, 14, 14784, 14, 2032, 2135, 14, 2032, 2135, 13, 10414, 6, 2599, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 367, 11211, 62, 34219, 62, 12564, 5777, 10426, 796, 4808, 17831, 62, 10414, 13, 1136, 10786, 2032, 2135, 12, 17831, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2032, 2135, 62, 17831, 62, 6978, 62, 37333, 844, 11537, 198, 220, 220, 220, 2845, 357, 2949, 16375, 12331, 11, 1400, 19722, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 367, 11211, 62, 34219, 62, 47, 31688, 10426, 796, 4808, 17831, 62, 10414, 13, 1136, 10786, 2032, 2135, 12, 17831, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2032, 2135, 62, 17831, 62, 6978, 62, 40290, 11537, 198, 220, 220, 220, 2845, 357, 2949, 16375, 12331, 11, 1400, 19722, 12331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1208, 628, 198, 198, 4299, 12234, 62, 6978, 7, 23317, 11, 9290, 28, 14202, 11, 2134, 28, 14202, 11, 8246, 62, 12894, 395, 28, 25101, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 262, 40091, 12234, 329, 281, 1848, 14, 34924, 14, 15252, 628, 220, 220, 220, 1058, 17143, 1848, 25, 10781, 198, 220, 220, 220, 1058, 17143, 9290, 25, 43101, 198, 220, 220, 220, 1058, 17143, 2134, 25, 9515, 198, 220, 220, 220, 1058, 17143, 8246, 62, 12894, 395, 25, 1002, 6407, 11, 1441, 262, 8246, 2196, 2138, 621, 257, 17910, 16274, 198, 220, 220, 220, 1058, 7783, 82, 25, 12234, 4731, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 2134, 290, 407, 9290, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 34924, 318, 2672, 611, 2134, 318, 2810, 11537, 198, 220, 220, 220, 13532, 796, 685, 23317, 60, 198, 220, 220, 220, 611, 9290, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13532, 13, 33295, 7, 34924, 8, 198, 220, 220, 220, 611, 2134, 25, 198, 220, 220, 220, 220, 220, 220, 220, 13532, 13, 33295, 7, 15252, 8, 198, 220, 220, 220, 611, 8246, 62, 12894, 395, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45243, 20, 7, 39, 11211, 62, 34219, 62, 47, 31688, 10426, 1343, 31051, 6, 1343, 31051, 4458, 22179, 7, 6978, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 367, 11211, 62, 34219, 62, 12564, 5777, 10426, 737, 12894, 395, 3419, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 45243, 20, 7, 39, 11211, 62, 34219, 62, 47, 31688, 10426, 1343, 31051, 6, 1343, 31051, 4458, 22179, 7, 6978, 82, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1343, 367, 11211, 62, 34219, 62, 12564, 5777, 10426, 737, 33095, 12894, 395, 3419, 628, 198, 4299, 3487, 1096, 62, 16514, 27823, 7, 16514, 27823, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 18980, 257, 41033, 357, 8841, 393, 35575, 8, 656, 257, 25713, 198, 220, 220, 220, 2124, 24223, 87, 13, 12343, 87, 357, 940, 13, 20, 8, 5794, 13, 628, 220, 220, 220, 5740, 326, 4628, 395, 9430, 1262, 3815, 3744, 621, 393, 4961, 284, 3389, 1160, 400, 11, 198, 220, 220, 220, 362, 27033, 379, 1596, 25, 3510, 18119, 481, 779, 1367, 19561, 284, 2380, 262, 1271, 286, 198, 220, 220, 220, 4201, 13, 628, 220, 220, 220, 1058, 17143, 41033, 25, 555, 844, 41033, 198, 220, 220, 220, 1058, 7783, 82, 25, 39279, 41033, 355, 257, 4731, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 36521, 27037, 13, 2713, 69, 1, 4064, 357, 22468, 7, 16514, 27823, 4008, 628, 198, 4299, 26571, 62, 25202, 62, 3911, 653, 7, 25202, 11, 18398, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3254, 20540, 326, 257, 3335, 290, 257, 18398, 389, 4938, 290, 1839, 470, 1085, 284, 198, 220, 220, 220, 8619, 33038, 282, 618, 973, 13, 628, 220, 220, 220, 1058, 17143, 3335, 25, 3335, 284, 26571, 198, 220, 220, 220, 1058, 17143, 18398, 25, 18398, 284, 26571, 198, 220, 220, 220, 1058, 430, 2696, 25, 11052, 12331, 611, 1813, 281, 12515, 3335, 393, 18398, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 12515, 62, 25202, 796, 10352, 198, 220, 220, 220, 12515, 62, 3911, 653, 796, 10352, 198, 220, 220, 220, 611, 407, 3335, 393, 31051, 6, 287, 3335, 393, 3335, 287, 37250, 2637, 11, 705, 492, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 12515, 62, 25202, 796, 6407, 198, 220, 220, 220, 611, 407, 18398, 393, 31051, 6, 287, 18398, 393, 18398, 287, 37250, 2637, 11, 705, 492, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 12515, 62, 3911, 653, 796, 6407, 628, 220, 220, 220, 611, 12515, 62, 25202, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 44651, 3335, 25, 4064, 82, 6, 4064, 9577, 7, 25202, 393, 10148, 4008, 198, 220, 220, 220, 1288, 361, 12515, 62, 3911, 653, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 10786, 44651, 18398, 25, 4064, 82, 6, 4064, 9577, 7, 3911, 653, 393, 10148, 4008, 628, 198, 4299, 6143, 62, 34945, 7, 19608, 324, 343, 11, 18398, 11, 1438, 62, 17831, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 3497, 262, 6143, 8619, 628, 220, 220, 220, 1058, 17143, 4818, 324, 343, 25, 7308, 1366, 8619, 198, 220, 220, 220, 1058, 17143, 18398, 25, 2142, 653, 198, 220, 220, 220, 1058, 17143, 1438, 62, 17831, 25, 10781, 11, 9290, 393, 2134, 1438, 12234, 198, 220, 220, 220, 1058, 7783, 82, 25, 20514, 8619, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 28686, 13, 6978, 13, 22179, 7, 19608, 324, 343, 11, 965, 7, 3911, 653, 828, 1438, 62, 17831, 58, 12, 18, 25, 4357, 1438, 62, 17831, 8, 628 ]
2.821937
1,404
# uncompyle6 version 2.11.3 # Python bytecode 2.7 (62211) # Decompiled from: Python 2.7.10 (default, May 23 2015, 09:40:32) [MSC v.1500 32 bit (Intel)] # Embedded file name: scripts/common/dossiers2/custom/cache.py import nations from items import vehicles _g_cache = {}
[ 2, 34318, 2349, 21, 2196, 362, 13, 1157, 13, 18, 198, 2, 11361, 18022, 8189, 362, 13, 22, 357, 21, 1828, 1157, 8, 198, 2, 4280, 3361, 3902, 422, 25, 11361, 362, 13, 22, 13, 940, 357, 12286, 11, 1737, 2242, 1853, 11, 7769, 25, 1821, 25, 2624, 8, 685, 5653, 34, 410, 13, 33698, 3933, 1643, 357, 24123, 15437, 198, 2, 13302, 47238, 2393, 1438, 25, 14750, 14, 11321, 14, 67, 793, 3183, 17, 14, 23144, 14, 23870, 13, 9078, 198, 11748, 7027, 198, 6738, 3709, 1330, 5672, 628, 198, 198, 62, 70, 62, 23870, 796, 23884 ]
2.785714
98
#!/usr/bin/python from code import TreeNode from code import ThreeAddressCode from lexer import tokens from random import * from symbol_table import SymbolTable from symbol_table import SymbolTableNode import logging import ply.lex as lex import ply.yacc as yacc import sys from codegen import convert_tac from code import Code from codegen import generate_assembly three_addr_code = ThreeAddressCode() assembly_code = Code() parsed = [] symbol_table = SymbolTable() var_list = [] generated = {'temp': [], 'scope': ['scope_0'], 'label': [], 'str_list': []} precedence = ( ('left','IDENTIFIER'), ('right','ASSIGN_OP'), ('left','COMMA'), ('left','LSQUARE'), ('left','RSQUARE'), ('left','LCURLY'), ('left','RCURLY'), ('left','DDD'), ('left','DOT'), ('left','SEMICOLON'), ('left','COLON'), ('left','SINGLE_QUOTES'), ('left','DOUBLE_QUOTES'), ('left','DECIMAL_LIT'), ('left','OCTAL_LIT'), ('left','HEX_LIT'), ('left','FLOAT_LIT'), ('left','STRING_LIT'), ('left','NEWLINE'), ('left','BREAK'), ('left','CONTINUE'), ('left','RETURN'), ('left','RROUND'), ('left','LROUND'), ('left', 'OR_OR'), ('left', 'AMP_AMP'), ('left', 'EQ_EQ', 'NOT_EQ','LT','LT_EQ','GT','GT_EQ'), ('left', 'PLUS', 'MINUS','OR','CARET'), ('left', 'STAR', 'DIVIDE','MODULO','AMP','AND_OR','LS','RS'), ) def p_SourceFile(p): '''SourceFile : PACKAGE IDENTIFIER SEMICOLON ImportDeclList TopLevelDeclList ''' parsed.append(p.slice) # TODO: Ignoring package name and Imports for now p[0] = p[5] var_list = symbol_table.make_var_list() three_addr_code = convert_tac(p[0].TAC) symbol_table.fill_next_use(three_addr_code) assembly_code = generate_assembly(three_addr_code,var_list,symbol_table) # p[0].TAC.print_code() # three_addr_code.print_code() assembly_code.print_code() # symbol_table.print_symbol_table() return def p_ImportDeclList(p): '''ImportDeclList : ImportDecl SEMICOLON ImportDeclList | empty ''' parsed.append(p.slice) # TODO: Ignoring Imports for now return def p_TopLevelDeclList(p): '''TopLevelDeclList : TopLevelDecl SEMICOLON TopLevelDeclList | empty ''' parsed.append(p.slice) if len(p) == 4: if p[3] != None: p[0] = TreeNode('TopLevelDeclList', 0, 'INT', 0, [p[1]] + p[3].children, p[1].TAC) p[0].TAC.append_TAC(p[3].TAC) else: p[0] = TreeNode('TopLevelDeclList', 0, 'INT', 0, [p[1]], p[1].TAC) return def p_TopLevelDecl(p): '''TopLevelDecl : Declaration | FunctionDecl ''' parsed.append(p.slice) p[0] = p[1] return def p_ImportDecl(p): '''ImportDecl : IMPORT LROUND ImportSpecList RROUND | IMPORT ImportSpec ''' parsed.append(p.slice) # TODO: Ignoring Imports for now return def p_ImportSpecList(p): '''ImportSpecList : ImportSpec SEMICOLON ImportSpecList | empty ''' parsed.append(p.slice) # TODO: Ignoring Imports for now return def p_ImportSpec(p): '''ImportSpec : DOT string_lit | IDENTIFIER string_lit | empty string_lit ''' parsed.append(p.slice) # TODO: Ignoring Imports for now return def p_Block(p): '''Block : LCURLY ScopeStart StatementList ScopeEnd RCURLY ''' parsed.append(p.slice) p[0] = p[3] p[0].data = p[2].data p[0].name = 'Block' return def p_ScopeStart(p): '''ScopeStart : empty ''' parsed.append(p.slice) symbol_table.add_scope(gen('scope')) p[0] = TreeNode('ScopeStart', symbol_table.current_scope, 'None') return def p_ScopeEnd(p): '''ScopeEnd : empty ''' parsed.append(p.slice) symbol_table.end_scope() return def p_StatementList(p): '''StatementList : Statement SEMICOLON StatementList | empty ''' parsed.append(p.slice) if len(p) == 4: p[0] = TreeNode('StatementList', 0, 'INT', 0, [p[1].data] + p[3].children, p[1].TAC) p[0].TAC.append_TAC(p[3].TAC) else: p[0] = TreeNode('StatementList', 0, 'INT') return def p_Statement(p): '''Statement : Declaration | SimpleStmt | ReturnStmt | Block | IfStmt | SwitchStmt | ForStmt | BreakStmt | ContinueStmt | GotoStmt | PrintIntStmt | PrintStrStmt ''' parsed.append(p.slice) p[0] = p[1] p[0].name = 'Statement' return def p_PrintIntStmt(p): '''PrintIntStmt : PRINTLN LROUND IDENTIFIER RROUND | PRINTLN LROUND int_lit RROUND ''' if hasattr(p[3], 'name') and p[3].name == 'int_lit': p[0] = p[3] # p[0].isLvalue = 0 else: p[0] = TreeNode('IDENTIFIER', p[3], 'INT', 1, []) p[0].TAC.add_line(['print_int', check_variable(p[0]), '', '']) p[0].name = 'PrintIntStmt' return def p_PrintStrStmt(p): '''PrintStrStmt : PRINTLN LROUND string_lit RROUND ''' p[0] = p[3] name = symbol_table.current_scope + '_' + gen('str_list') parametersNode = SymbolTableNode(p[3].data, p[3].input_type) newNode = SymbolTableNode(name, p[3].input_type, parameters = [parametersNode]) symbol_table.add_var(newNode) p[0].TAC.add_line(['print_str', name, '', '']) p[0].name = 'PrintStrStmt' return def p_Declaration(p): '''Declaration : ConstDecl | TypeDecl | VarDecl ''' parsed.append(p.slice) p[0] = p[1] p[0].name = 'Declaration' return def p_ConstDecl(p): '''ConstDecl : CONST LROUND ConstSpecList RROUND | CONST ConstSpec ''' parsed.append(p.slice) return def p_ConstSpecList(p): '''ConstSpecList : empty | ConstSpecList ConstSpec SEMICOLON ''' parsed.append(p.slice) return def p_ConstSpec(p): '''ConstSpec : IDENTIFIER | IdentifierList | IDENTIFIER EQ Expression | IdentifierList EQ ExpressionList | IDENTIFIER Type EQ Expression | IdentifierList Type EQ ExpressionList ''' parsed.append(p.slice) return def p_IdentifierList(p): '''IdentifierList : IDENTIFIER COMMA IdentifierBotList ''' parsed.append(p.slice) node = TreeNode('IDENTIFIER', p[1], 'INT', 1) p[0] = TreeNode('IdentifierList', 0, 'None', 0, [node] + p[3].children, p[3].TAC) return def p_IdentifierBotList(p): '''IdentifierBotList : IDENTIFIER COMMA IdentifierBotList | IDENTIFIER ''' parsed.append(p.slice) if len(p) == 2: node = TreeNode('IDENTIFIER', p[1], 'INT', 1) p[0] = TreeNode('IdentifierBotList', 0, 'None', 0, [node]) elif len(p) == 4: node = TreeNode('IDENTIFIER', p[1], 'INT', 1) p[0] = TreeNode('IdentifierBotList', 0, 'None', 0, [node] + p[3].children, p[3].TAC) return def p_ExpressionList(p): '''ExpressionList : Expression COMMA ExpressionBotList ''' parsed.append(p.slice) p[0] = TreeNode('ExpressionList', 0, 'INT', 0, [p[1]] + p[3].children, p[1].TAC) p[0].TAC.append_TAC(p[3].TAC) return def p_ExpressionBotList(p): '''ExpressionBotList : Expression COMMA ExpressionBotList | Expression ''' parsed.append(p.slice) if len(p) == 2: p[0] = TreeNode('ExpressionBotList', 0, 'INT', 0, [p[1]], p[1].TAC) elif len(p) == 4: p[0] = TreeNode('ExpressionBotList', 0, 'INT', 0, [p[1]] + p[3].children, p[1].TAC) p[0].TAC.append_TAC(p[3].TAC) return def p_TypeDecl(p): '''TypeDecl : TYPE TypeSpecTopList ''' parsed.append(p.slice) return def p_TypeSpecTopList(p): '''TypeSpecTopList : TypeSpec | LROUND TypeSpecList RROUND ''' parsed.append(p.slice) return def p_TypeSpecList(p): '''TypeSpecList : empty | TypeSpecList TypeSpec SEMICOLON ''' parsed.append(p.slice) return def p_TypeSpec(p): '''TypeSpec : AliasDecl | TypeDef ''' parsed.append(p.slice) return def p_AliasDecl(p): '''AliasDecl : IDENTIFIER EQ Type ''' parsed.append(p.slice) return def p_TypeDef(p): '''TypeDef : IDENTIFIER Type ''' parsed.append(p.slice) return def p_Type(p): '''Type : TypeLit | StandardTypes | LROUND Type RROUND ''' parsed.append(p.slice) if len(p) == 2: p[0] = p[1] else: p[0] = p[2] p[0].name = 'Type' return def p_StandardTypes(p): '''StandardTypes : PREDEFINED_TYPES ''' parsed.append(p.slice) p[0] = TreeNode('StandardTypes', p[1], 'NONE') return def p_TypeLit(p): '''TypeLit : ArrayType | StructType | FunctionType | PointerType ''' parsed.append(p.slice) p[0] = p[1] p[0].name = 'TypeLit' return def p_PointerType(p): '''PointerType : STAR Type ''' parsed.append(p.slice) return def p_ArrayType(p): '''ArrayType : LSQUARE ArrayLength RSQUARE Type ''' parsed.append(p.slice) p[0] = TreeNode('ArrayType', p[2].data, p[4].data) return def p_ArrayLength(p): '''ArrayLength : Expression ''' parsed.append(p.slice) p[0] = p[1] p[0].name = 'ArrayLength' return def p_StructType(p): '''StructType : STRUCT LCURLY FieldDeclList RCURLY ''' parsed.append(p.slice) return def p_FieldDeclList(p): '''FieldDeclList : empty | FieldDeclList FieldDecl SEMICOLON ''' parsed.append(p.slice) return def p_FieldDecl(p): '''FieldDecl : IdentifierList Type TagTop | IDENTIFIER Type TagTop ''' parsed.append(p.slice) return def p_TagTop(p): '''TagTop : empty | Tag ''' parsed.append(p.slice) return def p_Tag(p): '''Tag : string_lit ''' parsed.append(p.slice) return def p_FunctionType(p): '''FunctionType : FUNC Signature ''' parsed.append(p.slice) return def p_Signature(p): '''Signature : Parameters | Parameters Result ''' parsed.append(p.slice) p[0] = p[1] p[0].name = 'Signature' s = 'scope_' + str(len(generated['scope'])) symbol_table.new_scope(s) for child in p[1].children: symbol_table.add_identifier(child, s) newNode = SymbolTableNode(s + '_' + child.data, child.input_type) symbol_table.add_var(newNode, s) # symbol_table.print_symbol_table() if len(p) == 2: p[0].input_type = TreeNode('Result', 0, 'None') else: p[0].input_type = p[2] return def p_Result(p): '''Result : Parameters | Type ''' parsed.append(p.slice) if p[1].name == 'Type': p[0] = TreeNode('Result', 1, 'None', 0, [p[1]]) else: p[0] = p[1] p[0].name = 'Result' return def p_Parameters(p): '''Parameters : LROUND RROUND | LROUND ParameterList RROUND ''' parsed.append(p.slice) if len(p) == 3: p[0] = TreeNode('Parameters', 0, 'None') else: p[0] = p[2] p[0].name = 'Parameters' return def p_ParameterList(p): '''ParameterList : ParameterDecl | ParameterList COMMA ParameterDecl ''' parsed.append(p.slice) if len(p) == 2: p[0] = p[1] p[0].name = 'ParameterList' elif len(p) == 4: p[0] = TreeNode('ParameterList', p[1].data + p[3].data, 'None', 0, p[1].children + p[3].children, p[1].TAC) p[0].TAC.append_TAC(p[3].TAC) return def p_ParameterDecl(p): '''ParameterDecl : IdentifierList Type | IDENTIFIER Type | Type ''' parsed.append(p.slice) p[0] = TreeNode('ParameterDecl', 0, 'None') if len(p) == 3: if hasattr(p[1], 'name') and p[1].name == 'IdentifierList': for node in p[1].children: p[0].data += 1 node.input_type = p[2].data p[0].children += [node] else: node = TreeNode('IDENTIFIER', p[1], p[2].data, 1) p[0].data += 1 p[0].children += [node] else: p[0].data += 1 p[0].children += [p[1]] return def p_VarDecl(p): '''VarDecl : VAR VarSpecTopList ''' parsed.append(p.slice) p[0] = p[2] p[0].name = 'VarDecl' return def p_VarSpecTopList(p): '''VarSpecTopList : VarSpec | LROUND VarSpecList RROUND ''' parsed.append(p.slice) if len(p) == 2: p[0] = p[1] else: p[0] = p[2] p[0].name = 'VarSpecTopList' return def p_VarSpecList(p): '''VarSpecList : empty | VarSpecList VarSpec SEMICOLON ''' return def p_VarSpec(p): '''VarSpec : IDENTIFIER Type | IDENTIFIER EQ Expression | IDENTIFIER Type EQ Expression | IdentifierList Type | IdentifierList EQ ExpressionList | IdentifierList Type EQ ExpressionList ''' # Insert into symbol table p[0] = TreeNode('VarSpec', 0, 'NONE') if hasattr(p[1], 'name') and p[1].name == 'IdentifierList': zero_val = TreeNode('decimal_lit', 0, 'INT') # l1 = len(p[1].children) # if len(p) == 3: # expr_list = TreeNode('Expr_List', 0, 'NONE', 0, [zero_val] * l1) # elif len(p) == 4: # expr_list = p[3] # elif len(p) == 5: # expr_list = p[4] # l2 = len(expr_list.children) # p[0].TAC.append_TAC(expr_list.TAC) # p[0].TAC.append_TAC(p[1].TAC) # if l1 == l2: # for i in range(l1): # p[0].TAC.add_line(['=', p[1].children[i], expr_list.children[i].data, '']) # else: # print_error("Variable Declaration mismatch: " + str(l1) + " identifier(s) but " + str(l2) + " value(s)") else: p[1] = TreeNode('IDENTIFIER',p[1],'INT',1) if p[2].input_type != 'NONE': # array case # p[2].print_node() if symbol_table.add_identifier(p[1], size = p[2].data) == False: print_error("Unable to add to SymbolTable") return name = symbol_table.search_identifier(p[1].data) newNode = SymbolTableNode(name, p[1].input_type,size = p[2].data) symbol_table.add_var(newNode) p[0] = TreeNode('VarSpec',p[1].data,'INT') # expr = TreeNode('Expr', 0, 'NONE') # if len(p) == 4: # expr = p[3] # p[0].TAC.append_TAC(p[3].TAC) # p[0].TAC.add_line(['=', check_variable(p[1]), check_variable(expr), '']) # elif len(p) == 5: # expr = p[4] # p[0].TAC.append_TAC(p[4].TAC) # p[0].TAC.add_line(['=', check_variable(p[1]), check_variable(expr), '']) return def p_FunctionDecl(p): '''FunctionDecl : FUNC FunctionName Signature | FUNC FunctionName Signature FunctionBody ''' parsed.append(p.slice) # symbol_table.print_symbol_table() p[0] = TreeNode('FunctionDecl', 0, 'INT') # print symbol_table.current_scope # p[4].TAC.print_code() symbol_table.add_function(p[2].data, p[3].input_type, p[3].children) if len(p) == 5: noOfParams = 0 for f in symbol_table.symbol_table[symbol_table.current_scope]['functions']: if f.name == p[2].data: noOfParams = len(f.parameters) p[0].TAC.add_line(['func', check_variable(p[2]), str(noOfParams), '']) for child in reversed(p[3].children): p[0].TAC.add_line(['getparam', p[4].data + '_' + child.data, '', '']) p[0].TAC.add_line(['stack_push', '', '', '']) p[0].TAC.append_TAC(p[4].TAC) return def p_FunctionName(p): '''FunctionName : IDENTIFIER ''' parsed.append(p.slice) p[0] = TreeNode('FunctionName', p[1], 'INT', 1) return def p_FunctionBody(p): '''FunctionBody : Block ''' parsed.append(p.slice) p[0] = p[1] p[0].name = 'FunctionBody' return def p_SimpleStmt(p): '''SimpleStmt : Expression | Assignment | ShortVarDecl | IncDecStmt ''' parsed.append(p.slice) p[0] = p[1] p[0].name = 'SimpleStmt' return def p_IncDecStmt(p): '''IncDecStmt : Expression PLUS_PLUS | Expression MINUS_MINUS ''' parsed.append(p.slice) one_val = TreeNode('IncDecStmt', '1', 'INT') p[0] = p[1] if p[1].isLvalue == 1: if p[2] == '++': p[0].TAC.add_line(['+', check_variable(p[1]), check_variable(p[1]), one_val.data]) else: p[0].TAC.add_line(['-', check_variable(p[1]), check_variable(p[1]), one_val.data]) else: print_error("Lvalue required") p[0].name = 'IncDecStmt' return def p_ShortVarDecl(p): '''ShortVarDecl : ExpressionList ASSIGN_OP ExpressionList | Expression ASSIGN_OP Expression ''' parsed.append(p.slice) # TODO: Add in symbol table p[0] = TreeNode('ShortVarDecl', 0, 'INT') if p[1].name == 'ExpressionList': l1 = len(p[1].children) l2 = len(p[3].children) p[0].TAC.append_TAC(p[3].TAC) p[0].TAC.append_TAC(p[1].TAC) if l1 == l2: for i in range(l1): if p[1].children[i].isLvalue == 0: print_error("Lvalue required") return else: if symbol_table.add_identifier(p[1].children[i]) == False: print_error("Unable to add to SymbolTable") return p[0].TAC.add_line([p[2], check_variable(p[1].children[i]), check_variable(p[3].children[i]), '']) else: print_error("Variable Declaration mismatch: " + str(l1) + " identifier(s) but " + str(l2) + " value(s)") elif p[1].name == 'Expression': if p[1].isLvalue == 0: print_error("Lvalue required") return else: if symbol_table.add_identifier(p[1]) == False: print_error("Unable to add to SymbolTable") return p[0].TAC.append_TAC(p[3].TAC) p[0].TAC.append_TAC(p[1].TAC) p[0].TAC.add_line([p[2], check_variable(p[1]), check_variable(p[3]), '']) return def p_Assignment(p): '''Assignment : ExpressionList assign_op ExpressionList | Expression assign_op Expression ''' parsed.append(p.slice) p[0] = TreeNode('Assignment', 0, 'INT') if p[1].name == 'ExpressionList': l1 = len(p[1].children) l2 = len(p[3].children) p[0].TAC.append_TAC(p[3].TAC) p[0].TAC.append_TAC(p[1].TAC) if l1 == l2: for i in range(l1): if p[1].children[i].isLvalue == 0: print_error("Lvalue required") return else: if symbol_table.search_identifier(p[1].children[i].data) == False and p[1].children[i].data not in generated['temp']: print_error("Variable " + p[1].children[i].data + " is undefined") return if p[3].children[i].isLvalue == 1 and symbol_table.search_identifier(p[3].children[i].data) == False and p[3].children[i].data not in generated['temp']: print_error("Variable " + p[3].children[i].data + " is undefined") return p[0].TAC.add_line([p[2].data, check_variable(p[1].children[i]), check_variable(p[3].children[i]), '']) else: print_error("Variable Declaration mismatch: " + str(l1) + " identifier(s) but " + str(l2) + " value(s)") elif p[1].name == 'Expression': if p[1].isLvalue == 0: print_error("Lvalue required") return else: if symbol_table.search_identifier(p[1].data) == False and p[1].data not in generated['temp']: print_error("Variable " + p[1].data + " is undefined") return if p[3].isLvalue == 1 and symbol_table.search_identifier(p[3].data) == False and p[3].data not in generated['temp']: print_error("Variable " + p[3].data + " is undefined") return # print symbol_table.current_scope p[0].TAC.append_TAC(p[3].TAC) p[0].TAC.append_TAC(p[1].TAC) p[0].TAC.add_line([p[2].data, check_variable(p[1]), check_variable(p[3]), '']) return def p_assign_op(p): '''assign_op : EQ | PLUS_EQ | MINUS_EQ | OR_EQ | CARET_EQ | STAR_EQ | DIVIDE_EQ | MODULO_EQ | LS_EQ | RS_EQ | AMP_EQ | AND_OR_EQ ''' parsed.append(p.slice) p[0] = TreeNode('assign_op', p[1], 'OPERATOR') return def p_IfStmt(p): '''IfStmt : IF Expression Block | IF Expression Block ELSE elseTail ''' parsed.append(p.slice) if len(p) == 4: l1 = gen('label') p[0] = TreeNode('IfStmt', 0, 'INT') p[0].TAC.append_TAC(p[2].TAC) p[0].TAC.add_line(['ifgotoeq', check_variable(p[2]), '0', l1]) p[0].TAC.append_TAC(p[3].TAC) p[0].TAC.add_line(['label', l1, '', '']) if len(p) == 6: l1 = gen('label') l2 = gen('label') p[0] = TreeNode('IfStmt', 0, 'INT') p[0].TAC.append_TAC(p[2].TAC) p[0].TAC.add_line(['ifgotoeq', check_variable(p[2]), '0', l1]) p[0].TAC.append_TAC(p[3].TAC) p[0].TAC.add_line(['goto', l2, '', '']) p[0].TAC.add_line(['label', l1, '', '']) p[0].TAC.append_TAC(p[5].TAC) p[0].TAC.add_line(['label', l2, '', '']) return def p_elseTail(p): '''elseTail : IfStmt | Block ''' parsed.append(p.slice) p[0] = p[1] p[0].name = 'elseTail' return def p_SwitchStmt(p): '''SwitchStmt : ExprSwitchStmt ''' parsed.append(p.slice) p[0] = TreeNode('SwitchStmt', 0, 'INT', 0, [], p[1].TAC) return def p_ExprSwitchStmt(p): '''ExprSwitchStmt : SWITCH SimpleStmt SEMICOLON LCURLY ScopeStart ExprCaseClauseList ScopeEnd RCURLY | SWITCH SimpleStmt SEMICOLON Expression LCURLY ScopeStart ExprCaseClauseList ScopeEnd RCURLY | SWITCH LCURLY ScopeStart ExprCaseClauseList ScopeEnd RCURLY | SWITCH Expression LCURLY ScopeStart ExprCaseClauseList ScopeEnd RCURLY ''' parsed.append(p.slice) if len(p) == 8: l1 = gen('label') l2 = gen('label') p[0] = TreeNode('ExprSwitchStmt', 0, 'INT') p[0].TAC.append_TAC(p[2].TAC) t1 = TreeNode('IDENTIFIER', gen('temp'), 'INT', 1) p[0].TAC.add_line(['=', check_variable(t1) , check_variable(p[2]), '']) p[0].TAC.append_TAC(p[5].data) for i in range(len(p[5].children)): p[0].TAC.add_line(['ifgotoeq', check_variable(t1), p[5].children[i][0], p[5].children[i][1]]) p[0].TAC.add_line(['goto', l2, '', '']) for i in range(p[5].TAC.length()): if i in p[5].TAC.leaders[1:]: p[0].TAC.add_line(['goto', l2, '', '']) p[0].TAC.add_line(p[5].TAC.code[i]) p[0].TAC.add_line(['label', l2, '', '']) return def p_ExprCaseClauseList(p): '''ExprCaseClauseList : empty | ExprCaseClauseList ExprCaseClause ''' parsed.append(p.slice) TAC1 = ThreeAddressCode() TAC2 = ThreeAddressCode() if len(p) == 3: TAC1 = p[1].data TAC2 = p[2].data p[0] = TreeNode('ExprCaseClauseList', TAC1, 'INT', 0, p[1].children + p[2].children, p[1].TAC) p[0].TAC.add_leader(p[0].TAC.length()) p[0].TAC.append_TAC(p[2].TAC) p[0].data.append_TAC(TAC2) else: p[0] = TreeNode('ExprCaseClauseList', TAC1, 'INT') return def p_ExprCaseClause(p): '''ExprCaseClause : ExprSwitchCase COLON StatementList ''' parsed.append(p.slice) l1 = gen('label') p[0] = TreeNode('ExprCaseClause', 0, 'INT') # p[0].TAC.append_TAC(p[1].TAC) p[0].TAC.add_line(['label', l1, '', '']) # p[0].TAC.add_line(['ifgotoneq', p[1].children, p[1].children, l1]) p[0].TAC.append_TAC(p[3].TAC) p[0].children = [[p[1].data,l1]] p[0].data = p[1].TAC return def p_ExprSwitchCase(p): '''ExprSwitchCase : CASE ExpressionList | DEFAULT | CASE Expression ''' parsed.append(p.slice) p[0] = TreeNode('ExprSwitchCase', 0, 'INT') if len(p) == 3: p[0].data = p[2].data p[0].TAC = p[2].TAC return def p_ForStmt(p): '''ForStmt : FOR Expression Block | FOR Block ''' parsed.append(p.slice) p[0] = TreeNode('ForStmt', 0, 'INT') if len(p) == 4: l1 = gen('label') l2 = gen('label') p[0].TAC.add_line(['label', l1, '', '']) p[0].TAC.append_TAC(p[2].TAC) p[0].TAC.add_line(['ifgotoeq',check_variable(p[2]), '0', l2]) p[0].TAC.append_TAC(p[3].TAC) p[0].TAC.add_line(['goto', l1, '', '']) p[0].TAC.add_line(['label', l2, '', '']) if len(p) == 3: l1 = gen('label') # l2 = gen('label') p[0].TAC.add_line(['label', l1, '', '']) p[0].TAC.append_TAC(p[2].TAC) p[0].TAC.add_line(['goto', l1, '', '']) # p[0].TAC.add_line([l2]) return def p_ReturnStmt(p): '''ReturnStmt : RETURN | RETURN Expression | RETURN ExpressionList ''' parsed.append(p.slice) if len(p) == 2: p[0] = TreeNode('ReturnStmt', 0, 'None') p[0].TAC.add_line(['return', '', '', '']) if len(p) == 3: if p[2].name == 'Expression': p[0] = p[2] p[0].name = 'ReturnStmt' p[0].TAC.add_line(['return', check_variable(p[2]), '', '']) return def p_BreakStmt(p): '''BreakStmt : BREAK IDENTIFIER ''' parsed.append(p.slice) return def p_ContinueStmt(p): '''ContinueStmt : CONTINUE IDENTIFIER ''' parsed.append(p.slice) return def p_GotoStmt(p): '''GotoStmt : GOTO IDENTIFIER ''' parsed.append(p.slice) return def p_Expression(p): '''Expression : UnaryExpr | Expression OR_OR Expression | Expression AMP_AMP Expression | Expression EQ_EQ Expression | Expression NOT_EQ Expression | Expression LT Expression | Expression LT_EQ Expression | Expression GT Expression | Expression GT_EQ Expression | Expression PLUS Expression | Expression MINUS Expression | Expression OR Expression | Expression CARET Expression | Expression STAR Expression | Expression DIVIDE Expression | Expression MODULO Expression | Expression LS Expression | Expression RS Expression | Expression AMP Expression | Expression AND_OR Expression ''' parsed.append(p.slice) if len(p) == 2: p[0] = p[1] elif len(p) == 4: p[0] = TreeNode('IDENTIFIER', gen('temp'), 'INT', 1, [], p[1].TAC) p[0].TAC.append_TAC(p[3].TAC) p[0].TAC.add_line([p[2],check_variable(p[0]), check_variable(p[1]), check_variable(p[3])]) p[0].name = 'Expression' return def p_UnaryExpr(p): '''UnaryExpr : PrimaryExpr | unary_op UnaryExpr ''' parsed.append(p.slice) if len(p) == 2: p[0] = p[1] elif len(p) == 3: p[0] = TreeNode('IDENTIFIER', gen('temp'), 'INT', 1) p[0].TAC.add_line([check_variable(p[1]), check_variable(p[0]), check_variable(p[2]), '']) p[0].name = 'UnaryExpr' return def p_unary_op(p): '''unary_op : PLUS | MINUS | NOT | CARET | STAR | AMP | LT_MINUS ''' parsed.append(p.slice) p[0] = TreeNode('unary_op', p[1], 'OPERATOR') return def p_PrimaryExpr(p): '''PrimaryExpr : Operand | IDENTIFIER | PrimaryExpr Selector | PrimaryExpr Index | PrimaryExpr Arguments ''' parsed.append(p.slice) if len(p) == 2: if p.slice[1].type == 'IDENTIFIER': p[0] = TreeNode('IDENTIFIER', p[1], 'INT', 1) elif p[1].name == 'Operand': p[0] = p[1] elif len(p) == 3: if p[2].name == 'Index': p[0] = TreeNode('IDENTIFIER', p[1].data, 'INT', 1, p[2].data) elif p[2].name == 'Arguments': p[0] = TreeNode('IDENTIFIER', gen('temp'), 'INT', 1) p[0].TAC.append_TAC(p[1].TAC) p[0].TAC.append_TAC(p[2].TAC) # p[1].print_node() func = check_variable(p[1]).split("_") scope, funcName = "_".join(func[:2]), "_".join(func[2:]) temp = 0 for f in symbol_table.symbol_table[scope]['functions']: if f.name == funcName: temp = len(f.parameters) # p[2].print_node() for child in p[2].children: p[0].TAC.add_line(['putparam', check_variable(child), '', '']) if temp != p[2].data: print_error('Function ' + funcName + ' requires ' + str(temp) + ' parameters but ' + str(p[2].data) + ' supplied') p[0].TAC.add_line(['call', check_variable(p[1]), str(p[2].data), '']) p[0].TAC.add_line(['return_value', check_variable(p[0]), '', '']) p[0].name = 'PrimaryExpr' return def p_Operand(p): '''Operand : Literal | LROUND Expression RROUND ''' parsed.append(p.slice) if len(p) == 2: p[0] = p[1] else: p[0] = p[2] p[0].name = 'Operand' return def p_Literal(p): '''Literal : BasicLit | FunctionLit ''' parsed.append(p.slice) p[0] = p[1] p[0].name = 'Literal' return def p_BasicLit(p): '''BasicLit : int_lit | float_lit | string_lit | rune_lit ''' parsed.append(p.slice) p[0] = p[1] p[0].name = 'BasicLit' return def p_int_lit(p): '''int_lit : decimal_lit | octal_lit | hex_lit ''' parsed.append(p.slice) p[0] = p[1] p[0].name = 'int_lit' return def p_decimal_lit(p): '''decimal_lit : DECIMAL_LIT ''' parsed.append(p.slice) p[0] = TreeNode('decimal_lit', p[1], 'INT') return def p_octal_lit(p): '''octal_lit : OCTAL_LIT ''' parsed.append(p.slice) p[0] = TreeNode('octal_lit', p[1], 'OCT') return def p_hex_lit(p): '''hex_lit : HEX_LIT ''' parsed.append(p.slice) p[0] = TreeNode('hex_lit', p[1], 'HEX') return def p_float_lit(p): '''float_lit : FLOAT_LIT ''' parsed.append(p.slice) p[0] = TreeNode('float_lit', p[1], 'FLOAT') return def p_FunctionLit(p): '''FunctionLit : FUNC Signature FunctionBody ''' parsed.append(p.slice) # Anonymous Function # Not implemented yet return def p_Selector(p): '''Selector : DOT IDENTIFIER ''' parsed.append(p.slice) return def p_Index(p): '''Index : LSQUARE Expression RSQUARE ''' parsed.append(p.slice) p[0] = p[2] p[0].name = 'Index' return def p_Arguments(p): '''Arguments : LROUND RROUND | LROUND ExpressionList RROUND | LROUND Expression RROUND | LROUND Type RROUND | LROUND Type COMMA ExpressionList RROUND | LROUND Type COMMA Expression RROUND ''' # print p.slice parsed.append(p.slice) if len(p) == 3: p[0] = TreeNode('Arguments', 0, 'None') if len(p) == 4: if p[2].name == 'Expression': p[0] = TreeNode('Arguments', 1, 'None', 0, [p[2]], p[2].TAC) if p[2].name == 'ExpressionList': p[0] = p[2] p[0].name = 'Arguments' p[0].data = len(p[2].children) return def p_string_lit(p): '''string_lit : STRING_LIT ''' parsed.append(p.slice) p[0] = TreeNode('string_lit', p[1], 'STRING') return def p_rune_lit(p): '''rune_lit : RUNE_LIT ''' parsed.append(p.slice) p[0] = TreeNode('rune_lit', p[1], 'RUNE') return def p_empty(p): 'empty :' pass # Standard Logger logging.basicConfig( level = logging.DEBUG, filename = "parselog.txt", filemode = "w", format = "%(filename)10s:%(lineno)4d:%(message)s" ) log = logging.getLogger() yacc.yacc(debug=True, debuglog=log) input_file = sys.argv[1] import os if os.path.isfile(input_file) is False: print('Input file ' + input_file + ' does not exist') sys.exit(1) input_code = open(input_file, 'r').read() if input_code[len(input_code)-1] != '\n': input_code += '\n' yacc.parse(input_code, debug=log, tracking=True)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 198, 6738, 2438, 1330, 12200, 19667, 198, 6738, 2438, 1330, 7683, 20231, 10669, 198, 6738, 31191, 263, 1330, 16326, 198, 6738, 4738, 1330, 1635, 198, 6738, 6194, 62, 11487, 1330, 38357, 10962, 198, 6738, 6194, 62, 11487, 1330, 38357, 10962, 19667, 628, 198, 11748, 18931, 198, 11748, 35960, 13, 2588, 355, 31191, 198, 11748, 35960, 13, 88, 4134, 355, 331, 4134, 198, 11748, 25064, 628, 198, 6738, 2438, 5235, 1330, 10385, 62, 83, 330, 198, 6738, 2438, 1330, 6127, 198, 6738, 2438, 5235, 1330, 7716, 62, 41873, 198, 15542, 62, 29851, 62, 8189, 796, 7683, 20231, 10669, 3419, 198, 41873, 62, 8189, 796, 6127, 3419, 198, 198, 79, 945, 276, 796, 17635, 198, 1837, 23650, 62, 11487, 796, 38357, 10962, 3419, 198, 7785, 62, 4868, 796, 17635, 628, 198, 27568, 796, 1391, 6, 29510, 10354, 685, 4357, 705, 29982, 10354, 37250, 29982, 62, 15, 6, 4357, 705, 18242, 10354, 685, 4357, 705, 2536, 62, 4868, 10354, 17635, 92, 198, 198, 3866, 771, 594, 796, 357, 198, 220, 220, 220, 19203, 9464, 41707, 25256, 5064, 38311, 33809, 198, 220, 220, 220, 19203, 3506, 41707, 10705, 16284, 62, 3185, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 9858, 5673, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 6561, 10917, 12203, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 6998, 10917, 12203, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 5639, 4261, 11319, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 7397, 4261, 11319, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 16458, 35, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 35, 2394, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 50, 3620, 2149, 3535, 1340, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 25154, 1340, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 50, 2751, 2538, 62, 10917, 2394, 1546, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 35, 2606, 19146, 62, 10917, 2394, 1546, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 41374, 3955, 1847, 62, 43, 2043, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 46, 4177, 1847, 62, 43, 2043, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 39, 6369, 62, 43, 2043, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 3697, 46, 1404, 62, 43, 2043, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 18601, 2751, 62, 43, 2043, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 13965, 24027, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 40438, 10206, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 37815, 1268, 8924, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 26087, 27064, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 21095, 15919, 33809, 198, 220, 220, 220, 19203, 9464, 41707, 35972, 15919, 33809, 198, 220, 220, 220, 19203, 9464, 3256, 705, 1581, 62, 1581, 33809, 198, 220, 220, 220, 19203, 9464, 3256, 705, 23518, 62, 23518, 33809, 198, 220, 220, 220, 19203, 9464, 3256, 705, 36, 48, 62, 36, 48, 3256, 705, 11929, 62, 36, 48, 41707, 27734, 41707, 27734, 62, 36, 48, 41707, 19555, 41707, 19555, 62, 36, 48, 33809, 198, 220, 220, 220, 19203, 9464, 3256, 705, 6489, 2937, 3256, 705, 23678, 2937, 41707, 1581, 41707, 20034, 2767, 33809, 198, 220, 220, 220, 19203, 9464, 3256, 705, 46678, 3256, 705, 33569, 14114, 41707, 33365, 6239, 46, 41707, 23518, 41707, 6981, 62, 1581, 41707, 6561, 41707, 6998, 33809, 198, 8, 198, 198, 4299, 279, 62, 37226, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 37226, 1058, 47035, 11879, 4522, 3525, 5064, 38311, 48603, 2149, 3535, 1340, 17267, 37835, 8053, 5849, 4971, 37835, 8053, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1303, 16926, 46, 25, 16583, 3255, 5301, 1438, 290, 1846, 3742, 329, 783, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 20, 60, 198, 220, 220, 220, 1401, 62, 4868, 796, 6194, 62, 11487, 13, 15883, 62, 7785, 62, 4868, 3419, 198, 220, 220, 220, 1115, 62, 29851, 62, 8189, 796, 10385, 62, 83, 330, 7, 79, 58, 15, 4083, 51, 2246, 8, 198, 220, 220, 220, 6194, 62, 11487, 13, 20797, 62, 19545, 62, 1904, 7, 15542, 62, 29851, 62, 8189, 8, 198, 220, 220, 220, 10474, 62, 8189, 796, 7716, 62, 41873, 7, 15542, 62, 29851, 62, 8189, 11, 7785, 62, 4868, 11, 1837, 23650, 62, 11487, 8, 198, 220, 220, 220, 1303, 279, 58, 15, 4083, 51, 2246, 13, 4798, 62, 8189, 3419, 198, 220, 220, 220, 1303, 1115, 62, 29851, 62, 8189, 13, 4798, 62, 8189, 3419, 198, 220, 220, 220, 10474, 62, 8189, 13, 4798, 62, 8189, 3419, 198, 220, 220, 220, 1303, 6194, 62, 11487, 13, 4798, 62, 1837, 23650, 62, 11487, 3419, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 20939, 37835, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 20939, 37835, 8053, 1058, 17267, 37835, 48603, 2149, 3535, 1340, 17267, 37835, 8053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 6565, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1303, 16926, 46, 25, 16583, 3255, 1846, 3742, 329, 783, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 9126, 4971, 37835, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 9126, 4971, 37835, 8053, 1058, 5849, 4971, 37835, 48603, 2149, 3535, 1340, 5849, 4971, 37835, 8053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 6565, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 58, 18, 60, 14512, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 9126, 4971, 37835, 8053, 3256, 657, 11, 705, 12394, 3256, 657, 11, 685, 79, 58, 16, 11907, 1343, 279, 58, 18, 4083, 17197, 11, 279, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 9126, 4971, 37835, 8053, 3256, 657, 11, 705, 12394, 3256, 657, 11, 685, 79, 58, 16, 60, 4357, 279, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 9126, 4971, 37835, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 9126, 4971, 37835, 1058, 24720, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 15553, 37835, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 20939, 37835, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 20939, 37835, 1058, 30023, 9863, 37491, 15919, 17267, 22882, 8053, 26067, 15919, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 30023, 9863, 17267, 22882, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1303, 16926, 46, 25, 16583, 3255, 1846, 3742, 329, 783, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 20939, 22882, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 20939, 22882, 8053, 1058, 17267, 22882, 48603, 2149, 3535, 1340, 17267, 22882, 8053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 6565, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1303, 16926, 46, 25, 16583, 3255, 1846, 3742, 329, 783, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 20939, 22882, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 20939, 22882, 1058, 42743, 4731, 62, 18250, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 4522, 3525, 5064, 38311, 4731, 62, 18250, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 6565, 4731, 62, 18250, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1303, 16926, 46, 25, 16583, 3255, 1846, 3742, 329, 783, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 12235, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 12235, 1058, 22228, 4261, 11319, 41063, 10434, 21983, 8053, 41063, 12915, 13987, 4261, 11319, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 18, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 7890, 796, 279, 58, 17, 4083, 7890, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 12235, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 43642, 10434, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 43642, 10434, 1058, 6565, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 6194, 62, 11487, 13, 2860, 62, 29982, 7, 5235, 10786, 29982, 6, 4008, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 43642, 10434, 3256, 6194, 62, 11487, 13, 14421, 62, 29982, 11, 705, 14202, 11537, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 43642, 12915, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 43642, 12915, 1058, 6565, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 6194, 62, 11487, 13, 437, 62, 29982, 3419, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 48682, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 48682, 8053, 1058, 21983, 48603, 2149, 3535, 1340, 21983, 8053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 6565, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 48682, 8053, 3256, 657, 11, 705, 12394, 3256, 657, 11, 685, 79, 58, 16, 4083, 7890, 60, 1343, 279, 58, 18, 4083, 17197, 11, 279, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 48682, 8053, 3256, 657, 11, 705, 12394, 11537, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 48682, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 48682, 1058, 24720, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 17427, 1273, 16762, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 8229, 1273, 16762, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 9726, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 1002, 1273, 16762, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 14645, 1273, 16762, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 1114, 1273, 16762, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 12243, 1273, 16762, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 10054, 1273, 16762, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 402, 2069, 1273, 16762, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 12578, 5317, 1273, 16762, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 12578, 13290, 1273, 16762, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 48682, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 18557, 5317, 1273, 16762, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 18557, 5317, 1273, 16762, 1058, 4810, 12394, 43, 45, 37491, 15919, 4522, 3525, 5064, 38311, 26067, 15919, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 4810, 12394, 43, 45, 37491, 15919, 493, 62, 18250, 26067, 15919, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 611, 468, 35226, 7, 79, 58, 18, 4357, 705, 3672, 11537, 290, 279, 58, 18, 4083, 3672, 6624, 705, 600, 62, 18250, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 58, 15, 4083, 271, 43, 8367, 796, 657, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 25256, 5064, 38311, 3256, 279, 58, 18, 4357, 705, 12394, 3256, 352, 11, 685, 12962, 198, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 4798, 62, 600, 3256, 2198, 62, 45286, 7, 79, 58, 15, 46570, 705, 3256, 10148, 12962, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 18557, 5317, 1273, 16762, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 18557, 13290, 1273, 16762, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 18557, 13290, 1273, 16762, 1058, 4810, 12394, 43, 45, 37491, 15919, 4731, 62, 18250, 26067, 15919, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 18, 60, 198, 220, 220, 220, 1438, 796, 6194, 62, 11487, 13, 14421, 62, 29982, 1343, 705, 62, 6, 1343, 2429, 10786, 2536, 62, 4868, 11537, 198, 220, 220, 220, 10007, 19667, 796, 38357, 10962, 19667, 7, 79, 58, 18, 4083, 7890, 11, 279, 58, 18, 4083, 15414, 62, 4906, 8, 198, 220, 220, 220, 649, 19667, 796, 38357, 10962, 19667, 7, 3672, 11, 279, 58, 18, 4083, 15414, 62, 4906, 11, 10007, 796, 685, 17143, 7307, 19667, 12962, 198, 220, 220, 220, 6194, 62, 11487, 13, 2860, 62, 7785, 7, 3605, 19667, 8, 198, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 4798, 62, 2536, 3256, 1438, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 18557, 13290, 1273, 16762, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 37835, 10186, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 37835, 10186, 1058, 4757, 37835, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5994, 37835, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 12372, 37835, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 37835, 10186, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 34184, 37835, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 34184, 37835, 1058, 7102, 2257, 37491, 15919, 4757, 22882, 8053, 26067, 15919, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 7102, 2257, 4757, 22882, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 34184, 22882, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 34184, 22882, 8053, 1058, 6565, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 4757, 22882, 8053, 4757, 22882, 48603, 2149, 3535, 1340, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 34184, 22882, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 34184, 22882, 1058, 4522, 3525, 5064, 38311, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 11440, 7483, 8053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 4522, 3525, 5064, 38311, 36529, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 11440, 7483, 8053, 36529, 41986, 8053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 4522, 3525, 5064, 38311, 5994, 36529, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 11440, 7483, 8053, 5994, 36529, 41986, 8053, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 33234, 7483, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 33234, 7483, 8053, 1058, 4522, 3525, 5064, 38311, 9440, 5673, 11440, 7483, 20630, 8053, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 10139, 796, 12200, 19667, 10786, 25256, 5064, 38311, 3256, 279, 58, 16, 4357, 705, 12394, 3256, 352, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 33234, 7483, 8053, 3256, 657, 11, 705, 14202, 3256, 657, 11, 685, 17440, 60, 1343, 279, 58, 18, 4083, 17197, 11, 279, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 33234, 7483, 20630, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 33234, 7483, 20630, 8053, 1058, 4522, 3525, 5064, 38311, 9440, 5673, 11440, 7483, 20630, 8053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 4522, 3525, 5064, 38311, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 796, 12200, 19667, 10786, 25256, 5064, 38311, 3256, 279, 58, 16, 4357, 705, 12394, 3256, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 33234, 7483, 20630, 8053, 3256, 657, 11, 705, 14202, 3256, 657, 11, 685, 17440, 12962, 198, 220, 220, 220, 1288, 361, 18896, 7, 79, 8, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 10139, 796, 12200, 19667, 10786, 25256, 5064, 38311, 3256, 279, 58, 16, 4357, 705, 12394, 3256, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 33234, 7483, 20630, 8053, 3256, 657, 11, 705, 14202, 3256, 657, 11, 685, 17440, 60, 1343, 279, 58, 18, 4083, 17197, 11, 279, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 1441, 628, 198, 4299, 279, 62, 16870, 2234, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 16870, 2234, 8053, 1058, 41986, 9440, 5673, 41986, 20630, 8053, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 16870, 2234, 8053, 3256, 657, 11, 705, 12394, 3256, 657, 11, 685, 79, 58, 16, 11907, 1343, 279, 58, 18, 4083, 17197, 11, 279, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 16870, 2234, 20630, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 16870, 2234, 20630, 8053, 1058, 41986, 9440, 5673, 41986, 20630, 8053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 16870, 2234, 20630, 8053, 3256, 657, 11, 705, 12394, 3256, 657, 11, 685, 79, 58, 16, 60, 4357, 279, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 1288, 361, 18896, 7, 79, 8, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 16870, 2234, 20630, 8053, 3256, 657, 11, 705, 12394, 3256, 657, 11, 685, 79, 58, 16, 11907, 1343, 279, 58, 18, 4083, 17197, 11, 279, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 6030, 37835, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 6030, 37835, 1058, 41876, 5994, 22882, 9126, 8053, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 6030, 22882, 9126, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 6030, 22882, 9126, 8053, 1058, 5994, 22882, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 37491, 15919, 5994, 22882, 8053, 26067, 15919, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 6030, 22882, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 6030, 22882, 8053, 1058, 6565, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5994, 22882, 8053, 5994, 22882, 48603, 2149, 3535, 1340, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 6030, 22882, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 6030, 22882, 1058, 978, 4448, 37835, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5994, 7469, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 40489, 37835, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 40489, 37835, 1058, 4522, 3525, 5064, 38311, 36529, 5994, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 6030, 7469, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 6030, 7469, 1058, 4522, 3525, 5064, 38311, 5994, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 6030, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 6030, 1058, 5994, 43, 270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 8997, 31431, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 37491, 15919, 5994, 26067, 15919, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 17, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 6030, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 23615, 31431, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 23615, 31431, 1058, 4810, 1961, 36, 20032, 1961, 62, 9936, 47, 1546, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 23615, 31431, 3256, 279, 58, 16, 4357, 705, 45, 11651, 11537, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 6030, 43, 270, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 6030, 43, 270, 1058, 15690, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 32112, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 15553, 6030, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 7695, 3849, 6030, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 6030, 43, 270, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 18833, 3849, 6030, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 18833, 3849, 6030, 1058, 25424, 5994, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 19182, 6030, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 19182, 6030, 1058, 30948, 10917, 12203, 15690, 24539, 19340, 10917, 12203, 5994, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 19182, 6030, 3256, 279, 58, 17, 4083, 7890, 11, 279, 58, 19, 4083, 7890, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 19182, 24539, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 19182, 24539, 1058, 41986, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 19182, 24539, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 44909, 6030, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 44909, 6030, 1058, 19269, 18415, 22228, 4261, 11319, 7663, 37835, 8053, 13987, 4261, 11319, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 15878, 37835, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 15878, 37835, 8053, 1058, 6565, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 7663, 37835, 8053, 7663, 37835, 48603, 2149, 3535, 1340, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 15878, 37835, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 15878, 37835, 1058, 11440, 7483, 8053, 5994, 17467, 9126, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 4522, 3525, 5064, 38311, 5994, 17467, 9126, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 24835, 9126, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 24835, 9126, 1058, 6565, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 17467, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 24835, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 24835, 1058, 4731, 62, 18250, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 22203, 6030, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 22203, 6030, 1058, 29397, 34, 34894, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 11712, 1300, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 11712, 1300, 1058, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 40117, 25414, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 11712, 1300, 6, 198, 220, 220, 220, 264, 796, 705, 29982, 62, 6, 1343, 965, 7, 11925, 7, 27568, 17816, 29982, 20520, 4008, 198, 220, 220, 220, 6194, 62, 11487, 13, 3605, 62, 29982, 7, 82, 8, 198, 220, 220, 220, 329, 1200, 287, 279, 58, 16, 4083, 17197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6194, 62, 11487, 13, 2860, 62, 738, 7483, 7, 9410, 11, 264, 8, 198, 220, 220, 220, 220, 220, 220, 220, 649, 19667, 796, 38357, 10962, 19667, 7, 82, 1343, 705, 62, 6, 1343, 1200, 13, 7890, 11, 1200, 13, 15414, 62, 4906, 8, 198, 220, 220, 220, 220, 220, 220, 220, 6194, 62, 11487, 13, 2860, 62, 7785, 7, 3605, 19667, 11, 264, 8, 198, 220, 220, 220, 1303, 6194, 62, 11487, 13, 4798, 62, 1837, 23650, 62, 11487, 3419, 628, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 15414, 62, 4906, 796, 12200, 19667, 10786, 23004, 3256, 657, 11, 705, 14202, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 15414, 62, 4906, 796, 279, 58, 17, 60, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 23004, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 23004, 1058, 40117, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5994, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 279, 58, 16, 4083, 3672, 6624, 705, 6030, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 23004, 3256, 352, 11, 705, 14202, 3256, 657, 11, 685, 79, 58, 16, 11907, 8, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 23004, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 48944, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 48944, 1058, 37491, 15919, 26067, 15919, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 37491, 15919, 25139, 2357, 8053, 26067, 15919, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 48944, 3256, 657, 11, 705, 14202, 11537, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 48944, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 36301, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 36301, 8053, 1058, 25139, 2357, 37835, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 25139, 2357, 8053, 9440, 5673, 25139, 2357, 37835, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 36301, 8053, 6, 198, 220, 220, 220, 1288, 361, 18896, 7, 79, 8, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 36301, 8053, 3256, 279, 58, 16, 4083, 7890, 1343, 279, 58, 18, 4083, 7890, 11, 705, 14202, 3256, 657, 11, 279, 58, 16, 4083, 17197, 1343, 279, 58, 18, 4083, 17197, 11, 279, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 36301, 37835, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 36301, 37835, 1058, 11440, 7483, 8053, 5994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 4522, 3525, 5064, 38311, 5994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5994, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 36301, 37835, 3256, 657, 11, 705, 14202, 11537, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 468, 35226, 7, 79, 58, 16, 4357, 705, 3672, 11537, 290, 220, 279, 58, 16, 4083, 3672, 6624, 705, 33234, 7483, 8053, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 10139, 287, 279, 58, 16, 4083, 17197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 7890, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 13, 15414, 62, 4906, 796, 279, 58, 17, 4083, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 17197, 15853, 685, 17440, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10139, 796, 12200, 19667, 10786, 25256, 5064, 38311, 3256, 279, 58, 16, 4357, 279, 58, 17, 4083, 7890, 11, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 7890, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 17197, 15853, 685, 17440, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 7890, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 17197, 15853, 685, 79, 58, 16, 11907, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 19852, 37835, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 19852, 37835, 1058, 569, 1503, 12372, 22882, 9126, 8053, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 17, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 19852, 37835, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 19852, 22882, 9126, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 19852, 22882, 9126, 8053, 1058, 12372, 22882, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 37491, 15919, 12372, 22882, 8053, 26067, 15919, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 17, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 19852, 22882, 9126, 8053, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 19852, 22882, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 19852, 22882, 8053, 1058, 6565, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 12372, 22882, 8053, 12372, 22882, 48603, 2149, 3535, 1340, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 19852, 22882, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 19852, 22882, 1058, 4522, 3525, 5064, 38311, 5994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 4522, 3525, 5064, 38311, 36529, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 4522, 3525, 5064, 38311, 5994, 36529, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 11440, 7483, 8053, 5994, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 11440, 7483, 8053, 36529, 41986, 8053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 11440, 7483, 8053, 5994, 36529, 41986, 8053, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 35835, 656, 6194, 3084, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 19852, 22882, 3256, 657, 11, 705, 45, 11651, 11537, 198, 220, 220, 220, 611, 468, 35226, 7, 79, 58, 16, 4357, 705, 3672, 11537, 290, 220, 279, 58, 16, 4083, 3672, 6624, 705, 33234, 7483, 8053, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 6632, 62, 2100, 796, 12200, 19667, 10786, 12501, 4402, 62, 18250, 3256, 657, 11, 705, 12394, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 300, 16, 796, 18896, 7, 79, 58, 16, 4083, 17197, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 18896, 7, 79, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 44052, 62, 4868, 796, 12200, 19667, 10786, 3109, 1050, 62, 8053, 3256, 657, 11, 705, 45, 11651, 3256, 657, 11, 685, 22570, 62, 2100, 60, 1635, 300, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1288, 361, 18896, 7, 79, 8, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 44052, 62, 4868, 796, 279, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1288, 361, 18896, 7, 79, 8, 6624, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 44052, 62, 4868, 796, 279, 58, 19, 60, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 300, 17, 796, 18896, 7, 31937, 62, 4868, 13, 17197, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 31937, 62, 4868, 13, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 300, 16, 6624, 300, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 75, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 28, 3256, 279, 58, 16, 4083, 17197, 58, 72, 4357, 44052, 62, 4868, 13, 17197, 58, 72, 4083, 7890, 11, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 62, 18224, 7203, 43015, 24720, 46318, 25, 366, 1343, 965, 7, 75, 16, 8, 1343, 366, 27421, 7, 82, 8, 475, 366, 1343, 965, 7, 75, 17, 8, 1343, 366, 1988, 7, 82, 8, 4943, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 16, 60, 796, 12200, 19667, 10786, 25256, 5064, 38311, 3256, 79, 58, 16, 60, 4032, 12394, 3256, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 58, 17, 4083, 15414, 62, 4906, 14512, 705, 45, 11651, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 7177, 1339, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 58, 17, 4083, 4798, 62, 17440, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6194, 62, 11487, 13, 2860, 62, 738, 7483, 7, 79, 58, 16, 4357, 2546, 796, 279, 58, 17, 4083, 7890, 8, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 3118, 540, 284, 751, 284, 38357, 10962, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1438, 796, 6194, 62, 11487, 13, 12947, 62, 738, 7483, 7, 79, 58, 16, 4083, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 19667, 796, 38357, 10962, 19667, 7, 3672, 11, 279, 58, 16, 4083, 15414, 62, 4906, 11, 7857, 796, 279, 58, 17, 4083, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6194, 62, 11487, 13, 2860, 62, 7785, 7, 3605, 19667, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 19852, 22882, 3256, 79, 58, 16, 4083, 7890, 4032, 12394, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 44052, 796, 12200, 19667, 10786, 3109, 1050, 3256, 657, 11, 705, 45, 11651, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 18896, 7, 79, 8, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 44052, 796, 279, 58, 18, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 28, 3256, 2198, 62, 45286, 7, 79, 58, 16, 46570, 2198, 62, 45286, 7, 31937, 828, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1288, 361, 18896, 7, 79, 8, 6624, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 44052, 796, 279, 58, 19, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 19, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 28, 3256, 2198, 62, 45286, 7, 79, 58, 16, 46570, 2198, 62, 45286, 7, 31937, 828, 10148, 12962, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 22203, 37835, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 22203, 37835, 1058, 29397, 34, 15553, 5376, 34894, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 29397, 34, 15553, 5376, 34894, 15553, 25842, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1303, 6194, 62, 11487, 13, 4798, 62, 1837, 23650, 62, 11487, 3419, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 22203, 37835, 3256, 657, 11, 705, 12394, 11537, 198, 220, 220, 220, 1303, 3601, 6194, 62, 11487, 13, 14421, 62, 29982, 198, 220, 220, 220, 1303, 279, 58, 19, 4083, 51, 2246, 13, 4798, 62, 8189, 3419, 198, 220, 220, 220, 6194, 62, 11487, 13, 2860, 62, 8818, 7, 79, 58, 17, 4083, 7890, 11, 279, 58, 18, 4083, 15414, 62, 4906, 11, 279, 58, 18, 4083, 17197, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 642, 25, 198, 220, 220, 220, 220, 220, 220, 220, 645, 5189, 10044, 4105, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 277, 287, 6194, 62, 11487, 13, 1837, 23650, 62, 11487, 58, 1837, 23650, 62, 11487, 13, 14421, 62, 29982, 7131, 6, 12543, 2733, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 13, 3672, 6624, 279, 58, 17, 4083, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 645, 5189, 10044, 4105, 796, 18896, 7, 69, 13, 17143, 7307, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 20786, 3256, 2198, 62, 45286, 7, 79, 58, 17, 46570, 965, 7, 3919, 5189, 10044, 4105, 828, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1200, 287, 17687, 7, 79, 58, 18, 4083, 17197, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 1136, 17143, 3256, 279, 58, 19, 4083, 7890, 1343, 705, 62, 6, 1343, 1200, 13, 7890, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 25558, 62, 14689, 3256, 705, 3256, 705, 3256, 10148, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 19, 4083, 51, 2246, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 22203, 5376, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 22203, 5376, 1058, 4522, 3525, 5064, 38311, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 22203, 5376, 3256, 279, 58, 16, 4357, 705, 12394, 3256, 352, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 22203, 25842, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 22203, 25842, 1058, 9726, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 22203, 25842, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 26437, 1273, 16762, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 26437, 1273, 16762, 1058, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 50144, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 10073, 19852, 37835, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 3457, 10707, 1273, 16762, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 26437, 1273, 16762, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 25517, 10707, 1273, 16762, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 25517, 10707, 1273, 16762, 1058, 41986, 48635, 62, 6489, 2937, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 20625, 2937, 62, 23678, 2937, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 530, 62, 2100, 796, 12200, 19667, 10786, 25517, 10707, 1273, 16762, 3256, 705, 16, 3256, 705, 12394, 11537, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 611, 279, 58, 16, 4083, 271, 43, 8367, 6624, 352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 58, 17, 60, 6624, 705, 4880, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 10, 3256, 2198, 62, 45286, 7, 79, 58, 16, 46570, 2198, 62, 45286, 7, 79, 58, 16, 46570, 530, 62, 2100, 13, 7890, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 12, 3256, 2198, 62, 45286, 7, 79, 58, 16, 46570, 2198, 62, 45286, 7, 79, 58, 16, 46570, 530, 62, 2100, 13, 7890, 12962, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 43, 8367, 2672, 4943, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 25517, 10707, 1273, 16762, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 16438, 19852, 37835, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 16438, 19852, 37835, 1058, 41986, 8053, 24994, 16284, 62, 3185, 41986, 8053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 24994, 16284, 62, 3185, 41986, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1303, 16926, 46, 25, 3060, 287, 6194, 3084, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 16438, 19852, 37835, 3256, 657, 11, 705, 12394, 11537, 198, 220, 220, 220, 611, 279, 58, 16, 4083, 3672, 6624, 705, 16870, 2234, 8053, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 300, 16, 796, 18896, 7, 79, 58, 16, 4083, 17197, 8, 198, 220, 220, 220, 220, 220, 220, 220, 300, 17, 796, 18896, 7, 79, 58, 18, 4083, 17197, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 300, 16, 6624, 300, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 75, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 58, 16, 4083, 17197, 58, 72, 4083, 271, 43, 8367, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 43, 8367, 2672, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6194, 62, 11487, 13, 2860, 62, 738, 7483, 7, 79, 58, 16, 4083, 17197, 58, 72, 12962, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 3118, 540, 284, 751, 284, 38357, 10962, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 26933, 79, 58, 17, 4357, 2198, 62, 45286, 7, 79, 58, 16, 4083, 17197, 58, 72, 46570, 2198, 62, 45286, 7, 79, 58, 18, 4083, 17197, 58, 72, 46570, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 43015, 24720, 46318, 25, 366, 1343, 965, 7, 75, 16, 8, 1343, 366, 27421, 7, 82, 8, 475, 366, 1343, 965, 7, 75, 17, 8, 1343, 366, 1988, 7, 82, 8, 4943, 628, 220, 220, 220, 1288, 361, 279, 58, 16, 4083, 3672, 6624, 705, 16870, 2234, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 58, 16, 4083, 271, 43, 8367, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 43, 8367, 2672, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6194, 62, 11487, 13, 2860, 62, 738, 7483, 7, 79, 58, 16, 12962, 6624, 10352, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 3118, 540, 284, 751, 284, 38357, 10962, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 26933, 79, 58, 17, 4357, 2198, 62, 45286, 7, 79, 58, 16, 46570, 2198, 62, 45286, 7, 79, 58, 18, 46570, 10148, 12962, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 8021, 16747, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 8021, 16747, 1058, 41986, 8053, 8333, 62, 404, 41986, 8053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 8333, 62, 404, 41986, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 8021, 16747, 3256, 657, 11, 705, 12394, 11537, 198, 220, 220, 220, 611, 279, 58, 16, 4083, 3672, 6624, 705, 16870, 2234, 8053, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 300, 16, 796, 18896, 7, 79, 58, 16, 4083, 17197, 8, 198, 220, 220, 220, 220, 220, 220, 220, 300, 17, 796, 18896, 7, 79, 58, 18, 4083, 17197, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 300, 16, 6624, 300, 17, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 75, 16, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 58, 16, 4083, 17197, 58, 72, 4083, 271, 43, 8367, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 43, 8367, 2672, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6194, 62, 11487, 13, 12947, 62, 738, 7483, 7, 79, 58, 16, 4083, 17197, 58, 72, 4083, 7890, 8, 6624, 10352, 290, 279, 58, 16, 4083, 17197, 58, 72, 4083, 7890, 407, 287, 7560, 17816, 29510, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 43015, 366, 1343, 279, 58, 16, 4083, 17197, 58, 72, 4083, 7890, 1343, 366, 318, 28721, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 58, 18, 4083, 17197, 58, 72, 4083, 271, 43, 8367, 6624, 352, 290, 6194, 62, 11487, 13, 12947, 62, 738, 7483, 7, 79, 58, 18, 4083, 17197, 58, 72, 4083, 7890, 8, 6624, 10352, 290, 279, 58, 18, 4083, 17197, 58, 72, 4083, 7890, 407, 287, 7560, 17816, 29510, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 43015, 366, 1343, 279, 58, 18, 4083, 17197, 58, 72, 4083, 7890, 1343, 366, 318, 28721, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 26933, 79, 58, 17, 4083, 7890, 11, 2198, 62, 45286, 7, 79, 58, 16, 4083, 17197, 58, 72, 46570, 2198, 62, 45286, 7, 79, 58, 18, 4083, 17197, 58, 72, 46570, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 43015, 24720, 46318, 25, 366, 1343, 965, 7, 75, 16, 8, 1343, 366, 27421, 7, 82, 8, 475, 366, 1343, 965, 7, 75, 17, 8, 1343, 366, 1988, 7, 82, 8, 4943, 628, 220, 220, 220, 1288, 361, 279, 58, 16, 4083, 3672, 6624, 705, 16870, 2234, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 58, 16, 4083, 271, 43, 8367, 6624, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 43, 8367, 2672, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 6194, 62, 11487, 13, 12947, 62, 738, 7483, 7, 79, 58, 16, 4083, 7890, 8, 6624, 10352, 290, 279, 58, 16, 4083, 7890, 407, 287, 7560, 17816, 29510, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 43015, 366, 1343, 279, 58, 16, 4083, 7890, 1343, 366, 318, 28721, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 279, 58, 18, 4083, 271, 43, 8367, 6624, 352, 290, 6194, 62, 11487, 13, 12947, 62, 738, 7483, 7, 79, 58, 18, 4083, 7890, 8, 6624, 10352, 290, 279, 58, 18, 4083, 7890, 407, 287, 7560, 17816, 29510, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 7203, 43015, 366, 1343, 279, 58, 18, 4083, 7890, 1343, 366, 318, 28721, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3601, 6194, 62, 11487, 13, 14421, 62, 29982, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 26933, 79, 58, 17, 4083, 7890, 11, 2198, 62, 45286, 7, 79, 58, 16, 46570, 2198, 62, 45286, 7, 79, 58, 18, 46570, 10148, 12962, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 562, 570, 62, 404, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 562, 570, 62, 404, 1058, 36529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 48635, 62, 36, 48, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 20625, 2937, 62, 36, 48, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 6375, 62, 36, 48, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 17368, 2767, 62, 36, 48, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 25424, 62, 36, 48, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 360, 3824, 14114, 62, 36, 48, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 19164, 6239, 46, 62, 36, 48, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 30948, 62, 36, 48, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 19340, 62, 36, 48, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 3001, 47, 62, 36, 48, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5357, 62, 1581, 62, 36, 48, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 562, 570, 62, 404, 3256, 279, 58, 16, 4357, 705, 31054, 25633, 11537, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 1532, 1273, 16762, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 1532, 1273, 16762, 1058, 16876, 41986, 9726, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 16876, 41986, 9726, 17852, 5188, 2073, 51, 603, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 300, 16, 796, 2429, 10786, 18242, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 1532, 1273, 16762, 3256, 657, 11, 705, 12394, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 17, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 361, 70, 2069, 27363, 3256, 2198, 62, 45286, 7, 79, 58, 17, 46570, 705, 15, 3256, 300, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 18242, 3256, 300, 16, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 718, 25, 198, 220, 220, 220, 220, 220, 220, 220, 300, 16, 796, 2429, 10786, 18242, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 300, 17, 796, 2429, 10786, 18242, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 1532, 1273, 16762, 3256, 657, 11, 705, 12394, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 17, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 361, 70, 2069, 27363, 3256, 2198, 62, 45286, 7, 79, 58, 17, 46570, 705, 15, 3256, 300, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 70, 2069, 3256, 300, 17, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 18242, 3256, 300, 16, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 20, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 18242, 3256, 300, 17, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 17772, 51, 603, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 17772, 51, 603, 1058, 1002, 1273, 16762, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 9726, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 17772, 51, 603, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 38978, 1273, 16762, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 38978, 1273, 16762, 1058, 1475, 1050, 38978, 1273, 16762, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 38978, 1273, 16762, 3256, 657, 11, 705, 12394, 3256, 657, 11, 685, 4357, 279, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 3109, 1050, 38978, 1273, 16762, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 3109, 1050, 38978, 1273, 16762, 1058, 12672, 31949, 17427, 1273, 16762, 48603, 2149, 3535, 1340, 22228, 4261, 11319, 41063, 10434, 1475, 1050, 20448, 2601, 682, 8053, 41063, 12915, 13987, 4261, 11319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 12672, 31949, 17427, 1273, 16762, 48603, 2149, 3535, 1340, 41986, 22228, 4261, 11319, 41063, 10434, 1475, 1050, 20448, 2601, 682, 8053, 41063, 12915, 13987, 4261, 11319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 12672, 31949, 22228, 4261, 11319, 41063, 10434, 1475, 1050, 20448, 2601, 682, 8053, 41063, 12915, 13987, 4261, 11319, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 12672, 31949, 41986, 22228, 4261, 11319, 41063, 10434, 1475, 1050, 20448, 2601, 682, 8053, 41063, 12915, 13987, 4261, 11319, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 807, 25, 198, 220, 220, 220, 220, 220, 220, 220, 300, 16, 796, 2429, 10786, 18242, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 300, 17, 796, 2429, 10786, 18242, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 3109, 1050, 38978, 1273, 16762, 3256, 657, 11, 705, 12394, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 17, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 256, 16, 796, 12200, 19667, 10786, 25256, 5064, 38311, 3256, 2429, 10786, 29510, 33809, 705, 12394, 3256, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 28, 3256, 2198, 62, 45286, 7, 83, 16, 8, 837, 2198, 62, 45286, 7, 79, 58, 17, 46570, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 20, 4083, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 11925, 7, 79, 58, 20, 4083, 17197, 8, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 361, 70, 2069, 27363, 3256, 2198, 62, 45286, 7, 83, 16, 828, 279, 58, 20, 4083, 17197, 58, 72, 7131, 15, 4357, 279, 58, 20, 4083, 17197, 58, 72, 7131, 16, 11907, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 70, 2069, 3256, 300, 17, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 329, 1312, 287, 2837, 7, 79, 58, 20, 4083, 51, 2246, 13, 13664, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 1312, 287, 279, 58, 20, 4083, 51, 2246, 13, 37553, 58, 16, 25, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 70, 2069, 3256, 300, 17, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 79, 58, 20, 4083, 51, 2246, 13, 8189, 58, 72, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 18242, 3256, 300, 17, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 3109, 1050, 20448, 2601, 682, 8053, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 3109, 1050, 20448, 2601, 682, 8053, 1058, 6565, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 1475, 1050, 20448, 2601, 682, 8053, 1475, 1050, 20448, 2601, 682, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 309, 2246, 16, 796, 7683, 20231, 10669, 3419, 198, 220, 220, 220, 309, 2246, 17, 796, 7683, 20231, 10669, 3419, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 309, 2246, 16, 796, 279, 58, 16, 4083, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 309, 2246, 17, 796, 279, 58, 17, 4083, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 3109, 1050, 20448, 2601, 682, 8053, 3256, 309, 2246, 16, 11, 705, 12394, 3256, 657, 11, 279, 58, 16, 4083, 17197, 1343, 279, 58, 17, 4083, 17197, 11, 279, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 27940, 7, 79, 58, 15, 4083, 51, 2246, 13, 13664, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 17, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 7890, 13, 33295, 62, 51, 2246, 7, 51, 2246, 17, 8, 628, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 3109, 1050, 20448, 2601, 682, 8053, 3256, 309, 2246, 16, 11, 705, 12394, 11537, 628, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 3109, 1050, 20448, 2601, 682, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 3109, 1050, 20448, 2601, 682, 1058, 1475, 1050, 38978, 20448, 20444, 1340, 21983, 8053, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 300, 16, 796, 2429, 10786, 18242, 11537, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 3109, 1050, 20448, 2601, 682, 3256, 657, 11, 705, 12394, 11537, 198, 220, 220, 220, 1303, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 18242, 3256, 300, 16, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 1303, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 361, 23442, 505, 80, 3256, 279, 58, 16, 4083, 17197, 11, 279, 58, 16, 4083, 17197, 11, 300, 16, 12962, 198, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 279, 58, 15, 4083, 17197, 796, 16410, 79, 58, 16, 4083, 7890, 11, 75, 16, 11907, 198, 220, 220, 220, 279, 58, 15, 4083, 7890, 796, 279, 58, 16, 4083, 51, 2246, 628, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 3109, 1050, 38978, 20448, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 3109, 1050, 38978, 20448, 1058, 42001, 41986, 8053, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5550, 38865, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 42001, 41986, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 3109, 1050, 38978, 20448, 3256, 657, 11, 705, 12394, 11537, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 7890, 796, 279, 58, 17, 4083, 7890, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 796, 279, 58, 17, 4083, 51, 2246, 628, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 1890, 1273, 16762, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 1890, 1273, 16762, 1058, 7473, 41986, 9726, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 7473, 9726, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 1890, 1273, 16762, 3256, 657, 11, 705, 12394, 11537, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 300, 16, 796, 2429, 10786, 18242, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 300, 17, 796, 2429, 10786, 18242, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 18242, 3256, 300, 16, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 17, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 361, 70, 2069, 27363, 3256, 9122, 62, 45286, 7, 79, 58, 17, 46570, 705, 15, 3256, 300, 17, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 70, 2069, 3256, 300, 16, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 18242, 3256, 300, 17, 11, 705, 3256, 10148, 12962, 628, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 300, 16, 796, 2429, 10786, 18242, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 300, 17, 796, 2429, 10786, 18242, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 18242, 3256, 300, 16, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 17, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 70, 2069, 3256, 300, 16, 11, 705, 3256, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 26933, 75, 17, 12962, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 13615, 1273, 16762, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 13615, 1273, 16762, 1058, 30826, 27064, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 30826, 27064, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 30826, 27064, 41986, 8053, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 13615, 1273, 16762, 3256, 657, 11, 705, 14202, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 7783, 3256, 705, 3256, 705, 3256, 10148, 12962, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 58, 17, 4083, 3672, 6624, 705, 16870, 2234, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 13615, 1273, 16762, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 7783, 3256, 2198, 62, 45286, 7, 79, 58, 17, 46570, 705, 3256, 10148, 12962, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 31737, 1273, 16762, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 31737, 1273, 16762, 1058, 29377, 10206, 4522, 3525, 5064, 38311, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 29453, 1273, 16762, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 29453, 1273, 16762, 1058, 43659, 8924, 4522, 3525, 5064, 38311, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 38, 2069, 1273, 16762, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 38, 2069, 1273, 16762, 1058, 402, 26631, 4522, 3525, 5064, 38311, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 16870, 2234, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 16870, 2234, 1058, 791, 560, 3109, 1050, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 6375, 62, 1581, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 3001, 47, 62, 23518, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 36529, 62, 36, 48, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 5626, 62, 36, 48, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 34146, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 34146, 62, 36, 48, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 7963, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 7963, 62, 36, 48, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 48635, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 20625, 2937, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 6375, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 17368, 2767, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 25424, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 360, 3824, 14114, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 19164, 6239, 46, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 30948, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 19340, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 3001, 47, 41986, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 41986, 5357, 62, 1581, 41986, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 1288, 361, 18896, 7, 79, 8, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 25256, 5064, 38311, 3256, 2429, 10786, 29510, 33809, 705, 12394, 3256, 352, 11, 685, 4357, 279, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 18, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 26933, 79, 58, 17, 4357, 9122, 62, 45286, 7, 79, 58, 15, 46570, 2198, 62, 45286, 7, 79, 58, 16, 46570, 2198, 62, 45286, 7, 79, 58, 18, 12962, 12962, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 16870, 2234, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 3118, 560, 3109, 1050, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 3118, 560, 3109, 1050, 1058, 21087, 3109, 1050, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 555, 560, 62, 404, 791, 560, 3109, 1050, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 1288, 361, 18896, 7, 79, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 25256, 5064, 38311, 3256, 2429, 10786, 29510, 33809, 705, 12394, 3256, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 26933, 9122, 62, 45286, 7, 79, 58, 16, 46570, 2198, 62, 45286, 7, 79, 58, 15, 46570, 2198, 62, 45286, 7, 79, 58, 17, 46570, 10148, 12962, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 3118, 560, 3109, 1050, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 403, 560, 62, 404, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 403, 560, 62, 404, 1058, 48635, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 20625, 2937, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 5626, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 17368, 2767, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 25424, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 3001, 47, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 34146, 62, 23678, 2937, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 403, 560, 62, 404, 3256, 279, 58, 16, 4357, 705, 31054, 25633, 11537, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 35170, 3109, 1050, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 35170, 3109, 1050, 1058, 6564, 392, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 4522, 3525, 5064, 38311, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 21087, 3109, 1050, 9683, 273, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 21087, 3109, 1050, 12901, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 21087, 3109, 1050, 20559, 2886, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 13, 48369, 58, 16, 4083, 4906, 6624, 705, 25256, 5064, 38311, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 25256, 5064, 38311, 3256, 279, 58, 16, 4357, 705, 12394, 3256, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 279, 58, 16, 4083, 3672, 6624, 705, 18843, 392, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 1288, 361, 18896, 7, 79, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 58, 17, 4083, 3672, 6624, 705, 15732, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 25256, 5064, 38311, 3256, 279, 58, 16, 4083, 7890, 11, 705, 12394, 3256, 352, 11, 279, 58, 17, 4083, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1288, 361, 279, 58, 17, 4083, 3672, 6624, 705, 28100, 2886, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 25256, 5064, 38311, 3256, 2429, 10786, 29510, 33809, 705, 12394, 3256, 352, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 16, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 33295, 62, 51, 2246, 7, 79, 58, 17, 4083, 51, 2246, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 58, 16, 4083, 4798, 62, 17440, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25439, 796, 2198, 62, 45286, 7, 79, 58, 16, 35944, 35312, 7203, 62, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8354, 11, 25439, 5376, 796, 220, 45434, 1911, 22179, 7, 20786, 58, 25, 17, 46570, 45434, 1911, 22179, 7, 20786, 58, 17, 25, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 277, 287, 6194, 62, 11487, 13, 1837, 23650, 62, 11487, 58, 29982, 7131, 6, 12543, 2733, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 277, 13, 3672, 6624, 25439, 5376, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 796, 18896, 7, 69, 13, 17143, 7307, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 279, 58, 17, 4083, 4798, 62, 17440, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1200, 287, 279, 58, 17, 4083, 17197, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 1996, 17143, 3256, 2198, 62, 45286, 7, 9410, 828, 705, 3256, 10148, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 20218, 14512, 279, 58, 17, 4083, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 62, 18224, 10786, 22203, 705, 1343, 25439, 5376, 1343, 705, 4433, 705, 1343, 965, 7, 29510, 8, 1343, 705, 10007, 475, 705, 1343, 965, 7, 79, 58, 17, 4083, 7890, 8, 1343, 705, 14275, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 13345, 3256, 2198, 62, 45286, 7, 79, 58, 16, 46570, 965, 7, 79, 58, 17, 4083, 7890, 828, 10148, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 51, 2246, 13, 2860, 62, 1370, 7, 17816, 7783, 62, 8367, 3256, 2198, 62, 45286, 7, 79, 58, 15, 46570, 705, 3256, 10148, 12962, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 35170, 3109, 1050, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 18843, 392, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 18843, 392, 220, 1058, 25659, 1691, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 37491, 15919, 41986, 26067, 15919, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 17, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 18843, 392, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 43, 270, 1691, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 43, 270, 1691, 220, 1058, 14392, 43, 270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 15553, 43, 270, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 43, 270, 1691, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 26416, 43, 270, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 26416, 43, 270, 1058, 493, 62, 18250, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 12178, 62, 18250, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 4731, 62, 18250, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 35930, 62, 18250, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 26416, 43, 270, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 600, 62, 18250, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 600, 62, 18250, 1058, 32465, 62, 18250, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 19318, 282, 62, 18250, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 17910, 62, 18250, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 16, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 600, 62, 18250, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 12501, 4402, 62, 18250, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 12501, 4402, 62, 18250, 1058, 27196, 3955, 1847, 62, 43, 2043, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 12501, 4402, 62, 18250, 3256, 279, 58, 16, 4357, 705, 12394, 11537, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 38441, 282, 62, 18250, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 38441, 282, 62, 18250, 1058, 42256, 1847, 62, 43, 2043, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 38441, 282, 62, 18250, 3256, 279, 58, 16, 4357, 705, 46, 4177, 11537, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 33095, 62, 18250, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 33095, 62, 18250, 220, 1058, 367, 6369, 62, 43, 2043, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 33095, 62, 18250, 3256, 279, 58, 16, 4357, 705, 39, 6369, 11537, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 22468, 62, 18250, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 22468, 62, 18250, 1058, 9977, 46, 1404, 62, 43, 2043, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 22468, 62, 18250, 3256, 279, 58, 16, 4357, 705, 3697, 46, 1404, 11537, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 22203, 43, 270, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 22203, 43, 270, 1058, 29397, 34, 34894, 15553, 25842, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1303, 19200, 15553, 198, 220, 220, 220, 1303, 1892, 9177, 1865, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 17563, 273, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 17563, 273, 1058, 42743, 4522, 3525, 5064, 38311, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 15732, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 15732, 1058, 30948, 10917, 12203, 41986, 19340, 10917, 12203, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 17, 60, 198, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 15732, 6, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 28100, 2886, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 28100, 2886, 1058, 37491, 15919, 26067, 15919, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 37491, 15919, 41986, 8053, 26067, 15919, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 37491, 15919, 41986, 26067, 15919, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 37491, 15919, 5994, 26067, 15919, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 37491, 15919, 5994, 9440, 5673, 41986, 8053, 26067, 15919, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 930, 37491, 15919, 5994, 9440, 5673, 41986, 26067, 15919, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 3601, 279, 13, 48369, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 513, 25, 198, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 28100, 2886, 3256, 657, 11, 705, 14202, 11537, 198, 220, 220, 220, 611, 18896, 7, 79, 8, 6624, 604, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 58, 17, 4083, 3672, 6624, 705, 16870, 2234, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 28100, 2886, 3256, 352, 11, 705, 14202, 3256, 657, 11, 685, 79, 58, 17, 60, 4357, 279, 58, 17, 4083, 51, 2246, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 279, 58, 17, 4083, 3672, 6624, 705, 16870, 2234, 8053, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 60, 796, 279, 58, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 3672, 796, 705, 28100, 2886, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 279, 58, 15, 4083, 7890, 796, 18896, 7, 79, 58, 17, 4083, 17197, 8, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 8841, 62, 18250, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 8841, 62, 18250, 1058, 19269, 2751, 62, 43, 2043, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 8841, 62, 18250, 3256, 279, 58, 16, 4357, 705, 18601, 2751, 11537, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 81, 1726, 62, 18250, 7, 79, 2599, 198, 220, 220, 220, 705, 7061, 81, 1726, 62, 18250, 1058, 32494, 36, 62, 43, 2043, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 44267, 13, 33295, 7, 79, 13, 48369, 8, 198, 220, 220, 220, 279, 58, 15, 60, 796, 12200, 19667, 10786, 81, 1726, 62, 18250, 3256, 279, 58, 16, 4357, 705, 49, 41884, 11537, 198, 220, 220, 220, 1441, 198, 198, 4299, 279, 62, 28920, 7, 79, 2599, 198, 220, 220, 220, 705, 28920, 1058, 6, 198, 220, 220, 220, 1208, 198, 198, 2, 8997, 5972, 1362, 198, 6404, 2667, 13, 35487, 16934, 7, 198, 220, 220, 220, 1241, 796, 18931, 13, 30531, 11, 198, 220, 220, 220, 29472, 796, 366, 1845, 741, 519, 13, 14116, 1600, 198, 220, 220, 220, 2393, 14171, 796, 366, 86, 1600, 198, 220, 220, 220, 5794, 796, 36521, 7, 34345, 8, 940, 82, 25, 4, 7, 2815, 23397, 8, 19, 67, 25, 4, 7, 20500, 8, 82, 1, 198, 8, 198, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 3419, 198, 198, 88, 4134, 13, 88, 4134, 7, 24442, 28, 17821, 11, 14257, 6404, 28, 6404, 8, 198, 198, 15414, 62, 7753, 796, 25064, 13, 853, 85, 58, 16, 60, 198, 198, 11748, 28686, 198, 361, 28686, 13, 6978, 13, 4468, 576, 7, 15414, 62, 7753, 8, 318, 10352, 25, 198, 220, 220, 220, 3601, 10786, 20560, 2393, 705, 1343, 5128, 62, 7753, 1343, 705, 857, 407, 2152, 11537, 198, 220, 220, 220, 25064, 13, 37023, 7, 16, 8, 198, 198, 15414, 62, 8189, 796, 1280, 7, 15414, 62, 7753, 11, 705, 81, 27691, 961, 3419, 198, 198, 361, 5128, 62, 8189, 58, 11925, 7, 15414, 62, 8189, 13219, 16, 60, 14512, 705, 59, 77, 10354, 198, 220, 220, 220, 5128, 62, 8189, 15853, 705, 59, 77, 6, 198, 198, 88, 4134, 13, 29572, 7, 15414, 62, 8189, 11, 14257, 28, 6404, 11, 9646, 28, 17821, 8, 628 ]
1.925113
17,533
import argparse import imageio import progressbar from _routines import ffi, lib from pylab import * from random import Random RESOLUTIONS = { "2160p": (3840, 2160), "1440p": (2560, 1440), "1080p": (1920, 1080), "720p": (1280, 720), "480p": (854, 480), "360p": (640, 360), "240p": (426, 240), "160p": (284, 160), "80p": (142, 80), "40p": (71, 40), } if __name__ == '__main__': parser = argparse.ArgumentParser(description='Render audio samples') parser.add_argument('outfile', type=str, help='Output file name') parser.add_argument('--params', type=str, help='Parameter YAML file name') parser.add_argument('--resolution', choices=RESOLUTIONS.keys(), help='Video and simulation grid resolution') parser.add_argument('--width', type=int, help='Video and simulation grid width', metavar='W') parser.add_argument('--height', type=int, help='Video and simulation grid height', metavar='H') parser.add_argument('--framerate', type=int, help='Video frame rate') parser.add_argument('--video-quality', type=int, help='Video quality factor') parser.add_argument('--video-duration', type=float, help='Duration of video to render in seconds') args = parser.parse_args() if not args.framerate: args.framerate = 24 if not args.video_quality: args.video_quality = 10 writer = imageio.get_writer(args.outfile, fps=args.framerate, quality=args.video_quality, macro_block_size=1) # Compute derived parameters if args.resolution: width, height = RESOLUTIONS[args.resolution] if not args.width: args.width = width if not args.height: args.height = height if (not args.width) or (not args.height): raise ValueError("Invalid or missing resolution") if not args.video_duration: raise ValueError("Missing video duration") args.aspect = args.width / args.height args.num_frames = int(args.video_duration * args.framerate) args.dt = 1.0 / args.num_frames do_render(args, writer) writer.close()
[ 11748, 1822, 29572, 198, 11748, 2939, 952, 198, 11748, 4371, 5657, 198, 6738, 4808, 81, 448, 1127, 1330, 277, 12463, 11, 9195, 198, 6738, 279, 2645, 397, 1330, 1635, 198, 6738, 4738, 1330, 14534, 198, 198, 19535, 3535, 3843, 11053, 796, 1391, 198, 220, 220, 220, 366, 17, 14198, 79, 1298, 357, 2548, 1821, 11, 362, 14198, 828, 198, 220, 220, 220, 366, 1415, 1821, 79, 1298, 357, 1495, 1899, 11, 49557, 828, 198, 220, 220, 220, 366, 24045, 79, 1298, 357, 40454, 11, 17729, 828, 198, 220, 220, 220, 366, 23906, 79, 1298, 357, 1065, 1795, 11, 26250, 828, 198, 220, 220, 220, 366, 22148, 79, 1298, 357, 23, 4051, 11, 23487, 828, 198, 220, 220, 220, 366, 15277, 79, 1298, 357, 31102, 11, 11470, 828, 198, 220, 220, 220, 366, 16102, 79, 1298, 357, 42780, 11, 14956, 828, 198, 220, 220, 220, 366, 14198, 79, 1298, 357, 30336, 11, 13454, 828, 198, 220, 220, 220, 366, 1795, 79, 1298, 357, 23726, 11, 4019, 828, 198, 220, 220, 220, 366, 1821, 79, 1298, 357, 4869, 11, 2319, 828, 198, 92, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 45819, 6597, 8405, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 448, 7753, 3256, 2099, 28, 2536, 11, 1037, 11639, 26410, 2393, 1438, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 37266, 3256, 2099, 28, 2536, 11, 1037, 11639, 36301, 575, 2390, 43, 2393, 1438, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 29268, 3256, 7747, 28, 19535, 3535, 3843, 11053, 13, 13083, 22784, 1037, 11639, 10798, 290, 18640, 10706, 6323, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 10394, 3256, 2099, 28, 600, 11, 1037, 11639, 10798, 290, 18640, 10706, 9647, 3256, 1138, 615, 283, 11639, 54, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 17015, 3256, 2099, 28, 600, 11, 1037, 11639, 10798, 290, 18640, 10706, 6001, 3256, 1138, 615, 283, 11639, 39, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 19298, 21620, 3256, 2099, 28, 600, 11, 1037, 11639, 10798, 5739, 2494, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 15588, 12, 13237, 3256, 2099, 28, 600, 11, 1037, 11639, 10798, 3081, 5766, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 15588, 12, 32257, 3256, 2099, 28, 22468, 11, 1037, 11639, 26054, 286, 2008, 284, 8543, 287, 4201, 11537, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 611, 407, 26498, 13, 19298, 21620, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 19298, 21620, 796, 1987, 198, 220, 220, 220, 611, 407, 26498, 13, 15588, 62, 13237, 25, 198, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 15588, 62, 13237, 796, 838, 628, 220, 220, 220, 6260, 796, 2939, 952, 13, 1136, 62, 16002, 7, 22046, 13, 448, 7753, 11, 32977, 28, 22046, 13, 19298, 21620, 11, 3081, 28, 22046, 13, 15588, 62, 13237, 11, 15021, 62, 9967, 62, 7857, 28, 16, 8, 628, 220, 220, 220, 1303, 3082, 1133, 10944, 10007, 198, 220, 220, 220, 611, 26498, 13, 29268, 25, 198, 220, 220, 220, 220, 220, 220, 220, 9647, 11, 6001, 796, 15731, 3535, 3843, 11053, 58, 22046, 13, 29268, 60, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 26498, 13, 10394, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 10394, 796, 9647, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 26498, 13, 17015, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 26498, 13, 17015, 796, 6001, 198, 220, 220, 220, 611, 357, 1662, 26498, 13, 10394, 8, 393, 357, 1662, 26498, 13, 17015, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 44651, 393, 4814, 6323, 4943, 198, 220, 220, 220, 611, 407, 26498, 13, 15588, 62, 32257, 25, 198, 220, 220, 220, 220, 220, 220, 220, 5298, 11052, 12331, 7203, 43730, 2008, 9478, 4943, 198, 220, 220, 220, 26498, 13, 292, 806, 796, 26498, 13, 10394, 1220, 26498, 13, 17015, 198, 220, 220, 220, 26498, 13, 22510, 62, 37805, 796, 493, 7, 22046, 13, 15588, 62, 32257, 1635, 26498, 13, 19298, 21620, 8, 198, 220, 220, 220, 26498, 13, 28664, 796, 352, 13, 15, 1220, 26498, 13, 22510, 62, 37805, 628, 220, 220, 220, 466, 62, 13287, 7, 22046, 11, 6260, 8, 628, 220, 220, 220, 6260, 13, 19836, 3419, 198 ]
2.682519
778
# Copyright (c) 2015 Nicolas JOUANIN # # See the file license.txt for copying permission. import anyio import unittest from hbmqtt.mqtt.subscribe import SubscribePacket, SubscribePayload from hbmqtt.mqtt.packet import PacketIdVariableHeader from hbmqtt.mqtt.constants import QOS_1, QOS_2 from hbmqtt.adapters import BufferAdapter
[ 2, 15069, 357, 66, 8, 1853, 29737, 449, 2606, 1565, 1268, 198, 2, 198, 2, 4091, 262, 2393, 5964, 13, 14116, 329, 23345, 7170, 13, 198, 11748, 597, 952, 198, 11748, 555, 715, 395, 198, 198, 6738, 289, 20475, 80, 926, 13, 76, 80, 926, 13, 7266, 12522, 1330, 19808, 47, 8317, 11, 19808, 19197, 2220, 198, 6738, 289, 20475, 80, 926, 13, 76, 80, 926, 13, 8002, 316, 1330, 6400, 316, 7390, 43015, 39681, 198, 6738, 289, 20475, 80, 926, 13, 76, 80, 926, 13, 9979, 1187, 1330, 1195, 2640, 62, 16, 11, 1195, 2640, 62, 17, 198, 6738, 289, 20475, 80, 926, 13, 324, 12126, 1330, 47017, 47307, 628 ]
2.990991
111
import logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%Y/%m/%d %H:%M:%S', level=logging.INFO, ) logger = logging.getLogger("Main") import os,random import numpy as np import torch from processing import convert_examples_to_features, read_squad_examples from processing import ChineseFullTokenizer from pytorch_pretrained_bert.my_modeling import BertConfig from optimization import BERTAdam import config from utils import read_and_convert, divide_parameters from modeling import BertForQASimple, BertForQASimpleAdaptorTraining from textbrewer import DistillationConfig, TrainingConfig, BasicTrainer from torch.utils.data import TensorDataset, DataLoader, RandomSampler from functools import partial from train_eval import predict if __name__ == "__main__": main()
[ 11748, 18931, 198, 6404, 2667, 13, 35487, 16934, 7, 198, 220, 220, 220, 5794, 11639, 4, 7, 292, 310, 524, 8, 82, 532, 4064, 7, 5715, 3672, 8, 82, 532, 4064, 7, 3672, 8, 82, 532, 220, 4064, 7, 20500, 8, 82, 3256, 198, 220, 220, 220, 3128, 69, 16762, 11639, 4, 56, 14, 4, 76, 14, 4, 67, 4064, 39, 25, 4, 44, 25, 4, 50, 3256, 198, 220, 220, 220, 1241, 28, 6404, 2667, 13, 10778, 11, 198, 220, 220, 220, 1267, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7203, 13383, 4943, 198, 198, 11748, 28686, 11, 25120, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28034, 198, 6738, 7587, 1330, 10385, 62, 1069, 12629, 62, 1462, 62, 40890, 11, 1100, 62, 16485, 324, 62, 1069, 12629, 198, 6738, 7587, 1330, 3999, 13295, 30642, 7509, 198, 6738, 12972, 13165, 354, 62, 5310, 13363, 62, 4835, 13, 1820, 62, 4666, 10809, 1330, 22108, 16934, 198, 6738, 23989, 1330, 347, 17395, 23159, 198, 11748, 4566, 198, 6738, 3384, 4487, 1330, 1100, 62, 392, 62, 1102, 1851, 11, 14083, 62, 17143, 7307, 198, 6738, 21128, 1330, 22108, 1890, 48, 1921, 320, 1154, 11, 22108, 1890, 48, 1921, 320, 1154, 48003, 273, 44357, 198, 6738, 2420, 11269, 263, 1330, 4307, 40903, 16934, 11, 13614, 16934, 11, 14392, 2898, 10613, 198, 6738, 28034, 13, 26791, 13, 7890, 1330, 309, 22854, 27354, 292, 316, 11, 6060, 17401, 11, 14534, 16305, 20053, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 198, 6738, 4512, 62, 18206, 1330, 4331, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
3.083942
274
# EXPERIMENTAL: all may be removed soon from gym.benchmarks import scoring from gym.benchmarks.registration import benchmark_spec, register_benchmark, registry, register_benchmark_view # imports used elsewhere register_benchmark( id='Atari200M', scorer=scoring.TotalReward(), name='Atari200M', view_group="Atari", description='7 Atari games, with pixel observations', tasks=[ { 'env_id': 'BeamRiderNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(2e8), 'reward_floor': 363.9, 'reward_ceiling': 60000.0, }, { 'env_id': 'BreakoutNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(2e8), 'reward_floor': 1.7, 'reward_ceiling': 800.0, }, { 'env_id': 'EnduroNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(2e8), 'reward_floor': 0.0, 'reward_ceiling': 5000.0, }, { 'env_id': 'PongNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(2e8), 'reward_floor': -20.7, 'reward_ceiling': 21.0, }, { 'env_id': 'QbertNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(2e8), 'reward_floor': 163.9, 'reward_ceiling': 40000.0, }, { 'env_id': 'SeaquestNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(2e8), 'reward_floor': 68.4, 'reward_ceiling': 100000.0, }, { 'env_id': 'SpaceInvadersNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(2e8), 'reward_floor': 148.0, 'reward_ceiling': 30000.0, }, ]) register_benchmark( id='Atari40M', scorer=scoring.TotalReward(), name='Atari40M', view_group="Atari", description='7 Atari games, with pixel observations', tasks=[ { 'env_id': 'BeamRiderNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': 363.9, 'reward_ceiling': 60000.0, }, { 'env_id': 'BreakoutNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': 1.7, 'reward_ceiling': 800.0, }, { 'env_id': 'EnduroNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': 0.0, 'reward_ceiling': 5000.0, }, { 'env_id': 'PongNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': -20.7, 'reward_ceiling': 21.0, }, { 'env_id': 'QbertNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': 163.9, 'reward_ceiling': 40000.0, }, { 'env_id': 'SeaquestNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': 68.4, 'reward_ceiling': 100000.0, }, { 'env_id': 'SpaceInvadersNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': 148.0, 'reward_ceiling': 30000.0, } ]) register_benchmark( id='AtariExploration40M', scorer=scoring.TotalReward(), name='AtariExploration40M', view_group="Atari", description='7 Atari games, with pixel observations', tasks=[ { 'env_id': 'FreewayNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': 0.1, 'reward_ceiling': 31.0, }, { 'env_id': 'GravitarNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': 245.5, 'reward_ceiling': 1000.0, }, { 'env_id': 'MontezumaRevengeNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': 25.0, 'reward_ceiling': 10000.0, }, { 'env_id': 'PitfallNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': -348.8, 'reward_ceiling': 1000.0, }, { 'env_id': 'PrivateEyeNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': 662.8, 'reward_ceiling': 100.0, }, { 'env_id': 'SolarisNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': 2047.2, 'reward_ceiling': 5000.0, }, { 'env_id': 'VentureNoFrameskip-v4', 'trials': 2, 'max_timesteps': int(4e7), 'reward_floor': 18.0, 'reward_ceiling': 100.0, } ]) register_benchmark( id='ClassicControl2-v0', name='ClassicControl2', view_group="Control", description='Simple classic control benchmark', scorer=scoring.ClipTo01ThenAverage(), tasks=[ {'env_id': 'CartPole-v0', 'trials': 1, 'max_timesteps': 2000, }, {'env_id': 'Pendulum-v0', 'trials': 1, 'max_timesteps': 1000, }, ]) register_benchmark( id='ClassicControl-v0', name='ClassicControl', view_group="Control", description='Simple classic control benchmark', scorer=scoring.ClipTo01ThenAverage(), tasks=[ {'env_id': 'CartPole-v1', 'trials': 3, 'max_timesteps': 100000, 'reward_floor': 0.0, 'reward_ceiling': 500.0, }, {'env_id': 'Acrobot-v1', 'trials': 3, 'max_timesteps': 100000, 'reward_floor': -500.0, 'reward_ceiling': 0.0, }, {'env_id': 'MountainCar-v0', 'trials': 3, 'max_timesteps': 100000, 'reward_floor': -200.0, 'reward_ceiling': -100.0, }, {'env_id': 'Pendulum-v0', 'trials': 3, 'max_timesteps': 200000, 'reward_floor': -1400.0, 'reward_ceiling': 0.0, }, ]) ### Autogenerated by tinkerbell.benchmark.convert_benchmark.py register_benchmark( id='Mujoco10M-v0', name='Mujoco10M', view_group="Control", description='Mujoco benchmark with 10M steps', scorer=scoring.ClipTo01ThenAverage(), tasks=[ {'env_id': 'Ant-v1', 'trials': 1, 'max_timesteps': 1000000, }, {'env_id': 'Hopper-v1', 'trials': 1, 'max_timesteps': 1000000, }, {'env_id': 'Humanoid-v1', 'trials': 1, 'max_timesteps': 1000000, }, {'env_id': 'HumanoidStandup-v1', 'trials': 1, 'max_timesteps': 1000000, }, {'env_id': 'Walker2d-v1', 'trials': 1, 'max_timesteps': 1000000, } ]) register_benchmark( id='Mujoco1M-v0', name='Mujoco1M', view_group="Control", description='Mujoco benchmark with 1M steps', scorer=scoring.ClipTo01ThenAverage(), tasks=[ {'env_id': 'HalfCheetah-v1', 'trials': 3, 'max_timesteps': 1000000, 'reward_floor': -280.0, 'reward_ceiling': 4000.0, }, {'env_id': 'Hopper-v1', 'trials': 3, 'max_timesteps': 1000000, 'reward_floor': 16.0, 'reward_ceiling': 4000.0, }, {'env_id': 'InvertedDoublePendulum-v1', 'trials': 3, 'max_timesteps': 1000000, 'reward_floor': 53.0, 'reward_ceiling': 10000.0, }, {'env_id': 'InvertedPendulum-v1', 'trials': 3, 'max_timesteps': 1000000, 'reward_floor': 5.6, 'reward_ceiling': 1000.0, }, {'env_id': 'Reacher-v1', 'trials': 3, 'max_timesteps': 1000000, 'reward_floor': -43.0, 'reward_ceiling': -0.5, }, {'env_id': 'Swimmer-v1', 'trials': 3, 'max_timesteps': 1000000, 'reward_floor': 0.23, 'reward_ceiling': 500.0, }, {'env_id': 'Walker2d-v1', 'trials': 3, 'max_timesteps': 1000000, 'reward_floor': 1.6, 'reward_ceiling': 5500.0, } ]) register_benchmark( id='MinecraftEasy-v0', name='MinecraftEasy', view_group="Minecraft", description='Minecraft easy benchmark', scorer=scoring.ClipTo01ThenAverage(), tasks=[ {'env_id': 'MinecraftBasic-v0', 'trials': 2, 'max_timesteps': 600000, 'reward_floor': -2200.0, 'reward_ceiling': 1000.0, }, {'env_id': 'MinecraftDefaultFlat1-v0', 'trials': 2, 'max_timesteps': 2000000, 'reward_floor': -500.0, 'reward_ceiling': 0.0, }, {'env_id': 'MinecraftTrickyArena1-v0', 'trials': 2, 'max_timesteps': 300000, 'reward_floor': -1000.0, 'reward_ceiling': 2800.0, }, {'env_id': 'MinecraftEating1-v0', 'trials': 2, 'max_timesteps': 300000, 'reward_floor': -300.0, 'reward_ceiling': 300.0, }, ]) register_benchmark( id='MinecraftMedium-v0', name='MinecraftMedium', view_group="Minecraft", description='Minecraft medium benchmark', scorer=scoring.ClipTo01ThenAverage(), tasks=[ {'env_id': 'MinecraftCliffWalking1-v0', 'trials': 2, 'max_timesteps': 400000, 'reward_floor': -100.0, 'reward_ceiling': 100.0, }, {'env_id': 'MinecraftVertical-v0', 'trials': 2, 'max_timesteps': 900000, 'reward_floor': -1000.0, 'reward_ceiling': 8040.0, }, {'env_id': 'MinecraftMaze1-v0', 'trials': 2, 'max_timesteps': 600000, 'reward_floor': -1000.0, 'reward_ceiling': 1000.0, }, {'env_id': 'MinecraftMaze2-v0', 'trials': 2, 'max_timesteps': 2000000, 'reward_floor': -1000.0, 'reward_ceiling': 1000.0, }, ]) register_benchmark( id='MinecraftHard-v0', name='MinecraftHard', view_group="Minecraft", description='Minecraft hard benchmark', scorer=scoring.ClipTo01ThenAverage(), tasks=[ {'env_id': 'MinecraftObstacles-v0', 'trials': 1, 'max_timesteps': 900000, 'reward_floor': -1000.0, 'reward_ceiling': 2080.0, }, {'env_id': 'MinecraftSimpleRoomMaze-v0', 'trials': 1, 'max_timesteps': 900000, 'reward_floor': -1000.0, 'reward_ceiling': 4160.0, }, {'env_id': 'MinecraftAttic-v0', 'trials': 1, 'max_timesteps': 600000, 'reward_floor': -1000.0, 'reward_ceiling': 1040.0, }, {'env_id': 'MinecraftComplexityUsage-v0', 'trials': 1, 'max_timesteps': 600000, 'reward_floor': -1000.0, 'reward_ceiling': 1000.0, }, ]) register_benchmark( id='MinecraftVeryHard-v0', name='MinecraftVeryHard', view_group="Minecraft", description='Minecraft very hard benchmark', scorer=scoring.ClipTo01ThenAverage(), tasks=[ {'env_id': 'MinecraftMedium-v0', 'trials': 2, 'max_timesteps': 1800000, 'reward_floor': -10000.0, 'reward_ceiling': 16280.0, }, {'env_id': 'MinecraftHard-v0', 'trials': 2, 'max_timesteps': 2400000, 'reward_floor': -10000.0, 'reward_ceiling': 32640.0, }, ]) register_benchmark( id='MinecraftImpossible-v0', name='MinecraftImpossible', view_group="Minecraft", description='Minecraft impossible benchmark', scorer=scoring.ClipTo01ThenAverage(), tasks=[ {'env_id': 'MinecraftDefaultWorld1-v0', 'trials': 2, 'max_timesteps': 6000000, 'reward_floor': -1000.0, 'reward_ceiling': 1000.0, }, ]) bandit_tasks = [] for n_arms in [5, 10, 50]: for n_episodes in [10, 100, 500]: bandit_tasks.append({ 'env_id': 'BernoulliBandit-{k}.arms-{n}.episodes-v0'.format(k=n_arms, n=n_episodes), 'trials': 1, 'max_timesteps': 10 ** 9, 'reward_floor': 0, 'reward_ceiling': n_episodes, }) register_benchmark( id='BernoulliBandit-v0', name='BernoulliBandit', description='Multi-armed Bernoulli bandits', scorer=scoring.ClipTo01ThenAverage(num_episodes=1000), tasks=bandit_tasks ) tabular_mdp_tasks = [] for n_states in [10]: for n_actions in [5]: for episode_length in [10]: for n_episodes in [10, 25, 50, 75, 100]: tabular_mdp_tasks.append({ 'env_id': 'RandomTabularMDP-{s}.states-{a}.actions-{t}.timesteps-{n}.episodes-v0'.format( s=n_states, a=n_actions, t=episode_length, n=n_episodes, ), 'trials': 1, 'max_timesteps': 10 ** 9, 'reward_floor': 0, 'reward_ceiling': episode_length * n_episodes * 2, }) register_benchmark( id='RandomTabularMDP-v0', name='RandomTabularMDP', description='Random tabular MDPs', scorer=scoring.ClipTo01ThenAverage(num_episodes=1000), tasks=tabular_mdp_tasks )
[ 2, 7788, 18973, 3955, 3525, 1847, 25, 477, 743, 307, 4615, 2582, 198, 198, 6738, 11550, 13, 26968, 14306, 1330, 9689, 198, 6738, 11550, 13, 26968, 14306, 13, 2301, 33397, 1330, 18335, 62, 16684, 11, 7881, 62, 26968, 4102, 11, 20478, 11, 7881, 62, 26968, 4102, 62, 1177, 220, 1303, 17944, 973, 8057, 198, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 2953, 2743, 2167, 44, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 14957, 48123, 22784, 198, 220, 220, 220, 1438, 11639, 2953, 2743, 2167, 44, 3256, 198, 220, 220, 220, 1570, 62, 8094, 2625, 2953, 2743, 1600, 198, 220, 220, 220, 6764, 11639, 22, 35884, 1830, 11, 351, 17465, 13050, 3256, 198, 220, 220, 220, 8861, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 3856, 321, 49, 1304, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 17, 68, 23, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 49327, 13, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 718, 2388, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 31737, 448, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 17, 68, 23, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 352, 13, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 10460, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 12915, 1434, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 17, 68, 23, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 657, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 23336, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 47, 506, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 17, 68, 23, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 532, 1238, 13, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 2310, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 48, 4835, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 17, 68, 23, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 26826, 13, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 604, 2388, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 37567, 6138, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 17, 68, 23, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 8257, 13, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 1802, 830, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 14106, 19904, 9972, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 17, 68, 23, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 22613, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 513, 2388, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 33761, 198, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 2953, 2743, 1821, 44, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 14957, 48123, 22784, 198, 220, 220, 220, 1438, 11639, 2953, 2743, 1821, 44, 3256, 198, 220, 220, 220, 1570, 62, 8094, 2625, 2953, 2743, 1600, 198, 220, 220, 220, 6764, 11639, 22, 35884, 1830, 11, 351, 17465, 13050, 3256, 198, 220, 220, 220, 8861, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 3856, 321, 49, 1304, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 49327, 13, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 718, 2388, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 31737, 448, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 352, 13, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 10460, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 12915, 1434, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 657, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 23336, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 47, 506, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 532, 1238, 13, 22, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 2310, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 48, 4835, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 26826, 13, 24, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 604, 2388, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 37567, 6138, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 8257, 13, 19, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 1802, 830, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 14106, 19904, 9972, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 22613, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 513, 2388, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 33761, 198, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 2953, 2743, 18438, 6944, 1821, 44, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 14957, 48123, 22784, 198, 220, 220, 220, 1438, 11639, 2953, 2743, 18438, 6944, 1821, 44, 3256, 198, 220, 220, 220, 1570, 62, 8094, 2625, 2953, 2743, 1600, 198, 220, 220, 220, 6764, 11639, 22, 35884, 1830, 11, 351, 17465, 13050, 3256, 198, 220, 220, 220, 8861, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 20366, 16172, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 3261, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 38, 4108, 7940, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 29637, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 8576, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 9069, 660, 89, 7487, 3041, 18674, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 1679, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 33028, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 47, 270, 7207, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 532, 28978, 13, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 8576, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 29067, 24876, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 718, 5237, 13, 23, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 1802, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 38825, 271, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 1160, 2857, 13, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 23336, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 53, 36697, 2949, 35439, 74, 541, 12, 85, 19, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 493, 7, 19, 68, 22, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 1248, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 1802, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 33761, 628, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 39914, 15988, 17, 12, 85, 15, 3256, 198, 220, 220, 220, 1438, 11639, 39914, 15988, 17, 3256, 198, 220, 220, 220, 1570, 62, 8094, 2625, 15988, 1600, 198, 220, 220, 220, 6764, 11639, 26437, 6833, 1630, 18335, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 2601, 541, 2514, 486, 6423, 26287, 22784, 198, 220, 220, 220, 8861, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 43476, 47, 2305, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 4751, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 47, 437, 14452, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 8576, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 33761, 198, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 39914, 15988, 12, 85, 15, 3256, 198, 220, 220, 220, 1438, 11639, 39914, 15988, 3256, 198, 220, 220, 220, 1570, 62, 8094, 2625, 15988, 1600, 198, 220, 220, 220, 6764, 11639, 26437, 6833, 1630, 18335, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 2601, 541, 2514, 486, 6423, 26287, 22784, 198, 220, 220, 220, 8861, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 43476, 47, 2305, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 220, 657, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 5323, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 12832, 305, 13645, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 4059, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 657, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 44, 18635, 9914, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 2167, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 532, 3064, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 47, 437, 14452, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 939, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 1415, 405, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 657, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 33761, 198, 198, 21017, 5231, 519, 877, 515, 416, 256, 24275, 7923, 13, 26968, 4102, 13, 1102, 1851, 62, 26968, 4102, 13, 9078, 198, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 44, 23577, 25634, 940, 44, 12, 85, 15, 3256, 198, 220, 220, 220, 1438, 11639, 44, 23577, 25634, 940, 44, 3256, 198, 220, 220, 220, 1570, 62, 8094, 2625, 15988, 1600, 198, 220, 220, 220, 6764, 11639, 44, 23577, 25634, 18335, 351, 838, 44, 4831, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 2601, 541, 2514, 486, 6423, 26287, 22784, 198, 220, 220, 220, 8861, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 13217, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 28900, 2848, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 20490, 1868, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 20490, 1868, 15480, 929, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39950, 17, 67, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 33761, 198, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 44, 23577, 25634, 16, 44, 12, 85, 15, 3256, 198, 220, 220, 220, 1438, 11639, 44, 23577, 25634, 16, 44, 3256, 198, 220, 220, 220, 1570, 62, 8094, 2625, 15988, 1600, 198, 220, 220, 220, 6764, 11639, 44, 23577, 25634, 18335, 351, 352, 44, 4831, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 2601, 541, 2514, 486, 6423, 26287, 22784, 198, 220, 220, 220, 8861, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 31305, 7376, 316, 993, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 532, 21033, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 30123, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 28900, 2848, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 1467, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 30123, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 818, 13658, 25628, 47, 437, 14452, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 7192, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 33028, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 818, 13658, 47, 437, 14452, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 642, 13, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 8576, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 3041, 3493, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 532, 3559, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 532, 15, 13, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 10462, 10957, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 657, 13, 1954, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 5323, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39950, 17, 67, 12, 85, 16, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 513, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1802, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 220, 352, 13, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 642, 4059, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 33761, 198, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 39194, 28406, 12, 85, 15, 3256, 198, 220, 220, 220, 1438, 11639, 39194, 28406, 3256, 198, 220, 220, 220, 1570, 62, 8094, 2625, 39194, 1600, 198, 220, 220, 220, 6764, 11639, 39194, 2562, 18335, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 2601, 541, 2514, 486, 6423, 26287, 22784, 198, 220, 220, 220, 8861, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 26416, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 10053, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 34294, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 8576, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 19463, 7414, 265, 16, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 939, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 4059, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 657, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 2898, 17479, 43199, 64, 16, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 5867, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 12825, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 2579, 405, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 36, 803, 16, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 5867, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 6200, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 5867, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 33761, 198, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 39194, 31205, 12, 85, 15, 3256, 198, 220, 220, 220, 1438, 11639, 39194, 31205, 3256, 198, 220, 220, 220, 1570, 62, 8094, 2625, 39194, 1600, 198, 220, 220, 220, 6764, 11639, 39194, 7090, 18335, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 2601, 541, 2514, 486, 6423, 26287, 22784, 198, 220, 220, 220, 8861, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 2601, 733, 54, 18998, 16, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 7337, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 3064, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 1802, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 42369, 605, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 15897, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 12825, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 4019, 1821, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 44, 6201, 16, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 10053, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 12825, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 8576, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 44, 6201, 17, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 939, 2388, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 12825, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 8576, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 33761, 198, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 39194, 17309, 12, 85, 15, 3256, 198, 220, 220, 220, 1438, 11639, 39194, 17309, 3256, 198, 220, 220, 220, 1570, 62, 8094, 2625, 39194, 1600, 198, 220, 220, 220, 6764, 11639, 39194, 1327, 18335, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 2601, 541, 2514, 486, 6423, 26287, 22784, 198, 220, 220, 220, 8861, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 5944, 301, 9928, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 15897, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 12825, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 1160, 1795, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 26437, 41178, 44, 6201, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 15897, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 12825, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 604, 14198, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 8086, 291, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 10053, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 12825, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 838, 1821, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 5377, 11141, 414, 28350, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 10053, 830, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 12825, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 8576, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 33761, 198, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 39194, 16371, 17309, 12, 85, 15, 3256, 198, 220, 220, 220, 1438, 11639, 39194, 16371, 17309, 3256, 198, 220, 220, 220, 1570, 62, 8094, 2625, 39194, 1600, 198, 220, 220, 220, 6764, 11639, 39194, 845, 1327, 18335, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 2601, 541, 2514, 486, 6423, 26287, 22784, 198, 220, 220, 220, 8861, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 31205, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1248, 20483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 49388, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 1467, 21033, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 17309, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 1987, 20483, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 49388, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 40660, 1821, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 33761, 198, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 39194, 26950, 4733, 12, 85, 15, 3256, 198, 220, 220, 220, 1438, 11639, 39194, 26950, 4733, 3256, 198, 220, 220, 220, 1570, 62, 8094, 2625, 39194, 1600, 198, 220, 220, 220, 6764, 11639, 39194, 5340, 18335, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 2601, 541, 2514, 486, 6423, 26287, 22784, 198, 220, 220, 220, 8861, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 24330, 62, 312, 10354, 705, 39194, 19463, 10603, 16, 12, 85, 15, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 718, 10535, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 532, 12825, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 8576, 13, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 33761, 198, 198, 3903, 270, 62, 83, 6791, 796, 17635, 198, 1640, 299, 62, 8357, 287, 685, 20, 11, 838, 11, 2026, 5974, 198, 220, 220, 220, 329, 299, 62, 538, 8052, 287, 685, 940, 11, 1802, 11, 5323, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 4097, 270, 62, 83, 6791, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 23927, 280, 15516, 31407, 270, 12, 90, 74, 27422, 8357, 12, 90, 77, 27422, 538, 8052, 12, 85, 15, 4458, 18982, 7, 74, 28, 77, 62, 8357, 11, 299, 28, 77, 62, 538, 8052, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 838, 12429, 860, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 299, 62, 538, 8052, 11, 198, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 23927, 280, 15516, 31407, 270, 12, 85, 15, 3256, 198, 220, 220, 220, 1438, 11639, 23927, 280, 15516, 31407, 270, 3256, 198, 220, 220, 220, 6764, 11639, 29800, 12, 12026, 6206, 280, 15516, 44149, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 2601, 541, 2514, 486, 6423, 26287, 7, 22510, 62, 538, 8052, 28, 12825, 828, 198, 220, 220, 220, 8861, 28, 3903, 270, 62, 83, 6791, 198, 8, 198, 198, 8658, 934, 62, 9132, 79, 62, 83, 6791, 796, 17635, 198, 1640, 299, 62, 27219, 287, 685, 940, 5974, 198, 220, 220, 220, 329, 299, 62, 4658, 287, 685, 20, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 329, 4471, 62, 13664, 287, 685, 940, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 299, 62, 538, 8052, 287, 685, 940, 11, 1679, 11, 2026, 11, 5441, 11, 1802, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7400, 934, 62, 9132, 79, 62, 83, 6791, 13, 33295, 15090, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24330, 62, 312, 10354, 705, 29531, 33349, 934, 44, 6322, 12, 90, 82, 27422, 27219, 12, 90, 64, 27422, 4658, 12, 90, 83, 27422, 16514, 395, 25386, 12, 90, 77, 27422, 538, 8052, 12, 85, 15, 4458, 18982, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 264, 28, 77, 62, 27219, 11, 257, 28, 77, 62, 4658, 11, 256, 28, 38668, 62, 13664, 11, 299, 28, 77, 62, 538, 8052, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 28461, 874, 10354, 352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9806, 62, 16514, 395, 25386, 10354, 838, 12429, 860, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 28300, 10354, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 260, 904, 62, 344, 4386, 10354, 4471, 62, 13664, 1635, 299, 62, 538, 8052, 1635, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 198, 198, 30238, 62, 26968, 4102, 7, 198, 220, 220, 220, 4686, 11639, 29531, 33349, 934, 44, 6322, 12, 85, 15, 3256, 198, 220, 220, 220, 1438, 11639, 29531, 33349, 934, 44, 6322, 3256, 198, 220, 220, 220, 6764, 11639, 29531, 7400, 934, 337, 6322, 82, 3256, 198, 220, 220, 220, 30664, 28, 46536, 13, 2601, 541, 2514, 486, 6423, 26287, 7, 22510, 62, 538, 8052, 28, 12825, 828, 198, 220, 220, 220, 8861, 28, 8658, 934, 62, 9132, 79, 62, 83, 6791, 198, 8, 198 ]
1.764511
7,839
#!/usr/bin/env python3 # Copyright 2020 Benjamin Ehret # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # title :data/timeseries/preprocess_audioset.py # author :be # contact :behret@ethz.ch # created :31/03/2020 # version :1.0 # python_version :3.7 """ Script to structure the audioset dataset, which can then be used via :class:`data.timeseries.audioset_data.AudiosetData`. The result of this script is available at https://www.dropbox.com/s/07dfeeuf5aq4w1h/audioset_data_balanced?dl=0 If you want to recreate or modify this dataset, download the audioset data from https://research.google.com/audioset/download.html and extract the tar.gz into the following folder: ``datasets/sequential/audioset/audioset_download``. Subsequently executing this script will create a pickle file containing the 100 class subset of audioset used in this study. The dataset is stored in tensorflow files. Since we work with pytorch and there is no utility to read tensorflow files, we extract the data and safe them as numpy arrays in a pickle file. Furthermore the data are preprocessed to fit our continual learning experiments. The original dataset provides three subsets with different compositions of samples and classes. Since we only work with a subset of classes and samples, we load all available data and then filter and structure them according to our criteria. We use the same criteria as Kemker et al. Classes and samples are restricted in the following way: Classes: - no restriction according to ontology file (parsed from ontology.json) - no parent / child relationship (parsed from ontology.json) - confidence level > 70% (data was copied from website into txt file) - number of samples: we only take classes that have more samples than a certain threshold Samples: - since samples can have multiple labels, we only use samples which only belong to one of the classes we use - we exclude samples that don't have the full length of 10 seconds The chosen classes and samples are then split into train and test data and saved to a pickle file. """ import numpy as np import pickle import tensorflow as tf import os import json from warnings import warn warn('The script was created for one time usage and has to be adapted when ' + 'reusing it. All paths specified here are absolute.') # Tensorflow eager mode needs to be enabled for dataset mapping to work! tf.enable_eager_execution() # Set paths and parameters data_dir = '../../datasets/sequential/audioset/' download_dir = os.path.join(data_dir,'audioset_download') fpath_conf_data = os.path.join(data_dir, 'confidence_data.csv') fpath_label_inds = os.path.join(data_dir, 'class_labels_indices.csv') fpath_ontology = os.path.join(data_dir, 'ontology.json') target_path = os.path.join(data_dir, 'audioset_data_balanced.pickle') n_classes = 100 n_sample = 1000 test_frac = 0.20 ### Load data by serializing files and applying decode function. def decode(serialized_example): """Decode data from TFRecord files. Args: serialized_example: serialized_example as created by tf.data.TFRecordDataset Returns: (tuple): Tuple containing: - **audio** (numpy.ndarray): Array of shape (10,128) representing one sample with 10 timesteps and 128 features - **label** (numpy.ndarray): Array of shape (1,) containing the class of the corresponding sample """ sequence_features = { 'audio_embedding': tf.FixedLenSequenceFeature([], tf.string), } context_features = { 'start_time_seconds': tf.FixedLenFeature([], tf.float32), 'labels': tf.VarLenFeature(dtype=tf.int64), } context_parsed, sequence_parsed = tf.parse_single_sequence_example( serialized_example, sequence_features=sequence_features, context_features=context_features ) audio = tf.decode_raw(sequence_parsed['audio_embedding'], tf.uint8) label = tf.cast(context_parsed['labels'], tf.int64) return audio, label # Apply decode function to all dataset entries using map function. # Take files from all three data sets since we repartition anyway. fpaths = [] for path, subdirs, files in os.walk(download_dir): for name in files: if 'tfrecord' in name: fpaths.append(os.path.join(path, name)) # Create dataset and decode dataset = tf.data.TFRecordDataset(fpaths) dataset = dataset.map(decode) # Extract data to lists x = [] y = [] for d in dataset: x.append(d[0].numpy()) y.append(tf.sparse.to_dense(tf.sparse.reorder(d[1])).numpy()) ### Filter classes as described above. # Parse confidence values conf_data = {} with open(fpath_conf_data) as f: for line in f: tokens = line.split() # parse confidence c = 0 for t in tokens: if t.find('%') is not -1: c = int(t[:-1]) # parse class name n = '' for t in tokens: if t.find('%') == -1 and t != '-': if n == '': n = t else: n = n+' '+t else: break conf_data.update({n:c}) # Parse class numbers from label csv file l = -1 csv_data = {} with open(fpath_label_inds) as f: for line in f: if l == -1: l += 1 continue tokens = line.split('"') n = tokens[1] csv_data.update({n:l}) l +=1 # Parse ontology info from json file with open(fpath_ontology, 'r') as f: json_data = json.load(f) # Put all data into a single list. all_data = [] for j in json_data: if j['name'] in conf_data.keys(): class_info = { 'name' : j['name'], 'restricted' : j['restrictions'] != [], 'has_child' : j['child_ids'] != [], 'conf' : conf_data[j['name']], 'id' : csv_data[j['name']] } all_data.append(class_info) # Filter classes classes = [] for c in all_data: if not c['restricted'] and not c['has_child'] and c['conf'] >= 70: classes.append(c['id']) ### Filter the samples. # Find samples that belong to only one of the potential classes. # We also exclude some samples that don't have data for the full 10 seconds. # First discard labels that are not in the set of potential classes y_fil = [] for i in range(len(y)): y_fil.append( np.intersect1d(y[i],classes)) # Find samples with one label n_labels = np.asarray([len(y) for y in y_fil]) single_label_idx = np.where(n_labels == 1)[0] # Find samples that are shorter than 10 seconds (to be excluded) too_short = np.where(np.asarray([x.shape[0] for x in x]) != 10)[0] # Construct the set of valid samples valid_idx = np.setdiff1d(single_label_idx,too_short) # Count number of valid samples for potential classes y_single = np.asarray([y_fil[i][0] for i in valid_idx]) num_samples = [len(np.where(y_single == i)[0]) for i in classes] # Take the n classes with the highest number of samples n_sample_cutoff = np.sort(num_samples)[-n_classes] class_idx = np.where(np.asarray(num_samples) >= n_sample_cutoff)[0] our_classes = [classes[i] for i in class_idx] ### Filter the data again according the the chosen classes y_fil = [] for i in range(len(y)): y_fil.append( np.intersect1d(y[i],our_classes)) # Find samples that belong to only one of the potential classes n_labels = np.asarray([len(y) for y in y_fil]) single_label_idx = np.where(n_labels == 1)[0] # Find samples that dont are shorter than 10 seconds too_short = np.where(np.asarray([x.shape[0] for x in x]) != 10)[0] # Construct the set of valid samples valid_idx = np.setdiff1d(single_label_idx,too_short) # Restructure data and relabel the classes to be between 0 and n_classes y_data = [y_fil[i][0] for i in valid_idx] y_data = [np.where(np.asarray(our_classes) == i)[0][0] for i in y_data] y_data = np.asarray(y_data) x_data = [x[i] for i in valid_idx] x_data = np.stack(x_data) ### Split into test and train and restrict the number of samples per class np.random.seed(42) n_train = int(n_sample * (1-test_frac)) n_test = int(n_sample * test_frac) train_ind = [] test_ind = [] for i in range(n_classes): sample_idx = np.where(y_data == i)[0] n_sample_class = len(sample_idx) rand_idx = np.arange(n_sample_class) np.random.shuffle(rand_idx) train_ind.extend(sample_idx[rand_idx[0:n_train]]) test_ind.extend(sample_idx[rand_idx[n_train:n_sample]]) train_ind = np.asarray(train_ind) test_ind = np.asarray(test_ind) sub_sample_idx = np.hstack((train_ind,test_ind)) x_data_sub = x_data[sub_sample_idx,:,:] y_data_sub = y_data[sub_sample_idx] train_ind = np.arange(0,len(train_ind)) test_ind = np.arange(len(train_ind),len(train_ind)+len(test_ind)) ### Save data with open(target_path, 'wb') as f: pickle.dump([x_data_sub, y_data_sub, train_ind, test_ind], f)
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 2, 15069, 12131, 14533, 31480, 1186, 198, 2, 198, 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 198, 2, 345, 743, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 198, 2, 921, 743, 7330, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 198, 2, 42881, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 198, 2, 4091, 262, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 198, 2, 11247, 739, 262, 13789, 13, 198, 2, 198, 2, 3670, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 7890, 14, 22355, 10640, 14, 3866, 14681, 62, 3885, 4267, 316, 13, 9078, 198, 2, 1772, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 1350, 198, 2, 2800, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 20709, 1186, 31, 2788, 89, 13, 354, 198, 2, 2727, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 3132, 14, 3070, 14, 42334, 198, 2, 2196, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 16, 13, 15, 198, 2, 21015, 62, 9641, 220, 1058, 18, 13, 22, 198, 37811, 198, 7391, 284, 4645, 262, 2709, 4267, 316, 27039, 11, 543, 460, 788, 307, 973, 2884, 198, 25, 4871, 25, 63, 7890, 13, 22355, 10640, 13, 3885, 4267, 316, 62, 7890, 13, 16353, 4267, 316, 6601, 44646, 198, 198, 464, 1255, 286, 428, 4226, 318, 1695, 379, 628, 220, 220, 220, 3740, 1378, 2503, 13, 14781, 3524, 13, 785, 14, 82, 14, 2998, 7568, 1453, 3046, 20, 30188, 19, 86, 16, 71, 14, 3885, 4267, 316, 62, 7890, 62, 27753, 30, 25404, 28, 15, 198, 198, 1532, 345, 765, 284, 32049, 393, 13096, 428, 27039, 11, 4321, 262, 2709, 4267, 316, 1366, 422, 628, 220, 220, 220, 3740, 1378, 34033, 13, 13297, 13, 785, 14, 3885, 4267, 316, 14, 15002, 13, 6494, 198, 198, 392, 7925, 262, 13422, 13, 34586, 656, 262, 1708, 9483, 25, 628, 220, 220, 220, 7559, 19608, 292, 1039, 14, 3107, 1843, 14, 3885, 4267, 316, 14, 3885, 4267, 316, 62, 15002, 15506, 13, 198, 198, 7004, 20415, 23710, 428, 4226, 481, 2251, 257, 2298, 293, 2393, 7268, 262, 1802, 198, 4871, 24637, 286, 2709, 4267, 316, 973, 287, 428, 2050, 13, 220, 198, 198, 464, 27039, 318, 8574, 287, 11192, 273, 11125, 3696, 13, 4619, 356, 670, 351, 12972, 13165, 354, 290, 612, 220, 198, 271, 645, 10361, 284, 1100, 11192, 273, 11125, 3696, 11, 356, 7925, 262, 1366, 290, 3338, 606, 355, 198, 77, 32152, 26515, 287, 257, 2298, 293, 2393, 13, 198, 198, 24951, 262, 1366, 389, 662, 14681, 276, 284, 4197, 674, 37639, 4673, 10256, 13, 198, 464, 2656, 27039, 3769, 1115, 6352, 1039, 351, 1180, 33543, 286, 198, 82, 12629, 290, 6097, 13, 4619, 356, 691, 670, 351, 257, 24637, 286, 6097, 290, 8405, 11, 220, 198, 732, 3440, 477, 1695, 1366, 290, 788, 8106, 290, 4645, 606, 1864, 284, 674, 220, 198, 22213, 5142, 13, 198, 198, 1135, 779, 262, 976, 9987, 355, 24854, 6122, 2123, 435, 13, 38884, 290, 8405, 389, 10770, 287, 198, 1169, 1708, 835, 25, 198, 220, 220, 220, 38884, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 645, 17504, 1864, 284, 39585, 1435, 2393, 357, 79, 945, 276, 422, 39585, 1435, 13, 17752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 532, 645, 2560, 1220, 1200, 2776, 357, 79, 945, 276, 422, 39585, 1435, 13, 17752, 8, 198, 220, 220, 220, 220, 220, 220, 220, 532, 6628, 1241, 1875, 4317, 4, 357, 7890, 373, 18984, 422, 3052, 656, 256, 742, 2393, 8, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1271, 286, 8405, 25, 356, 691, 1011, 6097, 326, 423, 517, 8405, 621, 198, 220, 220, 220, 220, 220, 220, 220, 257, 1728, 11387, 198, 220, 220, 220, 3409, 2374, 25, 198, 220, 220, 220, 220, 220, 220, 220, 532, 1201, 8405, 460, 423, 3294, 14722, 11, 356, 691, 779, 8405, 543, 220, 198, 220, 220, 220, 220, 220, 220, 220, 691, 5594, 284, 530, 286, 262, 6097, 356, 779, 198, 220, 220, 220, 220, 220, 220, 220, 532, 356, 19607, 8405, 326, 836, 470, 423, 262, 1336, 4129, 286, 838, 4201, 198, 198, 464, 7147, 6097, 290, 8405, 389, 788, 6626, 656, 4512, 290, 1332, 1366, 290, 220, 198, 82, 9586, 284, 257, 2298, 293, 2393, 13, 198, 37811, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2298, 293, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 28686, 198, 11748, 33918, 198, 6738, 14601, 1330, 9828, 198, 198, 40539, 10786, 464, 4226, 373, 2727, 329, 530, 640, 8748, 290, 468, 284, 307, 16573, 618, 705, 1343, 198, 220, 220, 220, 220, 705, 260, 3500, 340, 13, 1439, 13532, 7368, 994, 389, 4112, 2637, 8, 198, 198, 2, 309, 22854, 11125, 11069, 4235, 2476, 284, 307, 9343, 329, 27039, 16855, 284, 670, 0, 198, 27110, 13, 21633, 62, 68, 3536, 62, 18558, 1009, 3419, 198, 198, 2, 5345, 13532, 290, 10007, 198, 7890, 62, 15908, 796, 705, 40720, 40720, 19608, 292, 1039, 14, 3107, 1843, 14, 3885, 4267, 316, 14, 6, 198, 15002, 62, 15908, 796, 28686, 13, 6978, 13, 22179, 7, 7890, 62, 15908, 4032, 3885, 4267, 316, 62, 15002, 11537, 198, 69, 6978, 62, 10414, 62, 7890, 796, 28686, 13, 6978, 13, 22179, 7, 7890, 62, 15908, 11, 705, 39745, 62, 7890, 13, 40664, 11537, 198, 69, 6978, 62, 18242, 62, 521, 82, 796, 28686, 13, 6978, 13, 22179, 7, 7890, 62, 15908, 11, 705, 4871, 62, 23912, 1424, 62, 521, 1063, 13, 40664, 11537, 198, 69, 6978, 62, 756, 1435, 796, 28686, 13, 6978, 13, 22179, 7, 7890, 62, 15908, 11, 705, 756, 1435, 13, 17752, 11537, 198, 16793, 62, 6978, 796, 28686, 13, 6978, 13, 22179, 7, 7890, 62, 15908, 11, 705, 3885, 4267, 316, 62, 7890, 62, 27753, 13, 27729, 293, 11537, 198, 198, 77, 62, 37724, 796, 1802, 198, 77, 62, 39873, 796, 8576, 198, 9288, 62, 31944, 796, 657, 13, 1238, 628, 198, 21017, 8778, 1366, 416, 11389, 2890, 3696, 290, 11524, 36899, 2163, 13, 198, 4299, 36899, 7, 46911, 1143, 62, 20688, 2599, 198, 220, 220, 220, 37227, 10707, 1098, 1366, 422, 24958, 23739, 3696, 13, 628, 220, 220, 220, 943, 14542, 25, 198, 220, 220, 220, 220, 220, 220, 220, 11389, 1143, 62, 20688, 25, 11389, 1143, 62, 20688, 355, 2727, 416, 220, 198, 220, 220, 220, 220, 220, 220, 220, 48700, 13, 7890, 13, 10234, 23739, 27354, 292, 316, 628, 220, 220, 220, 16409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 357, 83, 29291, 2599, 309, 29291, 7268, 25, 628, 220, 220, 220, 220, 220, 220, 220, 532, 12429, 24051, 1174, 357, 77, 32152, 13, 358, 18747, 2599, 15690, 286, 5485, 357, 940, 11, 12762, 8, 10200, 530, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6291, 351, 838, 4628, 395, 25386, 290, 13108, 3033, 198, 220, 220, 220, 220, 220, 220, 220, 532, 12429, 18242, 1174, 357, 77, 32152, 13, 358, 18747, 2599, 15690, 286, 5485, 357, 16, 35751, 7268, 262, 1398, 220, 198, 220, 220, 220, 220, 220, 220, 220, 286, 262, 11188, 6291, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 8379, 62, 40890, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 24051, 62, 20521, 12083, 10354, 48700, 13, 13715, 30659, 44015, 594, 38816, 26933, 4357, 48700, 13, 8841, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 4732, 62, 40890, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9688, 62, 2435, 62, 43012, 10354, 48700, 13, 13715, 30659, 38816, 26933, 4357, 48700, 13, 22468, 2624, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 23912, 1424, 10354, 48700, 13, 19852, 30659, 38816, 7, 67, 4906, 28, 27110, 13, 600, 2414, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 4732, 62, 79, 945, 276, 11, 8379, 62, 79, 945, 276, 796, 48700, 13, 29572, 62, 29762, 62, 43167, 62, 20688, 7, 198, 220, 220, 220, 220, 220, 11389, 1143, 62, 20688, 11, 198, 220, 220, 220, 220, 220, 8379, 62, 40890, 28, 43167, 62, 40890, 11, 198, 220, 220, 220, 220, 220, 4732, 62, 40890, 28, 22866, 62, 40890, 198, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 6597, 796, 48700, 13, 12501, 1098, 62, 1831, 7, 43167, 62, 79, 945, 276, 17816, 24051, 62, 20521, 12083, 6, 4357, 48700, 13, 28611, 23, 8, 198, 220, 220, 220, 6167, 796, 48700, 13, 2701, 7, 22866, 62, 79, 945, 276, 17816, 23912, 1424, 6, 4357, 48700, 13, 600, 2414, 8, 628, 220, 220, 220, 1441, 6597, 11, 6167, 198, 198, 2, 27967, 36899, 2163, 284, 477, 27039, 12784, 1262, 3975, 2163, 13, 198, 2, 7214, 3696, 422, 477, 1115, 1366, 5621, 1201, 356, 1128, 433, 653, 6949, 13, 198, 69, 6978, 82, 796, 17635, 198, 1640, 3108, 11, 850, 15908, 82, 11, 3696, 287, 28686, 13, 11152, 7, 15002, 62, 15908, 2599, 198, 220, 220, 220, 329, 1438, 287, 3696, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 705, 27110, 22105, 6, 287, 1438, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 6978, 82, 13, 33295, 7, 418, 13, 6978, 13, 22179, 7, 6978, 11, 1438, 4008, 198, 198, 2, 13610, 27039, 290, 36899, 198, 19608, 292, 316, 796, 48700, 13, 7890, 13, 10234, 23739, 27354, 292, 316, 7, 69, 6978, 82, 8, 198, 19608, 292, 316, 796, 27039, 13, 8899, 7, 12501, 1098, 8, 198, 198, 2, 29677, 1366, 284, 8341, 198, 87, 796, 17635, 198, 88, 796, 17635, 198, 1640, 288, 287, 27039, 25, 198, 220, 220, 220, 2124, 13, 33295, 7, 67, 58, 15, 4083, 77, 32152, 28955, 198, 220, 220, 220, 331, 13, 33295, 7, 27110, 13, 82, 29572, 13, 1462, 62, 67, 1072, 7, 27110, 13, 82, 29572, 13, 260, 2875, 7, 67, 58, 16, 12962, 737, 77, 32152, 28955, 628, 198, 21017, 25853, 6097, 355, 3417, 2029, 13, 220, 220, 198, 2, 2547, 325, 6628, 3815, 198, 10414, 62, 7890, 796, 23884, 198, 4480, 1280, 7, 69, 6978, 62, 10414, 62, 7890, 8, 355, 277, 25, 198, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 16326, 796, 1627, 13, 35312, 3419, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 21136, 6628, 198, 220, 220, 220, 220, 220, 220, 220, 269, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 16326, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 13, 19796, 10786, 4, 11537, 318, 407, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 796, 493, 7, 83, 58, 21912, 16, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 21136, 1398, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 10148, 198, 220, 220, 220, 220, 220, 220, 220, 329, 256, 287, 16326, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 256, 13, 19796, 10786, 4, 11537, 6624, 532, 16, 290, 256, 14512, 705, 12, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 299, 6624, 10148, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 796, 256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 796, 299, 10, 6, 705, 10, 83, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 1013, 62, 7890, 13, 19119, 15090, 77, 25, 66, 30072, 198, 220, 220, 220, 220, 198, 2, 2547, 325, 1398, 3146, 422, 6167, 269, 21370, 2393, 198, 75, 796, 532, 16, 198, 40664, 62, 7890, 796, 23884, 198, 4480, 1280, 7, 69, 6978, 62, 18242, 62, 521, 82, 8, 355, 277, 25, 198, 220, 220, 220, 329, 1627, 287, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 300, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 16326, 796, 1627, 13, 35312, 10786, 1, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 299, 796, 16326, 58, 16, 60, 198, 220, 220, 220, 220, 220, 220, 220, 269, 21370, 62, 7890, 13, 19119, 15090, 77, 25, 75, 30072, 198, 220, 220, 220, 220, 220, 220, 220, 300, 15853, 16, 198, 198, 2, 2547, 325, 39585, 1435, 7508, 422, 33918, 2393, 198, 4480, 1280, 7, 69, 6978, 62, 756, 1435, 11, 705, 81, 11537, 355, 277, 25, 198, 220, 220, 220, 33918, 62, 7890, 796, 33918, 13, 2220, 7, 69, 8, 198, 220, 220, 220, 220, 198, 2, 5930, 477, 1366, 656, 257, 2060, 1351, 13, 198, 439, 62, 7890, 796, 17635, 220, 220, 220, 220, 198, 1640, 474, 287, 33918, 62, 7890, 25, 198, 220, 220, 220, 611, 474, 17816, 3672, 20520, 287, 1013, 62, 7890, 13, 13083, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 62, 10951, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3672, 6, 1058, 474, 17816, 3672, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 49343, 6, 1058, 474, 17816, 2118, 2012, 507, 20520, 14512, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10134, 62, 9410, 6, 1058, 474, 17816, 9410, 62, 2340, 20520, 14512, 685, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10414, 6, 1058, 1013, 62, 7890, 58, 73, 17816, 3672, 20520, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 6, 1058, 269, 21370, 62, 7890, 58, 73, 17816, 3672, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 477, 62, 7890, 13, 33295, 7, 4871, 62, 10951, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 2, 25853, 6097, 198, 37724, 796, 17635, 198, 1640, 269, 287, 477, 62, 7890, 25, 198, 220, 220, 220, 611, 407, 269, 17816, 49343, 20520, 290, 407, 269, 17816, 10134, 62, 9410, 20520, 290, 269, 17816, 10414, 20520, 18189, 4317, 25, 198, 220, 220, 220, 220, 220, 220, 220, 6097, 13, 33295, 7, 66, 17816, 312, 6, 12962, 628, 198, 21017, 25853, 262, 8405, 13, 198, 2, 9938, 8405, 326, 5594, 284, 691, 530, 286, 262, 2785, 6097, 13, 198, 2, 775, 635, 19607, 617, 8405, 326, 836, 470, 423, 1366, 329, 262, 1336, 838, 4201, 13, 198, 2, 3274, 27537, 14722, 326, 389, 407, 287, 262, 900, 286, 2785, 6097, 198, 88, 62, 10379, 796, 17635, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 88, 8, 2599, 198, 220, 220, 220, 331, 62, 10379, 13, 33295, 7, 45941, 13, 3849, 8831, 16, 67, 7, 88, 58, 72, 4357, 37724, 4008, 198, 198, 2, 9938, 8405, 351, 530, 6167, 220, 220, 220, 220, 198, 77, 62, 23912, 1424, 796, 45941, 13, 292, 18747, 26933, 11925, 7, 88, 8, 329, 331, 287, 331, 62, 10379, 12962, 198, 29762, 62, 18242, 62, 312, 87, 796, 45941, 13, 3003, 7, 77, 62, 23912, 1424, 6624, 352, 38381, 15, 60, 198, 198, 2, 9938, 8405, 326, 389, 12238, 621, 838, 4201, 357, 1462, 307, 15009, 8, 198, 18820, 62, 19509, 796, 45941, 13, 3003, 7, 37659, 13, 292, 18747, 26933, 87, 13, 43358, 58, 15, 60, 329, 2124, 287, 2124, 12962, 14512, 838, 38381, 15, 60, 198, 198, 2, 28407, 262, 900, 286, 4938, 8405, 198, 12102, 62, 312, 87, 796, 45941, 13, 2617, 26069, 16, 67, 7, 29762, 62, 18242, 62, 312, 87, 11, 18820, 62, 19509, 8, 198, 198, 2, 2764, 1271, 286, 4938, 8405, 329, 2785, 6097, 198, 88, 62, 29762, 796, 45941, 13, 292, 18747, 26933, 88, 62, 10379, 58, 72, 7131, 15, 60, 329, 1312, 287, 4938, 62, 312, 87, 12962, 198, 22510, 62, 82, 12629, 796, 685, 11925, 7, 37659, 13, 3003, 7, 88, 62, 29762, 6624, 1312, 38381, 15, 12962, 220, 329, 1312, 287, 6097, 60, 198, 198, 2, 7214, 262, 299, 6097, 351, 262, 4511, 1271, 286, 8405, 198, 77, 62, 39873, 62, 8968, 2364, 796, 45941, 13, 30619, 7, 22510, 62, 82, 12629, 38381, 12, 77, 62, 37724, 60, 198, 4871, 62, 312, 87, 796, 45941, 13, 3003, 7, 37659, 13, 292, 18747, 7, 22510, 62, 82, 12629, 8, 18189, 299, 62, 39873, 62, 8968, 2364, 38381, 15, 60, 198, 454, 62, 37724, 796, 685, 37724, 58, 72, 60, 329, 1312, 287, 1398, 62, 312, 87, 60, 628, 198, 21017, 25853, 262, 1366, 757, 1864, 262, 262, 7147, 6097, 198, 88, 62, 10379, 796, 17635, 198, 1640, 1312, 287, 2837, 7, 11925, 7, 88, 8, 2599, 198, 220, 220, 220, 331, 62, 10379, 13, 33295, 7, 45941, 13, 3849, 8831, 16, 67, 7, 88, 58, 72, 4357, 454, 62, 37724, 4008, 198, 198, 2, 9938, 8405, 326, 5594, 284, 691, 530, 286, 262, 2785, 6097, 198, 77, 62, 23912, 1424, 796, 45941, 13, 292, 18747, 26933, 11925, 7, 88, 8, 329, 331, 287, 331, 62, 10379, 12962, 198, 29762, 62, 18242, 62, 312, 87, 796, 45941, 13, 3003, 7, 77, 62, 23912, 1424, 6624, 352, 38381, 15, 60, 198, 198, 2, 9938, 8405, 326, 17666, 389, 12238, 621, 838, 4201, 220, 198, 18820, 62, 19509, 796, 45941, 13, 3003, 7, 37659, 13, 292, 18747, 26933, 87, 13, 43358, 58, 15, 60, 329, 2124, 287, 2124, 12962, 14512, 838, 38381, 15, 60, 198, 198, 2, 28407, 262, 900, 286, 4938, 8405, 198, 12102, 62, 312, 87, 796, 45941, 13, 2617, 26069, 16, 67, 7, 29762, 62, 18242, 62, 312, 87, 11, 18820, 62, 19509, 8, 198, 198, 2, 8324, 5620, 1366, 290, 823, 9608, 262, 6097, 284, 307, 1022, 657, 290, 299, 62, 37724, 198, 88, 62, 7890, 796, 685, 88, 62, 10379, 58, 72, 7131, 15, 60, 329, 1312, 287, 4938, 62, 312, 87, 60, 198, 88, 62, 7890, 796, 685, 37659, 13, 3003, 7, 37659, 13, 292, 18747, 7, 454, 62, 37724, 8, 6624, 1312, 38381, 15, 7131, 15, 60, 329, 1312, 287, 331, 62, 7890, 60, 198, 88, 62, 7890, 796, 45941, 13, 292, 18747, 7, 88, 62, 7890, 8, 198, 198, 87, 62, 7890, 796, 685, 87, 58, 72, 60, 329, 1312, 287, 4938, 62, 312, 87, 60, 198, 87, 62, 7890, 796, 45941, 13, 25558, 7, 87, 62, 7890, 8, 628, 198, 21017, 27758, 656, 1332, 290, 4512, 290, 4239, 262, 1271, 286, 8405, 583, 1398, 198, 37659, 13, 25120, 13, 28826, 7, 3682, 8, 198, 77, 62, 27432, 796, 493, 7, 77, 62, 39873, 1635, 357, 16, 12, 9288, 62, 31944, 4008, 198, 77, 62, 9288, 796, 493, 7, 77, 62, 39873, 1635, 1332, 62, 31944, 8, 198, 198, 27432, 62, 521, 796, 17635, 198, 9288, 62, 521, 796, 17635, 198, 198, 1640, 1312, 287, 2837, 7, 77, 62, 37724, 2599, 198, 220, 220, 220, 6291, 62, 312, 87, 796, 45941, 13, 3003, 7, 88, 62, 7890, 6624, 1312, 38381, 15, 60, 198, 220, 220, 220, 299, 62, 39873, 62, 4871, 796, 18896, 7, 39873, 62, 312, 87, 8, 198, 220, 220, 220, 43720, 62, 312, 87, 796, 45941, 13, 283, 858, 7, 77, 62, 39873, 62, 4871, 8, 198, 220, 220, 220, 45941, 13, 25120, 13, 1477, 18137, 7, 25192, 62, 312, 87, 8, 198, 220, 220, 220, 4512, 62, 521, 13, 2302, 437, 7, 39873, 62, 312, 87, 58, 25192, 62, 312, 87, 58, 15, 25, 77, 62, 27432, 11907, 8, 198, 220, 220, 220, 1332, 62, 521, 13, 2302, 437, 7, 39873, 62, 312, 87, 58, 25192, 62, 312, 87, 58, 77, 62, 27432, 25, 77, 62, 39873, 11907, 8, 198, 198, 27432, 62, 521, 796, 45941, 13, 292, 18747, 7, 27432, 62, 521, 8, 198, 9288, 62, 521, 796, 45941, 13, 292, 18747, 7, 9288, 62, 521, 8, 198, 198, 7266, 62, 39873, 62, 312, 87, 796, 45941, 13, 71, 25558, 19510, 27432, 62, 521, 11, 9288, 62, 521, 4008, 198, 87, 62, 7890, 62, 7266, 796, 2124, 62, 7890, 58, 7266, 62, 39873, 62, 312, 87, 11, 45299, 47715, 198, 88, 62, 7890, 62, 7266, 796, 331, 62, 7890, 58, 7266, 62, 39873, 62, 312, 87, 60, 198, 27432, 62, 521, 796, 45941, 13, 283, 858, 7, 15, 11, 11925, 7, 27432, 62, 521, 4008, 198, 9288, 62, 521, 796, 45941, 13, 283, 858, 7, 11925, 7, 27432, 62, 521, 828, 11925, 7, 27432, 62, 521, 47762, 11925, 7, 9288, 62, 521, 4008, 628, 198, 21017, 12793, 1366, 198, 4480, 1280, 7, 16793, 62, 6978, 11, 705, 39346, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2298, 293, 13, 39455, 26933, 87, 62, 7890, 62, 7266, 11, 331, 62, 7890, 62, 7266, 11, 4512, 62, 521, 11, 1332, 62, 521, 4357, 277, 8, 198 ]
2.600327
3,668
from django.conf import settings from django.core import serializers from django.utils import timezone import requests from Posts.commentModel import Comments #from Posts.commentView import add_Comment from rest_framework import status from rest_framework.decorators import api_view, authentication_classes, permission_classes from rest_framework.response import Response from django.shortcuts import HttpResponse, render from requests import get from .serializers import CommentSerializer, PostSerializer from Author.serializers import LikeSerializer from Author.models import Like from Author.views import updateForeignAuthors, GetForeignAuthors from .models import Post, Author from .form import PostForm from Posts.commentForm import CommentForm import json import uuid import re import base64 from django.db.models import Q import django.core from permissions import CustomAuthentication, AccessPermission from django.core.paginator import Paginator import traceback
[ 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 6738, 42625, 14208, 13, 7295, 1330, 11389, 11341, 198, 6738, 42625, 14208, 13, 26791, 1330, 640, 11340, 198, 11748, 7007, 198, 6738, 12043, 13, 23893, 17633, 1330, 19502, 198, 2, 6738, 12043, 13, 23893, 7680, 1330, 751, 62, 21357, 198, 6738, 1334, 62, 30604, 1330, 3722, 198, 6738, 1334, 62, 30604, 13, 12501, 273, 2024, 1330, 40391, 62, 1177, 11, 18239, 62, 37724, 11, 7170, 62, 37724, 198, 6738, 1334, 62, 30604, 13, 26209, 1330, 18261, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 367, 29281, 31077, 11, 8543, 198, 6738, 7007, 1330, 651, 198, 6738, 764, 46911, 11341, 1330, 18957, 32634, 7509, 11, 2947, 32634, 7509, 198, 6738, 6434, 13, 46911, 11341, 1330, 4525, 32634, 7509, 198, 6738, 6434, 13, 27530, 1330, 4525, 198, 6738, 6434, 13, 33571, 1330, 4296, 33616, 30515, 669, 11, 3497, 33616, 30515, 669, 198, 6738, 764, 27530, 1330, 2947, 11, 6434, 198, 6738, 764, 687, 1330, 2947, 8479, 198, 6738, 12043, 13, 23893, 8479, 1330, 18957, 8479, 198, 11748, 33918, 198, 11748, 334, 27112, 198, 11748, 302, 198, 11748, 2779, 2414, 198, 6738, 42625, 14208, 13, 9945, 13, 27530, 1330, 1195, 198, 11748, 42625, 14208, 13, 7295, 198, 6738, 21627, 1330, 8562, 47649, 3299, 11, 8798, 5990, 3411, 198, 6738, 42625, 14208, 13, 7295, 13, 79, 363, 20900, 1330, 31525, 20900, 198, 11748, 12854, 1891, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 628 ]
4.061728
243
import pytest import sys, os import xarray as xr import numpy as np sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import process from process._common import ProcessArgumentInvalid, ProcessArgumentRequired ################################### # tests: ################################### def test_with_xarray_out_bounds(execute_array_element_process, generate_data): """ Test array_element process with xarray.DataArrays with out of bounds index """ with pytest.raises(ProcessArgumentInvalid) as ex: result = execute_array_element_process(index=5) assert ex.value.args[0] == "The argument 'index' in process 'array_element' is invalid: Index out of bounds."
[ 11748, 12972, 9288, 198, 11748, 25064, 11, 28686, 198, 11748, 2124, 18747, 355, 2124, 81, 198, 11748, 299, 32152, 355, 45941, 198, 198, 17597, 13, 6978, 13, 33295, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 35514, 198, 11748, 1429, 198, 6738, 1429, 13557, 11321, 1330, 10854, 28100, 1713, 44651, 11, 10854, 28100, 1713, 37374, 628, 628, 198, 29113, 21017, 198, 2, 5254, 25, 198, 29113, 21017, 628, 198, 198, 4299, 1332, 62, 4480, 62, 87, 18747, 62, 448, 62, 65, 3733, 7, 41049, 62, 18747, 62, 30854, 62, 14681, 11, 7716, 62, 7890, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 6208, 7177, 62, 30854, 1429, 351, 2124, 18747, 13, 6601, 3163, 20477, 351, 503, 286, 22303, 6376, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 18709, 28100, 1713, 44651, 8, 355, 409, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 12260, 62, 18747, 62, 30854, 62, 14681, 7, 9630, 28, 20, 8, 198, 220, 220, 220, 6818, 409, 13, 8367, 13, 22046, 58, 15, 60, 6624, 366, 464, 4578, 705, 9630, 6, 287, 1429, 705, 18747, 62, 30854, 6, 318, 12515, 25, 12901, 503, 286, 22303, 526, 628 ]
3.235556
225
#!/usr/bin/env python # # Copyright 2016 Google Inc. # # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # Generate Android.bp for Skia from GN configuration. import json import os import pprint import string import subprocess import tempfile import gn_to_bp_utils # First we start off with a template for Android.bp, # with holes for source lists and include directories. bp = string.Template('''// This file is autogenerated by gn_to_bp.py. cc_library_static { name: "libskia", cflags: [ $cflags ], cppflags:[ $cflags_cc ], export_include_dirs: [ $export_includes ], local_include_dirs: [ $local_includes ], srcs: [ $srcs ], arch: { arm: { srcs: [ $arm_srcs ], neon: { srcs: [ $arm_neon_srcs ], }, }, arm64: { srcs: [ $arm64_srcs ], }, mips: { srcs: [ $none_srcs ], }, mips64: { srcs: [ $none_srcs ], }, x86: { srcs: [ $x86_srcs ], cflags: [ // Clang seems to think new/malloc will only be 4-byte aligned // on x86 Android. We're pretty sure it's actually 8-byte // alignment. tests/OverAlignedTest.cpp has more information, // and should fail if we're wrong. "-Wno-over-aligned" ], }, x86_64: { srcs: [ $x86_srcs ], }, }, defaults: ["skia_deps", "skia_pgo", ], } // Build libskia with PGO by default. // Location of PGO profile data is defined in build/soong/cc/pgo.go // and is separate from skia. // To turn it off, set ANDROID_PGO_NO_PROFILE_USE environment variable // or set enable_profile_use property to false. cc_defaults { name: "skia_pgo", pgo: { instrumentation: true, profile_file: "hwui/hwui.profdata", benchmarks: ["hwui", "skia"], enable_profile_use: true, }, } // "defaults" property to disable profile use for Skia tools and benchmarks. cc_defaults { name: "skia_pgo_no_profile_use", defaults: [ "skia_pgo", ], pgo: { enable_profile_use: false, }, } cc_defaults { name: "skia_deps", shared_libs: [ "libEGL", "libGLESv2", "libdng_sdk", "libexpat", "libft2", "libheif", "libicui18n", "libicuuc", "libjpeg", "liblog", "libpiex", "libpng", "libvulkan", "libz", "libcutils", "libnativewindow", ], static_libs: [ "libarect", "libsfntly", "libwebp-decode", "libwebp-encode", ], group_static_libs: true, } cc_defaults { name: "skia_tool_deps", defaults: [ "skia_deps", "skia_pgo_no_profile_use" ], static_libs: [ "libjsoncpp", "libskia", ], cflags: [ "-Wno-unused-parameter", "-Wno-unused-variable", ], } cc_test { name: "skia_dm", defaults: [ "skia_tool_deps" ], local_include_dirs: [ $dm_includes ], srcs: [ $dm_srcs ], shared_libs: [ "libbinder", "libutils", ], } cc_test { name: "skia_nanobench", defaults: [ "skia_tool_deps" ], local_include_dirs: [ $nanobench_includes ], srcs: [ $nanobench_srcs ], data: [ "resources/*", ], }''') # We'll run GN to get the main source lists and include directories for Skia. gn_args = { 'is_official_build': 'true', 'skia_enable_tools': 'true', 'skia_enable_skottie': 'false', # requires rapidjson third-party 'skia_use_libheif': 'true', 'skia_use_vulkan': 'true', 'target_cpu': '"none"', 'target_os': '"android"', 'skia_vulkan_header': '"Skia_Vulkan_Android.h"', } js = gn_to_bp_utils.GenerateJSONFromGN(gn_args) srcs = strip_slashes(js['targets']['//:skia']['sources']) cflags = strip_slashes(js['targets']['//:skia']['cflags']) cflags_cc = strip_slashes(js['targets']['//:skia']['cflags_cc']) local_includes = strip_slashes(js['targets']['//:skia']['include_dirs']) export_includes = strip_slashes(js['targets']['//:public']['include_dirs']) defines = [str(d) for d in js['targets']['//:skia']['defines']] dm_srcs = strip_slashes(js['targets']['//:dm']['sources']) dm_includes = strip_slashes(js['targets']['//:dm']['include_dirs']) nanobench_target = js['targets']['//:nanobench'] nanobench_srcs = strip_slashes(nanobench_target['sources']) nanobench_includes = strip_slashes(nanobench_target['include_dirs']) gn_to_bp_utils.GrabDependentValues(js, '//:skia', 'sources', srcs, None) gn_to_bp_utils.GrabDependentValues(js, '//:dm', 'sources', dm_srcs, 'skia') gn_to_bp_utils.GrabDependentValues(js, '//:nanobench', 'sources', nanobench_srcs, 'skia') # skcms is a little special, kind of a second-party library. srcs .add("third_party/skcms/skcms.c") local_includes.add("third_party/skcms") dm_includes .add("third_party/skcms") # No need to list headers. srcs = {s for s in srcs if not s.endswith('.h')} dm_srcs = {s for s in dm_srcs if not s.endswith('.h')} nanobench_srcs = {s for s in nanobench_srcs if not s.endswith('.h')} cflags = gn_to_bp_utils.CleanupCFlags(cflags) cflags_cc = gn_to_bp_utils.CleanupCCFlags(cflags_cc) # We need to add the include path to the vulkan defines and header file set in # then skia_vulkan_header gn arg that is used for framework builds. local_includes.add("platform_tools/android/vulkan") export_includes.add("platform_tools/android/vulkan") here = os.path.dirname(__file__) defs = gn_to_bp_utils.GetArchSources(os.path.join(here, 'opts.gni')) gn_to_bp_utils.WriteUserConfig('include/config/SkUserConfig.h', defines) # Turn a list of strings into the style bpfmt outputs. # OK! We have everything to fill in Android.bp... with open('Android.bp', 'w') as f: print >>f, bp.substitute({ 'export_includes': bpfmt(8, export_includes), 'local_includes': bpfmt(8, local_includes), 'srcs': bpfmt(8, srcs), 'cflags': bpfmt(8, cflags, False), 'cflags_cc': bpfmt(8, cflags_cc), 'arm_srcs': bpfmt(16, defs['armv7']), 'arm_neon_srcs': bpfmt(20, defs['neon']), 'arm64_srcs': bpfmt(16, defs['arm64'] + defs['crc32']), 'none_srcs': bpfmt(16, defs['none']), 'x86_srcs': bpfmt(16, defs['sse2'] + defs['ssse3'] + defs['sse41'] + defs['sse42'] + defs['avx' ] + defs['hsw' ]), 'dm_includes' : bpfmt(8, dm_includes), 'dm_srcs' : bpfmt(8, dm_srcs), 'nanobench_includes' : bpfmt(8, nanobench_includes), 'nanobench_srcs' : bpfmt(8, nanobench_srcs), })
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 198, 2, 15069, 1584, 3012, 3457, 13, 198, 2, 198, 2, 5765, 286, 428, 2723, 2438, 318, 21825, 416, 257, 347, 10305, 12, 7635, 5964, 326, 460, 307, 198, 2, 1043, 287, 262, 38559, 24290, 2393, 13, 198, 198, 2, 2980, 378, 5565, 13, 46583, 329, 3661, 544, 422, 15484, 8398, 13, 198, 198, 11748, 33918, 198, 11748, 28686, 198, 11748, 279, 4798, 198, 11748, 4731, 198, 11748, 850, 14681, 198, 11748, 20218, 7753, 198, 198, 11748, 19967, 62, 1462, 62, 46583, 62, 26791, 198, 198, 2, 3274, 356, 923, 572, 351, 257, 11055, 329, 5565, 13, 46583, 11, 198, 2, 351, 10421, 329, 2723, 8341, 290, 2291, 29196, 13, 198, 46583, 796, 4731, 13, 30800, 7, 7061, 6, 1003, 770, 2393, 318, 1960, 519, 877, 515, 416, 19967, 62, 1462, 62, 46583, 13, 9078, 13, 198, 198, 535, 62, 32016, 62, 12708, 1391, 198, 220, 220, 220, 1438, 25, 366, 8019, 8135, 544, 1600, 198, 220, 220, 220, 269, 33152, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 720, 66, 33152, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 269, 381, 33152, 33250, 198, 220, 220, 220, 220, 220, 220, 220, 720, 66, 33152, 62, 535, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 10784, 62, 17256, 62, 15908, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 720, 39344, 62, 42813, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 1957, 62, 17256, 62, 15908, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 720, 12001, 62, 42813, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 12351, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 720, 10677, 82, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 3934, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 3211, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 1670, 62, 10677, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 25988, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 1670, 62, 710, 261, 62, 10677, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 3211, 2414, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 1670, 2414, 62, 10677, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 285, 2419, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 23108, 62, 10677, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 285, 2419, 2414, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 23108, 62, 10677, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 4521, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 87, 4521, 62, 10677, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 33152, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3373, 1012, 648, 2331, 284, 892, 649, 14, 76, 32332, 481, 691, 307, 604, 12, 26327, 19874, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3373, 319, 2124, 4521, 5565, 13, 775, 821, 2495, 1654, 340, 338, 1682, 807, 12, 26327, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3373, 19114, 13, 5254, 14, 5886, 2348, 3916, 14402, 13, 20322, 468, 517, 1321, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3373, 290, 815, 2038, 611, 356, 821, 2642, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 27444, 54, 3919, 12, 2502, 12, 41634, 1, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 628, 220, 220, 220, 220, 220, 220, 220, 2124, 4521, 62, 2414, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 12351, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 720, 87, 4521, 62, 10677, 82, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 8964, 628, 220, 220, 220, 26235, 25, 14631, 8135, 544, 62, 10378, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 8135, 544, 62, 79, 2188, 1600, 198, 220, 220, 220, 16589, 198, 92, 198, 198, 1003, 10934, 9195, 8135, 544, 351, 350, 11230, 416, 4277, 13, 198, 1003, 13397, 286, 350, 11230, 7034, 1366, 318, 5447, 287, 1382, 14, 568, 506, 14, 535, 14, 79, 2188, 13, 2188, 198, 1003, 290, 318, 4553, 422, 1341, 544, 13, 198, 1003, 1675, 1210, 340, 572, 11, 900, 5357, 13252, 2389, 62, 6968, 46, 62, 15285, 62, 31190, 25664, 62, 19108, 2858, 7885, 198, 1003, 393, 900, 7139, 62, 13317, 62, 1904, 3119, 284, 3991, 13, 198, 535, 62, 12286, 82, 1391, 198, 220, 220, 220, 1438, 25, 366, 8135, 544, 62, 79, 2188, 1600, 198, 220, 220, 220, 279, 2188, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 8875, 341, 25, 2081, 11, 198, 220, 220, 220, 220, 220, 220, 220, 7034, 62, 7753, 25, 366, 36599, 9019, 14, 36599, 9019, 13, 5577, 7890, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 31747, 25, 14631, 36599, 9019, 1600, 366, 8135, 544, 33116, 198, 220, 220, 220, 220, 220, 220, 220, 7139, 62, 13317, 62, 1904, 25, 2081, 11, 198, 220, 220, 220, 8964, 198, 92, 198, 198, 1003, 366, 12286, 82, 1, 3119, 284, 15560, 7034, 779, 329, 3661, 544, 4899, 290, 31747, 13, 198, 535, 62, 12286, 82, 1391, 198, 220, 220, 220, 1438, 25, 366, 8135, 544, 62, 79, 2188, 62, 3919, 62, 13317, 62, 1904, 1600, 198, 220, 220, 220, 26235, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8135, 544, 62, 79, 2188, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 279, 2188, 25, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 7139, 62, 13317, 62, 1904, 25, 3991, 11, 198, 220, 220, 220, 8964, 198, 92, 198, 198, 535, 62, 12286, 82, 1391, 198, 220, 220, 220, 1438, 25, 366, 8135, 544, 62, 10378, 82, 1600, 198, 220, 220, 220, 4888, 62, 8019, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 7156, 43, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 8763, 1546, 85, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 67, 782, 62, 21282, 74, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 1069, 8071, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 701, 17, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 258, 361, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 291, 9019, 1507, 77, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 291, 84, 1229, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 73, 22071, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 6404, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 21749, 87, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 11134, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 85, 31263, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 89, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 8968, 4487, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 30191, 17497, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 9037, 62, 8019, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 533, 310, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 28202, 429, 306, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 12384, 79, 12, 12501, 1098, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 12384, 79, 12, 268, 8189, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 1448, 62, 12708, 62, 8019, 82, 25, 2081, 11, 198, 92, 198, 198, 535, 62, 12286, 82, 1391, 198, 220, 220, 220, 1438, 25, 366, 8135, 544, 62, 25981, 62, 10378, 82, 1600, 198, 220, 220, 220, 26235, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8135, 544, 62, 10378, 82, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8135, 544, 62, 79, 2188, 62, 3919, 62, 13317, 62, 1904, 1, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 9037, 62, 8019, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 17752, 20322, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 8135, 544, 1600, 198, 220, 220, 220, 16589, 198, 220, 220, 220, 269, 33152, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 54, 3919, 12, 403, 1484, 12, 17143, 2357, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 27444, 54, 3919, 12, 403, 1484, 12, 45286, 1600, 198, 220, 220, 220, 16589, 198, 92, 198, 198, 535, 62, 9288, 1391, 198, 220, 220, 220, 1438, 25, 366, 8135, 544, 62, 36020, 1600, 628, 220, 220, 220, 26235, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8135, 544, 62, 25981, 62, 10378, 82, 1, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 1957, 62, 17256, 62, 15908, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 720, 36020, 62, 42813, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 12351, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 720, 36020, 62, 10677, 82, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 4888, 62, 8019, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 65, 5540, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8019, 26791, 1600, 198, 220, 220, 220, 16589, 198, 92, 198, 198, 535, 62, 9288, 1391, 198, 220, 220, 220, 1438, 25, 366, 8135, 544, 62, 12647, 672, 24421, 1600, 628, 220, 220, 220, 26235, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 8135, 544, 62, 25981, 62, 10378, 82, 1, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 1957, 62, 17256, 62, 15908, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 720, 12647, 672, 24421, 62, 42813, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 12351, 82, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 720, 12647, 672, 24421, 62, 10677, 82, 198, 220, 220, 220, 16589, 628, 220, 220, 220, 1366, 25, 685, 198, 220, 220, 220, 220, 220, 220, 220, 366, 37540, 15211, 1600, 198, 220, 220, 220, 16589, 198, 92, 7061, 11537, 198, 198, 2, 775, 1183, 1057, 15484, 284, 651, 262, 1388, 2723, 8341, 290, 2291, 29196, 329, 3661, 544, 13, 198, 4593, 62, 22046, 796, 1391, 198, 220, 705, 271, 62, 16841, 62, 11249, 10354, 220, 220, 705, 7942, 3256, 198, 220, 705, 8135, 544, 62, 21633, 62, 31391, 10354, 220, 220, 705, 7942, 3256, 198, 220, 705, 8135, 544, 62, 21633, 62, 8135, 1252, 494, 10354, 705, 9562, 3256, 1303, 4433, 5801, 17752, 2368, 12, 10608, 198, 220, 705, 8135, 544, 62, 1904, 62, 8019, 258, 361, 10354, 220, 220, 220, 705, 7942, 3256, 198, 220, 705, 8135, 544, 62, 1904, 62, 85, 31263, 10354, 220, 220, 220, 220, 705, 7942, 3256, 198, 220, 705, 16793, 62, 36166, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1, 23108, 1, 3256, 198, 220, 705, 16793, 62, 418, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1, 19411, 1, 3256, 198, 220, 705, 8135, 544, 62, 85, 31263, 62, 25677, 10354, 220, 705, 1, 15739, 544, 62, 53, 31263, 62, 25934, 13, 71, 1, 3256, 198, 92, 198, 198, 8457, 796, 19967, 62, 1462, 62, 46583, 62, 26791, 13, 8645, 378, 40386, 4863, 16630, 7, 4593, 62, 22046, 8, 198, 198, 10677, 82, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 10283, 62, 6649, 7465, 7, 8457, 17816, 83, 853, 1039, 6, 7131, 6, 1003, 25, 8135, 544, 6, 7131, 6, 82, 2203, 6, 12962, 198, 66, 33152, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 10283, 62, 6649, 7465, 7, 8457, 17816, 83, 853, 1039, 6, 7131, 6, 1003, 25, 8135, 544, 6, 7131, 6, 66, 33152, 6, 12962, 198, 66, 33152, 62, 535, 220, 220, 220, 220, 220, 220, 796, 10283, 62, 6649, 7465, 7, 8457, 17816, 83, 853, 1039, 6, 7131, 6, 1003, 25, 8135, 544, 6, 7131, 6, 66, 33152, 62, 535, 6, 12962, 198, 12001, 62, 42813, 220, 796, 10283, 62, 6649, 7465, 7, 8457, 17816, 83, 853, 1039, 6, 7131, 6, 1003, 25, 8135, 544, 6, 7131, 6, 17256, 62, 15908, 82, 6, 12962, 198, 39344, 62, 42813, 796, 10283, 62, 6649, 7465, 7, 8457, 17816, 83, 853, 1039, 6, 7131, 6, 1003, 25, 11377, 6, 7131, 6, 17256, 62, 15908, 82, 6, 12962, 198, 4299, 1127, 220, 220, 220, 220, 220, 796, 685, 2536, 7, 67, 8, 329, 288, 287, 44804, 17816, 83, 853, 1039, 6, 7131, 6, 1003, 25, 8135, 544, 6, 7131, 6, 4299, 1127, 6, 11907, 198, 198, 36020, 62, 10677, 82, 220, 220, 220, 220, 220, 220, 220, 220, 796, 10283, 62, 6649, 7465, 7, 8457, 17816, 83, 853, 1039, 6, 7131, 6, 1003, 25, 36020, 6, 7131, 6, 82, 2203, 6, 12962, 198, 36020, 62, 42813, 220, 220, 220, 220, 796, 10283, 62, 6649, 7465, 7, 8457, 17816, 83, 853, 1039, 6, 7131, 6, 1003, 25, 36020, 6, 7131, 6, 17256, 62, 15908, 82, 6, 12962, 198, 198, 12647, 672, 24421, 62, 16793, 796, 44804, 17816, 83, 853, 1039, 6, 7131, 6, 1003, 25, 12647, 672, 24421, 20520, 198, 12647, 672, 24421, 62, 10677, 82, 220, 220, 220, 220, 796, 10283, 62, 6649, 7465, 7, 12647, 672, 24421, 62, 16793, 17816, 82, 2203, 6, 12962, 198, 12647, 672, 24421, 62, 42813, 796, 10283, 62, 6649, 7465, 7, 12647, 672, 24421, 62, 16793, 17816, 17256, 62, 15908, 82, 6, 12962, 198, 198, 4593, 62, 1462, 62, 46583, 62, 26791, 13, 48400, 35, 8682, 40161, 7, 8457, 11, 705, 1003, 25, 8135, 544, 3256, 705, 82, 2203, 3256, 12351, 82, 11, 6045, 8, 198, 4593, 62, 1462, 62, 46583, 62, 26791, 13, 48400, 35, 8682, 40161, 7, 8457, 11, 705, 1003, 25, 36020, 3256, 705, 82, 2203, 3256, 288, 76, 62, 10677, 82, 11, 705, 8135, 544, 11537, 198, 4593, 62, 1462, 62, 46583, 62, 26791, 13, 48400, 35, 8682, 40161, 7, 8457, 11, 705, 1003, 25, 12647, 672, 24421, 3256, 705, 82, 2203, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15709, 672, 24421, 62, 10677, 82, 11, 705, 8135, 544, 11537, 198, 198, 2, 1341, 46406, 318, 257, 1310, 2041, 11, 1611, 286, 257, 1218, 12, 10608, 5888, 13, 198, 10677, 82, 220, 220, 220, 220, 220, 220, 220, 220, 220, 764, 2860, 7203, 17089, 62, 10608, 14, 8135, 46406, 14, 8135, 46406, 13, 66, 4943, 198, 12001, 62, 42813, 13, 2860, 7203, 17089, 62, 10608, 14, 8135, 46406, 4943, 198, 36020, 62, 42813, 220, 220, 764, 2860, 7203, 17089, 62, 10608, 14, 8135, 46406, 4943, 198, 198, 2, 1400, 761, 284, 1351, 24697, 13, 198, 10677, 82, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 796, 1391, 82, 329, 264, 287, 12351, 82, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 264, 13, 437, 2032, 342, 7, 4458, 71, 11537, 92, 198, 36020, 62, 10677, 82, 220, 220, 220, 220, 220, 220, 220, 220, 796, 1391, 82, 329, 264, 287, 288, 76, 62, 10677, 82, 220, 220, 220, 220, 220, 220, 220, 611, 407, 264, 13, 437, 2032, 342, 7, 4458, 71, 11537, 92, 198, 12647, 672, 24421, 62, 10677, 82, 220, 796, 1391, 82, 329, 264, 287, 15709, 672, 24421, 62, 10677, 82, 611, 407, 264, 13, 437, 2032, 342, 7, 4458, 71, 11537, 92, 198, 198, 66, 33152, 796, 19967, 62, 1462, 62, 46583, 62, 26791, 13, 32657, 929, 34, 40053, 7, 66, 33152, 8, 198, 66, 33152, 62, 535, 796, 19967, 62, 1462, 62, 46583, 62, 26791, 13, 32657, 929, 4093, 40053, 7, 66, 33152, 62, 535, 8, 198, 198, 2, 775, 761, 284, 751, 262, 2291, 3108, 284, 262, 410, 31263, 15738, 290, 13639, 2393, 900, 287, 198, 2, 788, 1341, 544, 62, 85, 31263, 62, 25677, 19967, 1822, 326, 318, 973, 329, 9355, 12188, 13, 198, 12001, 62, 42813, 13, 2860, 7203, 24254, 62, 31391, 14, 19411, 14, 85, 31263, 4943, 198, 39344, 62, 42813, 13, 2860, 7203, 24254, 62, 31391, 14, 19411, 14, 85, 31263, 4943, 198, 198, 1456, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 8, 198, 4299, 82, 796, 19967, 62, 1462, 62, 46583, 62, 26791, 13, 3855, 19895, 21188, 7, 418, 13, 6978, 13, 22179, 7, 1456, 11, 705, 404, 912, 13, 4593, 72, 6, 4008, 198, 198, 4593, 62, 1462, 62, 46583, 62, 26791, 13, 16594, 12982, 16934, 10786, 17256, 14, 11250, 14, 15739, 12982, 16934, 13, 71, 3256, 15738, 8, 198, 198, 2, 6756, 257, 1351, 286, 13042, 656, 262, 3918, 275, 79, 69, 16762, 23862, 13, 198, 198, 2, 7477, 0, 220, 775, 423, 2279, 284, 6070, 287, 5565, 13, 46583, 986, 198, 4480, 1280, 10786, 25934, 13, 46583, 3256, 705, 86, 11537, 355, 277, 25, 198, 220, 3601, 9609, 69, 11, 275, 79, 13, 7266, 301, 3678, 15090, 198, 220, 220, 220, 705, 39344, 62, 42813, 10354, 275, 79, 69, 16762, 7, 23, 11, 10784, 62, 42813, 828, 198, 220, 220, 220, 705, 12001, 62, 42813, 10354, 220, 275, 79, 69, 16762, 7, 23, 11, 1957, 62, 42813, 828, 198, 220, 220, 220, 705, 10677, 82, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 79, 69, 16762, 7, 23, 11, 12351, 82, 828, 198, 220, 220, 220, 705, 66, 33152, 10354, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 79, 69, 16762, 7, 23, 11, 269, 33152, 11, 10352, 828, 198, 220, 220, 220, 705, 66, 33152, 62, 535, 10354, 220, 220, 220, 220, 220, 220, 275, 79, 69, 16762, 7, 23, 11, 269, 33152, 62, 535, 828, 628, 220, 220, 220, 705, 1670, 62, 10677, 82, 10354, 220, 220, 220, 220, 220, 275, 79, 69, 16762, 7, 1433, 11, 825, 82, 17816, 1670, 85, 22, 20520, 828, 198, 220, 220, 220, 705, 1670, 62, 710, 261, 62, 10677, 82, 10354, 275, 79, 69, 16762, 7, 1238, 11, 825, 82, 17816, 710, 261, 20520, 828, 198, 220, 220, 220, 705, 1670, 2414, 62, 10677, 82, 10354, 220, 220, 220, 275, 79, 69, 16762, 7, 1433, 11, 825, 82, 17816, 1670, 2414, 20520, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 82, 17816, 66, 6015, 2624, 20520, 828, 198, 220, 220, 220, 705, 23108, 62, 10677, 82, 10354, 220, 220, 220, 220, 275, 79, 69, 16762, 7, 1433, 11, 825, 82, 17816, 23108, 20520, 828, 198, 220, 220, 220, 705, 87, 4521, 62, 10677, 82, 10354, 220, 220, 220, 220, 220, 275, 79, 69, 16762, 7, 1433, 11, 825, 82, 17816, 82, 325, 17, 20520, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 82, 17816, 824, 325, 18, 20520, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 82, 17816, 82, 325, 3901, 20520, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 82, 17816, 82, 325, 3682, 20520, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 82, 17816, 615, 87, 6, 220, 2361, 1343, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 82, 17816, 71, 2032, 6, 220, 2361, 828, 628, 220, 220, 220, 705, 36020, 62, 42813, 6, 220, 220, 220, 220, 220, 220, 1058, 275, 79, 69, 16762, 7, 23, 11, 288, 76, 62, 42813, 828, 198, 220, 220, 220, 705, 36020, 62, 10677, 82, 6, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 275, 79, 69, 16762, 7, 23, 11, 288, 76, 62, 10677, 82, 828, 628, 220, 220, 220, 705, 12647, 672, 24421, 62, 42813, 6, 220, 220, 220, 1058, 275, 79, 69, 16762, 7, 23, 11, 15709, 672, 24421, 62, 42813, 828, 198, 220, 220, 220, 705, 12647, 672, 24421, 62, 10677, 82, 6, 220, 220, 220, 220, 220, 220, 220, 1058, 275, 79, 69, 16762, 7, 23, 11, 15709, 672, 24421, 62, 10677, 82, 828, 198, 220, 32092, 198 ]
1.904896
3,901
"""The Ray autoscaler uses tags/labels to associate metadata with instances.""" # Tag for the name of the node TAG_RAY_NODE_NAME = "ray-node-name" # Tag for the kind of node (e.g. Head, Worker). For legacy reasons, the tag # value says 'type' instead of 'kind'. TAG_RAY_NODE_KIND = "ray-node-type" NODE_KIND_HEAD = "head" NODE_KIND_WORKER = "worker" NODE_KIND_UNMANAGED = "unmanaged" # Tag for user defined node types (e.g., m4xl_spot). This is used for multi # node type clusters. TAG_RAY_USER_NODE_TYPE = "ray-user-node-type" # Tag for autofilled node types for legacy cluster yamls without multi # node type defined in the cluster configs. NODE_TYPE_LEGACY_HEAD = "ray-legacy-head-node-type" NODE_TYPE_LEGACY_WORKER = "ray-legacy-worker-node-type" # Tag that reports the current state of the node (e.g. Updating, Up-to-date) TAG_RAY_NODE_STATUS = "ray-node-status" STATUS_UNINITIALIZED = "uninitialized" STATUS_WAITING_FOR_SSH = "waiting-for-ssh" STATUS_SYNCING_FILES = "syncing-files" STATUS_SETTING_UP = "setting-up" STATUS_UPDATE_FAILED = "update-failed" STATUS_UP_TO_DATE = "up-to-date" # Tag uniquely identifying all nodes of a cluster TAG_RAY_CLUSTER_NAME = "ray-cluster-name" # Hash of the node launch config, used to identify out-of-date nodes TAG_RAY_LAUNCH_CONFIG = "ray-launch-config" # Hash of the node runtime config, used to determine if updates are needed TAG_RAY_RUNTIME_CONFIG = "ray-runtime-config" # Hash of the contents of the directories specified by the file_mounts config # if the node is a worker, this also hashes content of the directories # specified by the cluster_synced_files config TAG_RAY_FILE_MOUNTS_CONTENTS = "ray-file-mounts-contents"
[ 37811, 464, 7760, 44619, 9948, 263, 3544, 15940, 14, 23912, 1424, 284, 11602, 20150, 351, 10245, 526, 15931, 198, 198, 2, 17467, 329, 262, 1438, 286, 262, 10139, 198, 42197, 62, 30631, 62, 45, 16820, 62, 20608, 796, 366, 2433, 12, 17440, 12, 3672, 1, 198, 198, 2, 17467, 329, 262, 1611, 286, 10139, 357, 68, 13, 70, 13, 7123, 11, 35412, 737, 1114, 10655, 3840, 11, 262, 7621, 198, 2, 1988, 1139, 705, 4906, 6, 2427, 286, 705, 11031, 4458, 198, 42197, 62, 30631, 62, 45, 16820, 62, 42, 12115, 796, 366, 2433, 12, 17440, 12, 4906, 1, 198, 45, 16820, 62, 42, 12115, 62, 37682, 796, 366, 2256, 1, 198, 45, 16820, 62, 42, 12115, 62, 33249, 1137, 796, 366, 28816, 1, 198, 45, 16820, 62, 42, 12115, 62, 4944, 10725, 4760, 1961, 796, 366, 403, 39935, 1, 198, 198, 2, 17467, 329, 2836, 5447, 10139, 3858, 357, 68, 13, 70, 1539, 285, 19, 87, 75, 62, 20485, 737, 770, 318, 973, 329, 5021, 198, 2, 10139, 2099, 23163, 13, 198, 42197, 62, 30631, 62, 29904, 62, 45, 16820, 62, 25216, 796, 366, 2433, 12, 7220, 12, 17440, 12, 4906, 1, 198, 2, 17467, 329, 1960, 1659, 2967, 10139, 3858, 329, 10655, 13946, 331, 321, 7278, 1231, 5021, 198, 2, 10139, 2099, 5447, 287, 262, 13946, 4566, 82, 13, 198, 45, 16820, 62, 25216, 62, 2538, 38, 43300, 62, 37682, 796, 366, 2433, 12, 1455, 1590, 12, 2256, 12, 17440, 12, 4906, 1, 198, 45, 16820, 62, 25216, 62, 2538, 38, 43300, 62, 33249, 1137, 796, 366, 2433, 12, 1455, 1590, 12, 28816, 12, 17440, 12, 4906, 1, 198, 198, 2, 17467, 326, 3136, 262, 1459, 1181, 286, 262, 10139, 357, 68, 13, 70, 13, 3205, 38734, 11, 3205, 12, 1462, 12, 4475, 8, 198, 42197, 62, 30631, 62, 45, 16820, 62, 35744, 2937, 796, 366, 2433, 12, 17440, 12, 13376, 1, 198, 35744, 2937, 62, 4944, 1268, 2043, 12576, 14887, 1961, 796, 366, 403, 17532, 1, 198, 35744, 2937, 62, 15543, 2043, 2751, 62, 13775, 62, 5432, 39, 796, 366, 10247, 1780, 12, 1640, 12, 45824, 1, 198, 35744, 2937, 62, 23060, 7792, 2751, 62, 46700, 1546, 796, 366, 28869, 2259, 12, 16624, 1, 198, 35744, 2937, 62, 28480, 48996, 62, 8577, 796, 366, 33990, 12, 929, 1, 198, 35744, 2937, 62, 16977, 62, 7708, 4146, 1961, 796, 366, 19119, 12, 47904, 1, 198, 35744, 2937, 62, 8577, 62, 10468, 62, 35, 6158, 796, 366, 929, 12, 1462, 12, 4475, 1, 198, 198, 2, 17467, 24139, 13720, 477, 13760, 286, 257, 13946, 198, 42197, 62, 30631, 62, 5097, 7759, 1137, 62, 20608, 796, 366, 2433, 12, 565, 5819, 12, 3672, 1, 198, 198, 2, 21059, 286, 262, 10139, 4219, 4566, 11, 973, 284, 5911, 503, 12, 1659, 12, 4475, 13760, 198, 42197, 62, 30631, 62, 13534, 47461, 62, 10943, 16254, 796, 366, 2433, 12, 35681, 12, 11250, 1, 198, 198, 2, 21059, 286, 262, 10139, 19124, 4566, 11, 973, 284, 5004, 611, 5992, 389, 2622, 198, 42197, 62, 30631, 62, 49, 4944, 34694, 62, 10943, 16254, 796, 366, 2433, 12, 43282, 12, 11250, 1, 198, 2, 21059, 286, 262, 10154, 286, 262, 29196, 7368, 416, 262, 2393, 62, 14948, 82, 4566, 198, 2, 611, 262, 10139, 318, 257, 8383, 11, 428, 635, 46621, 2695, 286, 262, 29196, 198, 2, 7368, 416, 262, 13946, 62, 28869, 771, 62, 16624, 4566, 198, 42197, 62, 30631, 62, 25664, 62, 44, 19385, 4694, 62, 37815, 15365, 796, 366, 2433, 12, 7753, 12, 14948, 82, 12, 3642, 658, 1, 198 ]
2.858844
588
import unittest from worldengine.plates import Step, center_land, world_gen from worldengine.world import World from tests.draw_test import TestBase if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 198, 6738, 995, 18392, 13, 17041, 1330, 5012, 11, 3641, 62, 1044, 11, 995, 62, 5235, 198, 6738, 995, 18392, 13, 6894, 1330, 2159, 198, 198, 6738, 5254, 13, 19334, 62, 9288, 1330, 6208, 14881, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
3.174603
63
import pytest import torch from mmedit.models.builder import build_component from mmedit.models.components.discriminators.light_cnn import MaxFeature
[ 11748, 12972, 9288, 198, 11748, 28034, 198, 198, 6738, 285, 1150, 270, 13, 27530, 13, 38272, 1330, 1382, 62, 42895, 198, 6738, 285, 1150, 270, 13, 27530, 13, 5589, 3906, 13, 15410, 3036, 47721, 13, 2971, 62, 66, 20471, 1330, 5436, 38816, 628, 198 ]
3.477273
44
import json import logging from typing import Iterable from kafka import KafkaConsumer log = logging.getLogger(__name__) log.addHandler(logging.NullHandler()) # I've used this example: # https://github.com/aiven/aiven-examples/blob/master/kafka/python/consumer_example.py # as well as Aiven Kafka tutorials
[ 11748, 33918, 198, 11748, 18931, 198, 198, 6738, 19720, 1330, 40806, 540, 198, 198, 6738, 479, 1878, 4914, 1330, 46906, 49106, 628, 198, 6404, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 6404, 13, 2860, 25060, 7, 6404, 2667, 13, 35067, 25060, 28955, 198, 198, 2, 314, 1053, 973, 428, 1672, 25, 198, 2, 3740, 1378, 12567, 13, 785, 14, 64, 1469, 14, 64, 1469, 12, 1069, 12629, 14, 2436, 672, 14, 9866, 14, 74, 1878, 4914, 14, 29412, 14, 49827, 62, 20688, 13, 9078, 198, 2, 355, 880, 355, 317, 1469, 46906, 27992, 628 ]
3.161616
99
from tensorflow.keras import * import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, Sequential,regularizers from tensorflow.keras.layers import Dropout # from tensorflow.keras import * # 3x3kernel_initializer='he_normal','glorot_normal' from tensorflow.python.keras.layers import Concatenate ############################### ############################### ############################### ############################### ###################################### def build_resblock(self, filter_num, blocks, stride=1): res_blocks = Sequential() # may down sample res_blocks.add(BasicBlock(filter_num, stride)) for _ in range(1, blocks): res_blocks.add(BasicBlock(filter_num, stride=1)) return res_blocks ###################################### ########################### pp2 ######################################## def network_up(input_layer_up,filters_num,dropout_rate,Block_res): # input_layer = Input(input_shape) # conv1 = layers.Conv3D(filters_num[0], kernel_size=(3, 3, 7), padding='same')(input_layer) # filters_num = 8 # conv1 = layers.Conv3D(filters_num[0], kernel_size=(3, 3, 3),padding='same',kernel_initializer='he_normal',kernel_regularizer=regularizers.l2(0.0001))(input_layer_up) # filters_num = 8 conv1 = layers.Conv3D(filters_num[0], kernel_size=(3, 3, 3), padding='same', kernel_regularizer=regularizers.l2(0.0001))(input_layer_up) #kernel_initializer='he_normal', # conv_layer1m = tf.keras.layers.MaxPooling3D(pool_size=(1, 1, 1),padding='same')(conv1) # conv_layer1g = tf.keras.layers.GlobalMaxPooling3D()(conv1) conv1_bn = layers.BatchNormalization()(conv1) conv1_relu = layers.Activation('relu')(conv1_bn) # conv1_relu = Dropout(0.5)(conv1_relu) # conv1_relu = tf.keras.layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), padding='same')(conv1_relu) # conv2 = layers.Conv3D(filters_num[1], kernel_size=(3, 3, 5), padding='same')(conv1_relu) # filters_num = 16 conv2 = layers.Conv3D(filters_num[1], kernel_size=(3, 3, 3),padding='same',kernel_regularizer=regularizers.l2(0.0001))(conv1_relu) # filters_num = 16 conv2_bn = layers.BatchNormalization()(conv2) conv2_relu = layers.Activation('relu')(conv2_bn) # conv2_relu = Dropout(0.5)(conv2_relu) # conv2_relu = tf.keras.layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), padding='same')(conv2_relu) conv3 = layers.Conv3D(filters_num[2], kernel_size=(3, 3, 3),padding='same',kernel_regularizer=regularizers.l2(0.0001))(conv2_relu) # filters_num = 32 conv3_bn = layers.BatchNormalization()(conv3) conv3_relu = layers.Activation('relu')(conv3_bn) # conv3_relu = Dropout(0.5)(conv3_relu) # conv3_relu = tf.keras.layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), padding='same')(conv3_relu) conv3_relu_reshape = layers.Reshape((conv3_relu.shape[1],conv3_relu.shape[2],conv3_relu.shape[3]*conv3_relu.shape[4]))(conv3_relu) conv3_relu_reshape = Dropout(0.5)(conv3_relu_reshape) ########################################### # conv11 = layers.Conv3D(filters_num[0], kernel_size=(5, 5, 3), padding='same', # kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(0.0001))(input_layer_up) # conv11_bn = layers.BatchNormalization()(conv11) # conv11_relu = layers.Activation('relu')(conv11_bn) # # # conv2 = layers.Conv3D(filters_num[1], kernel_size=(3, 3, 5), padding='same')(conv1_relu) # filters_num = 16 # conv22 = layers.Conv3D(filters_num[1], kernel_size=(5, 5, 3), padding='same', kernel_initializer='he_normal', # kernel_regularizer=regularizers.l2(0.0001))(conv11_relu) # filters_num = 16 # conv22_bn = layers.BatchNormalization()(conv22) # conv22_relu = layers.Activation('relu')(conv22_bn) # # conv33 = layers.Conv3D(filters_num[2], kernel_size=(5, 5, 3), padding='same', kernel_initializer='he_normal', # kernel_regularizer=regularizers.l2(0.0001))(conv22_relu) # filters_num = 32 # conv33_bn = layers.BatchNormalization()(conv33) # conv33_relu = layers.Activation('relu')(conv33_bn) # # conv33_relu_reshape = layers.Reshape( # (conv3_relu.shape[1], conv3_relu.shape[2], conv3_relu.shape[3] * conv3_relu.shape[4]))(conv33_relu) #################################################### # conv111 = layers.Conv3D(filters_num[0], kernel_size=(7, 7, 3), padding='same', # kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(0.0001))(input_layer_up) # conv111_bn = layers.BatchNormalization()(conv111) # conv111_relu = layers.Activation('relu')(conv111_bn) # # # conv2 = layers.Conv3D(filters_num[1], kernel_size=(3, 3, 5), padding='same')(conv1_relu) # filters_num = 16 # conv222 = layers.Conv3D(filters_num[1], kernel_size=(7, 7, 3), padding='same', kernel_initializer='he_normal', # kernel_regularizer=regularizers.l2(0.0001))(conv111_relu) # filters_num = 16 # conv222_bn = layers.BatchNormalization()(conv222) # conv222_relu = layers.Activation('relu')(conv222_bn) # # conv333 = layers.Conv3D(filters_num[2], kernel_size=(7, 7, 3), padding='same', kernel_initializer='he_normal', # kernel_regularizer=regularizers.l2(0.0001))(conv222_relu) # filters_num = 32 # conv333_bn = layers.BatchNormalization()(conv333) # conv333_relu = layers.Activation('relu')(conv333_bn) # # conv333_relu_reshape = layers.Reshape( # (conv3_relu.shape[1], conv3_relu.shape[2], conv3_relu.shape[3] * conv3_relu.shape[4]))(conv333_relu) #################concatenate######################## # conv33333_relu_reshape = Concatenate(axis=-1)([conv3_relu_reshape, conv33_relu_reshape]) ######################################### conv4 = layers.Conv2D(filters_num[3], kernel_size=(3, 3), padding='same',kernel_regularizer=regularizers.l2(0.0001))(conv3_relu_reshape) # filters_num = 64 conv4_bn = layers.BatchNormalization()(conv4) conv4_relu = layers.Activation('relu')(conv4_bn) # conv4_relu = Dropout(0.5)(conv4_relu) # conv4_relu = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same')(conv4_relu) # conv4_relu = tf.keras.layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), padding='same')(conv4_relu) conv5 = layers.Conv2D(filters_num[4], kernel_size=(3, 3), padding='same',kernel_regularizer=regularizers.l2(0.0001))(conv4_relu) # filters_num = ** conv5_bn = layers.BatchNormalization()(conv5) conv5_relu = layers.Activation('relu')(conv5_bn) # conv5_relu = Dropout(0.5)(conv5_relu) # conv5_relu = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same')(conv5_relu) # conv5_relu = tf.keras.layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), padding='same')(conv5_relu) # conv5_dpout = layers.Dropout(dropout_rate)(conv5) # conv5_reshape = layers.Reshape((conv5_dpout.shape[1],conv5_dpout.shape[2],conv5_dpout.shape[3]))(conv5_dpout) outputs2,outputs4 = Block_res(conv5_relu) return conv5,outputs2,outputs4 # layer1 = build_resblock(filters_num[5], layer_dims[0]) # filters_num = 64 # layer2 = build_resblock(filters_num[6], layer_dims[1], stride=2) # filters_num = 128 # layer3 = build_resblock(filters_num[7], layer_dims[2], stride=2) # filters_num = 256 # layer4 = build_resblock(filters_num[8], layer_dims[3], stride=2) # filters_num = 512
[ 201, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 1330, 1635, 201, 198, 11748, 220, 11192, 273, 11125, 355, 48700, 201, 198, 6738, 220, 220, 220, 11192, 273, 11125, 1330, 41927, 292, 201, 198, 6738, 220, 220, 220, 11192, 273, 11125, 13, 6122, 292, 1330, 11685, 11, 24604, 1843, 11, 16338, 11341, 201, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 13, 75, 6962, 1330, 14258, 448, 201, 198, 2, 422, 11192, 273, 11125, 13, 6122, 292, 1330, 1635, 201, 198, 2, 220, 513, 87, 18, 33885, 62, 36733, 7509, 11639, 258, 62, 11265, 41707, 70, 4685, 313, 62, 11265, 6, 201, 198, 6738, 11192, 273, 11125, 13, 29412, 13, 6122, 292, 13, 75, 6962, 1330, 1482, 9246, 268, 378, 201, 198, 201, 198, 14468, 7804, 4242, 21017, 220, 1303, 14468, 7804, 4242, 2235, 201, 198, 201, 198, 201, 198, 14468, 7804, 4242, 21017, 220, 1303, 14468, 7804, 4242, 2235, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 29113, 4242, 2235, 201, 198, 201, 198, 201, 198, 201, 198, 4299, 1382, 62, 411, 9967, 7, 944, 11, 8106, 62, 22510, 11, 7021, 11, 33769, 28, 16, 2599, 201, 198, 201, 198, 220, 220, 220, 581, 62, 27372, 796, 24604, 1843, 3419, 201, 198, 220, 220, 220, 1303, 743, 866, 6291, 201, 198, 220, 220, 220, 581, 62, 27372, 13, 2860, 7, 26416, 12235, 7, 24455, 62, 22510, 11, 33769, 4008, 201, 198, 201, 198, 220, 220, 220, 329, 4808, 287, 2837, 7, 16, 11, 7021, 2599, 201, 198, 220, 220, 220, 220, 220, 220, 220, 581, 62, 27372, 13, 2860, 7, 26416, 12235, 7, 24455, 62, 22510, 11, 33769, 28, 16, 4008, 201, 198, 201, 198, 220, 220, 220, 1441, 581, 62, 27372, 201, 198, 201, 198, 29113, 4242, 2235, 201, 198, 201, 198, 201, 198, 201, 198, 14468, 7804, 21017, 220, 9788, 17, 1303, 29113, 4242, 21017, 201, 198, 201, 198, 201, 198, 201, 198, 4299, 3127, 62, 929, 7, 15414, 62, 29289, 62, 929, 11, 10379, 1010, 62, 22510, 11, 14781, 448, 62, 4873, 11, 12235, 62, 411, 2599, 201, 198, 220, 220, 220, 1303, 5128, 62, 29289, 796, 23412, 7, 15414, 62, 43358, 8, 201, 198, 220, 220, 220, 1303, 3063, 16, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 15, 4357, 9720, 62, 7857, 16193, 18, 11, 513, 11, 767, 828, 24511, 11639, 31642, 6, 5769, 15414, 62, 29289, 8, 220, 1303, 16628, 62, 22510, 796, 807, 201, 198, 220, 220, 220, 1303, 3063, 16, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 15, 4357, 9720, 62, 7857, 16193, 18, 11, 513, 11, 513, 828, 39231, 11639, 31642, 3256, 33885, 62, 36733, 7509, 11639, 258, 62, 11265, 3256, 33885, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 15, 13, 18005, 4008, 7, 15414, 62, 29289, 62, 929, 8, 220, 1303, 16628, 62, 22510, 796, 807, 201, 198, 220, 220, 220, 3063, 16, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 15, 4357, 9720, 62, 7857, 16193, 18, 11, 513, 11, 513, 828, 24511, 11639, 31642, 3256, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 15, 13, 18005, 4008, 7, 15414, 62, 29289, 62, 929, 8, 220, 1303, 33885, 62, 36733, 7509, 11639, 258, 62, 11265, 3256, 201, 198, 220, 220, 220, 1303, 3063, 62, 29289, 16, 76, 796, 48700, 13, 6122, 292, 13, 75, 6962, 13, 11518, 27201, 278, 18, 35, 7, 7742, 62, 7857, 16193, 16, 11, 352, 11, 352, 828, 39231, 11639, 31642, 6, 5769, 42946, 16, 8, 201, 198, 220, 220, 220, 1303, 3063, 62, 29289, 16, 70, 796, 48700, 13, 6122, 292, 13, 75, 6962, 13, 22289, 11518, 27201, 278, 18, 35, 3419, 7, 42946, 16, 8, 201, 198, 220, 220, 220, 3063, 16, 62, 9374, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 42946, 16, 8, 201, 198, 220, 220, 220, 3063, 16, 62, 260, 2290, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 42946, 16, 62, 9374, 8, 201, 198, 220, 220, 220, 1303, 3063, 16, 62, 260, 2290, 796, 14258, 448, 7, 15, 13, 20, 5769, 42946, 16, 62, 260, 2290, 8, 201, 198, 220, 220, 220, 1303, 3063, 16, 62, 260, 2290, 796, 48700, 13, 6122, 292, 13, 75, 6962, 13, 11518, 27201, 278, 18, 35, 7, 7742, 62, 7857, 16193, 17, 11, 362, 11, 362, 828, 35002, 16193, 16, 11, 352, 11, 352, 828, 24511, 11639, 31642, 6, 5769, 42946, 16, 62, 260, 2290, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 3063, 17, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 16, 4357, 9720, 62, 7857, 16193, 18, 11, 513, 11, 642, 828, 24511, 11639, 31642, 6, 5769, 42946, 16, 62, 260, 2290, 8, 220, 1303, 16628, 62, 22510, 796, 1467, 201, 198, 220, 220, 220, 3063, 17, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 16, 4357, 9720, 62, 7857, 16193, 18, 11, 513, 11, 513, 828, 39231, 11639, 31642, 3256, 33885, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 15, 13, 18005, 4008, 7, 42946, 16, 62, 260, 2290, 8, 220, 1303, 16628, 62, 22510, 796, 1467, 201, 198, 220, 220, 220, 3063, 17, 62, 9374, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 42946, 17, 8, 201, 198, 220, 220, 220, 3063, 17, 62, 260, 2290, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 42946, 17, 62, 9374, 8, 201, 198, 220, 220, 220, 1303, 3063, 17, 62, 260, 2290, 796, 14258, 448, 7, 15, 13, 20, 5769, 42946, 17, 62, 260, 2290, 8, 201, 198, 220, 220, 220, 1303, 3063, 17, 62, 260, 2290, 796, 48700, 13, 6122, 292, 13, 75, 6962, 13, 11518, 27201, 278, 18, 35, 7, 7742, 62, 7857, 16193, 17, 11, 362, 11, 362, 828, 35002, 16193, 16, 11, 352, 11, 352, 828, 24511, 11639, 31642, 6, 5769, 42946, 17, 62, 260, 2290, 8, 201, 198, 201, 198, 220, 220, 220, 3063, 18, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 17, 4357, 9720, 62, 7857, 16193, 18, 11, 513, 11, 513, 828, 39231, 11639, 31642, 3256, 33885, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 15, 13, 18005, 4008, 7, 42946, 17, 62, 260, 2290, 8, 220, 1303, 16628, 62, 22510, 796, 3933, 201, 198, 220, 220, 220, 3063, 18, 62, 9374, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 42946, 18, 8, 201, 198, 220, 220, 220, 3063, 18, 62, 260, 2290, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 42946, 18, 62, 9374, 8, 201, 198, 220, 220, 220, 1303, 3063, 18, 62, 260, 2290, 796, 14258, 448, 7, 15, 13, 20, 5769, 42946, 18, 62, 260, 2290, 8, 201, 198, 220, 220, 220, 1303, 3063, 18, 62, 260, 2290, 796, 48700, 13, 6122, 292, 13, 75, 6962, 13, 11518, 27201, 278, 18, 35, 7, 7742, 62, 7857, 16193, 17, 11, 362, 11, 362, 828, 35002, 16193, 16, 11, 352, 11, 352, 828, 24511, 11639, 31642, 6, 5769, 42946, 18, 62, 260, 2290, 8, 201, 198, 201, 198, 220, 220, 220, 3063, 18, 62, 260, 2290, 62, 3447, 1758, 796, 11685, 13, 4965, 71, 1758, 19510, 42946, 18, 62, 260, 2290, 13, 43358, 58, 16, 4357, 42946, 18, 62, 260, 2290, 13, 43358, 58, 17, 4357, 42946, 18, 62, 260, 2290, 13, 43358, 58, 18, 60, 9, 42946, 18, 62, 260, 2290, 13, 43358, 58, 19, 60, 4008, 7, 42946, 18, 62, 260, 2290, 8, 201, 198, 220, 220, 220, 3063, 18, 62, 260, 2290, 62, 3447, 1758, 796, 14258, 448, 7, 15, 13, 20, 5769, 42946, 18, 62, 260, 2290, 62, 3447, 1758, 8, 201, 198, 220, 220, 220, 1303, 29113, 7804, 2235, 201, 198, 220, 220, 220, 1303, 3063, 1157, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 15, 4357, 9720, 62, 7857, 16193, 20, 11, 642, 11, 513, 828, 24511, 11639, 31642, 3256, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 36733, 7509, 11639, 258, 62, 11265, 3256, 9720, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 15, 13, 18005, 4008, 7, 15414, 62, 29289, 62, 929, 8, 201, 198, 220, 220, 220, 1303, 3063, 1157, 62, 9374, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 42946, 1157, 8, 201, 198, 220, 220, 220, 1303, 3063, 1157, 62, 260, 2290, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 42946, 1157, 62, 9374, 8, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 1303, 1303, 3063, 17, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 16, 4357, 9720, 62, 7857, 16193, 18, 11, 513, 11, 642, 828, 24511, 11639, 31642, 6, 5769, 42946, 16, 62, 260, 2290, 8, 220, 1303, 16628, 62, 22510, 796, 1467, 201, 198, 220, 220, 220, 1303, 3063, 1828, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 16, 4357, 9720, 62, 7857, 16193, 20, 11, 642, 11, 513, 828, 24511, 11639, 31642, 3256, 9720, 62, 36733, 7509, 11639, 258, 62, 11265, 3256, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 15, 13, 18005, 4008, 7, 42946, 1157, 62, 260, 2290, 8, 220, 1303, 16628, 62, 22510, 796, 1467, 201, 198, 220, 220, 220, 1303, 3063, 1828, 62, 9374, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 42946, 1828, 8, 201, 198, 220, 220, 220, 1303, 3063, 1828, 62, 260, 2290, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 42946, 1828, 62, 9374, 8, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 1303, 3063, 2091, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 17, 4357, 9720, 62, 7857, 16193, 20, 11, 642, 11, 513, 828, 24511, 11639, 31642, 3256, 9720, 62, 36733, 7509, 11639, 258, 62, 11265, 3256, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 15, 13, 18005, 4008, 7, 42946, 1828, 62, 260, 2290, 8, 220, 1303, 16628, 62, 22510, 796, 3933, 201, 198, 220, 220, 220, 1303, 3063, 2091, 62, 9374, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 42946, 2091, 8, 201, 198, 220, 220, 220, 1303, 3063, 2091, 62, 260, 2290, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 42946, 2091, 62, 9374, 8, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 1303, 3063, 2091, 62, 260, 2290, 62, 3447, 1758, 796, 11685, 13, 4965, 71, 1758, 7, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 357, 42946, 18, 62, 260, 2290, 13, 43358, 58, 16, 4357, 3063, 18, 62, 260, 2290, 13, 43358, 58, 17, 4357, 3063, 18, 62, 260, 2290, 13, 43358, 58, 18, 60, 1635, 3063, 18, 62, 260, 2290, 13, 43358, 58, 19, 60, 4008, 7, 42946, 2091, 62, 260, 2290, 8, 201, 198, 220, 220, 220, 1303, 29113, 14468, 21017, 201, 198, 220, 220, 220, 1303, 3063, 16243, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 15, 4357, 9720, 62, 7857, 16193, 22, 11, 767, 11, 513, 828, 24511, 11639, 31642, 3256, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 36733, 7509, 11639, 258, 62, 11265, 3256, 9720, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 15, 13, 18005, 4008, 7, 15414, 62, 29289, 62, 929, 8, 201, 198, 220, 220, 220, 1303, 3063, 16243, 62, 9374, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 42946, 16243, 8, 201, 198, 220, 220, 220, 1303, 3063, 16243, 62, 260, 2290, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 42946, 16243, 62, 9374, 8, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 1303, 1303, 3063, 17, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 16, 4357, 9720, 62, 7857, 16193, 18, 11, 513, 11, 642, 828, 24511, 11639, 31642, 6, 5769, 42946, 16, 62, 260, 2290, 8, 220, 1303, 16628, 62, 22510, 796, 1467, 201, 198, 220, 220, 220, 1303, 3063, 23148, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 16, 4357, 9720, 62, 7857, 16193, 22, 11, 767, 11, 513, 828, 24511, 11639, 31642, 3256, 9720, 62, 36733, 7509, 11639, 258, 62, 11265, 3256, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 15, 13, 18005, 4008, 7, 42946, 16243, 62, 260, 2290, 8, 220, 1303, 16628, 62, 22510, 796, 1467, 201, 198, 220, 220, 220, 1303, 3063, 23148, 62, 9374, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 42946, 23148, 8, 201, 198, 220, 220, 220, 1303, 3063, 23148, 62, 260, 2290, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 42946, 23148, 62, 9374, 8, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 1303, 3063, 20370, 796, 11685, 13, 3103, 85, 18, 35, 7, 10379, 1010, 62, 22510, 58, 17, 4357, 9720, 62, 7857, 16193, 22, 11, 767, 11, 513, 828, 24511, 11639, 31642, 3256, 9720, 62, 36733, 7509, 11639, 258, 62, 11265, 3256, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9720, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 15, 13, 18005, 4008, 7, 42946, 23148, 62, 260, 2290, 8, 220, 1303, 16628, 62, 22510, 796, 3933, 201, 198, 220, 220, 220, 1303, 3063, 20370, 62, 9374, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 42946, 20370, 8, 201, 198, 220, 220, 220, 1303, 3063, 20370, 62, 260, 2290, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 42946, 20370, 62, 9374, 8, 201, 198, 220, 220, 220, 1303, 201, 198, 220, 220, 220, 1303, 3063, 20370, 62, 260, 2290, 62, 3447, 1758, 796, 11685, 13, 4965, 71, 1758, 7, 201, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 357, 42946, 18, 62, 260, 2290, 13, 43358, 58, 16, 4357, 3063, 18, 62, 260, 2290, 13, 43358, 58, 17, 4357, 3063, 18, 62, 260, 2290, 13, 43358, 58, 18, 60, 1635, 3063, 18, 62, 260, 2290, 13, 43358, 58, 19, 60, 4008, 7, 42946, 20370, 62, 260, 2290, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 14468, 1102, 9246, 268, 378, 14468, 7804, 201, 198, 220, 220, 220, 1303, 3063, 2091, 20370, 62, 260, 2290, 62, 3447, 1758, 796, 1482, 9246, 268, 378, 7, 22704, 10779, 16, 5769, 58, 42946, 18, 62, 260, 2290, 62, 3447, 1758, 11, 3063, 2091, 62, 260, 2290, 62, 3447, 1758, 12962, 201, 198, 201, 198, 220, 220, 220, 1303, 29113, 7804, 201, 198, 220, 220, 220, 3063, 19, 796, 11685, 13, 3103, 85, 17, 35, 7, 10379, 1010, 62, 22510, 58, 18, 4357, 9720, 62, 7857, 16193, 18, 11, 513, 828, 24511, 11639, 31642, 3256, 33885, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 15, 13, 18005, 4008, 7, 42946, 18, 62, 260, 2290, 62, 3447, 1758, 8, 220, 1303, 16628, 62, 22510, 796, 5598, 201, 198, 220, 220, 220, 3063, 19, 62, 9374, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 42946, 19, 8, 201, 198, 220, 220, 220, 3063, 19, 62, 260, 2290, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 42946, 19, 62, 9374, 8, 201, 198, 220, 220, 220, 1303, 3063, 19, 62, 260, 2290, 796, 14258, 448, 7, 15, 13, 20, 5769, 42946, 19, 62, 260, 2290, 8, 201, 198, 220, 220, 220, 1303, 3063, 19, 62, 260, 2290, 796, 48700, 13, 6122, 292, 13, 75, 6962, 13, 11518, 27201, 278, 17, 35, 7, 7742, 62, 7857, 16193, 17, 11, 362, 828, 35002, 16193, 16, 11, 352, 828, 24511, 11639, 31642, 6, 5769, 42946, 19, 62, 260, 2290, 8, 201, 198, 220, 220, 220, 1303, 3063, 19, 62, 260, 2290, 796, 48700, 13, 6122, 292, 13, 75, 6962, 13, 11518, 27201, 278, 18, 35, 7, 7742, 62, 7857, 16193, 17, 11, 362, 11, 362, 828, 35002, 16193, 16, 11, 352, 11, 352, 828, 24511, 11639, 31642, 6, 5769, 42946, 19, 62, 260, 2290, 8, 201, 198, 201, 198, 220, 220, 220, 3063, 20, 796, 11685, 13, 3103, 85, 17, 35, 7, 10379, 1010, 62, 22510, 58, 19, 4357, 9720, 62, 7857, 16193, 18, 11, 513, 828, 24511, 11639, 31642, 3256, 33885, 62, 16338, 7509, 28, 16338, 11341, 13, 75, 17, 7, 15, 13, 18005, 4008, 7, 42946, 19, 62, 260, 2290, 8, 220, 1303, 16628, 62, 22510, 796, 12429, 201, 198, 220, 220, 220, 3063, 20, 62, 9374, 796, 11685, 13, 33, 963, 26447, 1634, 3419, 7, 42946, 20, 8, 201, 198, 220, 220, 220, 3063, 20, 62, 260, 2290, 796, 11685, 13, 25526, 341, 10786, 260, 2290, 6, 5769, 42946, 20, 62, 9374, 8, 201, 198, 220, 220, 220, 1303, 3063, 20, 62, 260, 2290, 796, 14258, 448, 7, 15, 13, 20, 5769, 42946, 20, 62, 260, 2290, 8, 201, 198, 220, 220, 220, 1303, 3063, 20, 62, 260, 2290, 796, 48700, 13, 6122, 292, 13, 75, 6962, 13, 11518, 27201, 278, 17, 35, 7, 7742, 62, 7857, 16193, 17, 11, 362, 828, 35002, 16193, 16, 11, 352, 828, 24511, 11639, 31642, 6, 5769, 42946, 20, 62, 260, 2290, 8, 201, 198, 220, 220, 220, 1303, 3063, 20, 62, 260, 2290, 796, 48700, 13, 6122, 292, 13, 75, 6962, 13, 11518, 27201, 278, 18, 35, 7, 7742, 62, 7857, 16193, 17, 11, 362, 11, 362, 828, 35002, 16193, 16, 11, 352, 11, 352, 828, 24511, 11639, 31642, 6, 5769, 42946, 20, 62, 260, 2290, 8, 201, 198, 220, 220, 220, 1303, 3063, 20, 62, 26059, 448, 796, 11685, 13, 26932, 448, 7, 14781, 448, 62, 4873, 5769, 42946, 20, 8, 201, 198, 201, 198, 220, 220, 220, 1303, 3063, 20, 62, 3447, 1758, 796, 11685, 13, 4965, 71, 1758, 19510, 42946, 20, 62, 26059, 448, 13, 43358, 58, 16, 4357, 42946, 20, 62, 26059, 448, 13, 43358, 58, 17, 4357, 42946, 20, 62, 26059, 448, 13, 43358, 58, 18, 60, 4008, 7, 42946, 20, 62, 26059, 448, 8, 201, 198, 220, 220, 220, 23862, 17, 11, 22915, 82, 19, 796, 9726, 62, 411, 7, 42946, 20, 62, 260, 2290, 8, 201, 198, 201, 198, 220, 220, 220, 1441, 3063, 20, 11, 22915, 82, 17, 11, 22915, 82, 19, 201, 198, 201, 198, 201, 198, 201, 198, 220, 220, 220, 1303, 7679, 16, 796, 1382, 62, 411, 9967, 7, 10379, 1010, 62, 22510, 58, 20, 4357, 7679, 62, 67, 12078, 58, 15, 12962, 220, 1303, 16628, 62, 22510, 796, 5598, 201, 198, 220, 220, 220, 1303, 7679, 17, 796, 1382, 62, 411, 9967, 7, 10379, 1010, 62, 22510, 58, 21, 4357, 7679, 62, 67, 12078, 58, 16, 4357, 33769, 28, 17, 8, 220, 220, 220, 1303, 16628, 62, 22510, 796, 13108, 201, 198, 220, 220, 220, 1303, 7679, 18, 796, 1382, 62, 411, 9967, 7, 10379, 1010, 62, 22510, 58, 22, 4357, 7679, 62, 67, 12078, 58, 17, 4357, 33769, 28, 17, 8, 220, 220, 1303, 16628, 62, 22510, 796, 17759, 201, 198, 220, 220, 220, 1303, 7679, 19, 796, 1382, 62, 411, 9967, 7, 10379, 1010, 62, 22510, 58, 23, 4357, 7679, 62, 67, 12078, 58, 18, 4357, 33769, 28, 17, 8, 220, 1303, 16628, 62, 22510, 796, 22243, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198, 201, 198 ]
2.277826
3,441
""" A universal module with functions / classes without dependencies. """ import sys import contextlib import functools import re import os from medi._compatibility import reraise _sep = os.path.sep if os.path.altsep is not None: _sep += os.path.altsep _path_re = re.compile(r'(?:\.[^{0}]+|[{0}]__init__\.py)$'.format(re.escape(_sep))) del _sep def unite(iterable): """Turns a two dimensional array into a one dimensional.""" return set(typ for types in iterable for typ in types) def reraise_uncaught(func): """ Re-throw uncaught `AttributeError`. Usage: Put ``@rethrow_uncaught`` in front of the function which does **not** suppose to raise `AttributeError`. AttributeError is easily get caught by `hasattr` and another ``except AttributeError`` clause. This becomes problem when you use a lot of "dynamic" attributes (e.g., using ``@property``) because you can't distinguish if the property does not exist for real or some code inside of the "dynamic" attribute through that error. In a well written code, such error should not exist but getting there is very difficult. This decorator is to help us getting there by changing `AttributeError` to `UncaughtAttributeError` to avoid unexpected catch. This helps us noticing bugs earlier and facilitates debugging. .. note:: Treating StopIteration here is easy. Add that feature when needed. """ return wrapper
[ 37811, 317, 10112, 8265, 351, 5499, 1220, 6097, 1231, 20086, 13, 37227, 198, 11748, 25064, 198, 11748, 4732, 8019, 198, 11748, 1257, 310, 10141, 198, 11748, 302, 198, 11748, 28686, 198, 198, 6738, 16957, 13557, 5589, 25901, 1330, 302, 40225, 628, 198, 62, 325, 79, 796, 28686, 13, 6978, 13, 325, 79, 198, 361, 28686, 13, 6978, 13, 2501, 325, 79, 318, 407, 6045, 25, 198, 220, 220, 220, 4808, 325, 79, 15853, 28686, 13, 6978, 13, 2501, 325, 79, 198, 62, 6978, 62, 260, 796, 302, 13, 5589, 576, 7, 81, 6, 7, 30, 7479, 3693, 36796, 15, 92, 48688, 91, 58, 90, 15, 92, 60, 834, 15003, 834, 17405, 9078, 8, 3, 4458, 18982, 7, 260, 13, 41915, 28264, 325, 79, 22305, 198, 12381, 4808, 325, 79, 628, 628, 198, 4299, 24558, 7, 2676, 540, 2599, 198, 220, 220, 220, 37227, 17278, 82, 257, 734, 38517, 7177, 656, 257, 530, 38517, 526, 15931, 198, 220, 220, 220, 1441, 900, 7, 28004, 329, 3858, 287, 11629, 540, 329, 2170, 287, 3858, 8, 628, 628, 198, 4299, 302, 40225, 62, 19524, 3413, 7, 20786, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 797, 12, 16939, 4591, 3413, 4600, 33682, 12331, 44646, 628, 220, 220, 220, 29566, 25, 220, 5930, 7559, 31, 260, 16939, 62, 19524, 3413, 15506, 287, 2166, 286, 262, 2163, 198, 220, 220, 220, 543, 857, 12429, 1662, 1174, 11691, 284, 5298, 4600, 33682, 12331, 44646, 628, 220, 220, 220, 3460, 4163, 12331, 318, 3538, 651, 4978, 416, 4600, 10134, 35226, 63, 290, 1194, 198, 220, 220, 220, 7559, 16341, 3460, 4163, 12331, 15506, 13444, 13, 220, 770, 4329, 1917, 618, 345, 779, 198, 220, 220, 220, 257, 1256, 286, 366, 67, 28995, 1, 12608, 357, 68, 13, 70, 1539, 1262, 7559, 31, 26745, 15506, 8, 780, 345, 198, 220, 220, 220, 460, 470, 15714, 611, 262, 3119, 857, 407, 2152, 329, 1103, 393, 617, 2438, 198, 220, 220, 220, 2641, 286, 262, 366, 67, 28995, 1, 11688, 832, 326, 4049, 13, 220, 554, 257, 880, 198, 220, 220, 220, 3194, 2438, 11, 884, 4049, 815, 407, 2152, 475, 1972, 612, 318, 845, 198, 220, 220, 220, 2408, 13, 220, 770, 11705, 1352, 318, 284, 1037, 514, 1972, 612, 416, 5609, 198, 220, 220, 220, 4600, 33682, 12331, 63, 284, 4600, 3118, 66, 3413, 33682, 12331, 63, 284, 3368, 10059, 4929, 13, 198, 220, 220, 220, 770, 5419, 514, 28107, 11316, 2961, 290, 42699, 28769, 13, 628, 220, 220, 220, 11485, 3465, 3712, 11217, 278, 13707, 29993, 341, 994, 318, 2562, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3060, 326, 3895, 618, 2622, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 29908, 628, 198 ]
3.202614
459
"""Bioconductor run git transition code. This module assembles the classes for the SVN --> Git transition can be run in a sequential manner. It runs the following aspects fo the Bioconductor transition. Note: Update the SVN dump 1. Run Bioconductor Software package transition 2. Run Bioconductor Experiment Data package transition 3. Run Workflow package transition 4. Run Manifest file transition 5. Run Rapid update of master (trunk) and RELEASE_3_5 branches on software packages Manual tasks which need to be done: 1. Copy over bare repos to repositories/packages 2. Copy manifest bare git repo to repositories/admin """ import src.run_transition as rt import src.svn_dump_update as sdu import logging import time logging.basicConfig(filename='transition.log', format='%(levelname)s %(asctime)s %(message)s', level=logging.DEBUG) if __name__ == '__main__': start_time = time.time() config_file = "./settings.ini" svn_dump_update(config_file) run(config_file) # TODO: Run updates after dump update svn_dump_update(config_file) rt.run_updates(config_file) logging.info("--- %s seconds ---" % (time.time() - start_time))
[ 37811, 23286, 420, 40990, 1057, 17606, 6801, 2438, 13, 198, 198, 1212, 8265, 11156, 829, 262, 6097, 329, 262, 20546, 45, 14610, 15151, 6801, 198, 5171, 307, 1057, 287, 257, 35582, 5642, 13, 198, 198, 1026, 4539, 262, 1708, 7612, 11511, 262, 8436, 420, 40990, 6801, 13, 198, 198, 6425, 25, 10133, 262, 20546, 45, 10285, 198, 198, 16, 13, 5660, 8436, 420, 40990, 10442, 5301, 6801, 198, 17, 13, 5660, 8436, 420, 40990, 29544, 6060, 5301, 6801, 198, 18, 13, 5660, 5521, 11125, 5301, 6801, 198, 19, 13, 5660, 36757, 2393, 6801, 198, 20, 13, 5660, 26430, 4296, 286, 4958, 357, 2213, 2954, 8, 290, 46492, 62, 18, 62, 20, 13737, 319, 198, 220, 220, 3788, 10392, 198, 198, 5124, 723, 8861, 543, 761, 284, 307, 1760, 25, 198, 16, 13, 17393, 625, 6247, 1128, 418, 284, 38072, 14, 43789, 198, 17, 13, 17393, 10561, 6247, 17606, 29924, 284, 38072, 14, 28482, 198, 37811, 198, 198, 11748, 12351, 13, 5143, 62, 7645, 653, 355, 374, 83, 198, 11748, 12351, 13, 21370, 77, 62, 39455, 62, 19119, 355, 264, 646, 198, 11748, 18931, 198, 11748, 640, 198, 6404, 2667, 13, 35487, 16934, 7, 34345, 11639, 7645, 653, 13, 6404, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 11639, 4, 7, 5715, 3672, 8, 82, 4064, 7, 292, 310, 524, 8, 82, 4064, 7, 20500, 8, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 6404, 2667, 13, 30531, 8, 628, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 923, 62, 2435, 796, 640, 13, 2435, 3419, 198, 220, 220, 220, 4566, 62, 7753, 796, 366, 19571, 33692, 13, 5362, 1, 198, 220, 220, 220, 38487, 77, 62, 39455, 62, 19119, 7, 11250, 62, 7753, 8, 198, 220, 220, 220, 1057, 7, 11250, 62, 7753, 8, 198, 2, 16926, 46, 25, 5660, 5992, 706, 10285, 4296, 198, 220, 220, 220, 38487, 77, 62, 39455, 62, 19119, 7, 11250, 62, 7753, 8, 198, 220, 220, 220, 374, 83, 13, 5143, 62, 929, 19581, 7, 11250, 62, 7753, 8, 198, 220, 220, 220, 18931, 13, 10951, 7203, 6329, 4064, 82, 4201, 11420, 1, 4064, 357, 2435, 13, 2435, 3419, 532, 923, 62, 2435, 4008, 198 ]
3.015038
399
from __future__ import with_statement from .. import Lock, NeedRegenerationException from ..util import NameRegistry from . import exception from ..util import PluginLoader, memoized_property, coerce_string_conf from .util import function_key_generator, function_multi_key_generator from .api import NO_VALUE, CachedValue from .proxy import ProxyBackend from ..util import compat import time import datetime from numbers import Number from functools import wraps import threading _backend_loader = PluginLoader("dogpile.cache") register_backend = _backend_loader.register from . import backends # noqa value_version = 1 """An integer placed in the :class:`.CachedValue` so that new versions of dogpile.cache can detect cached values from a previous, backwards-incompatible version. """ def _unexpired_value_fn(self, expiration_time, ignore_expiration): if ignore_expiration: return lambda value: value else: if expiration_time is None: expiration_time = self.expiration_time current_time = time.time() return value_fn def get_multi(self, keys, expiration_time=None, ignore_expiration=False): """Return multiple values from the cache, based on the given keys. Returns values as a list matching the keys given. E.g.:: values = region.get_multi(["one", "two", "three"]) To convert values to a dictionary, use ``zip()``:: keys = ["one", "two", "three"] values = region.get_multi(keys) dictionary = dict(zip(keys, values)) Keys which aren't present in the list are returned as the ``NO_VALUE`` token. ``NO_VALUE`` evaluates to False, but is separate from ``None`` to distinguish between a cached value of ``None``. By default, the configured expiration time of the :class:`.CacheRegion`, or alternatively the expiration time supplied by the ``expiration_time`` argument, is tested against the creation time of the retrieved value versus the current time (as reported by ``time.time()``). If stale, the cached value is ignored and the ``NO_VALUE`` token is returned. Passing the flag ``ignore_expiration=True`` bypasses the expiration time check. .. versionadded:: 0.5.0 """ if not keys: return [] if self.key_mangler: keys = list(map(lambda key: self.key_mangler(key), keys)) backend_values = self.backend.get_multi(keys) _unexpired_value_fn = self._unexpired_value_fn( expiration_time, ignore_expiration) return [ value.payload if value is not NO_VALUE else value for value in ( _unexpired_value_fn(value) for value in backend_values ) ] def get_or_create( self, key, creator, expiration_time=None, should_cache_fn=None): """Return a cached value based on the given key. If the value does not exist or is considered to be expired based on its creation time, the given creation function may or may not be used to recreate the value and persist the newly generated value in the cache. Whether or not the function is used depends on if the *dogpile lock* can be acquired or not. If it can't, it means a different thread or process is already running a creation function for this key against the cache. When the dogpile lock cannot be acquired, the method will block if no previous value is available, until the lock is released and a new value available. If a previous value is available, that value is returned immediately without blocking. If the :meth:`.invalidate` method has been called, and the retrieved value's timestamp is older than the invalidation timestamp, the value is unconditionally prevented from being returned. The method will attempt to acquire the dogpile lock to generate a new value, or will wait until the lock is released to return the new value. .. versionchanged:: 0.3.0 The value is unconditionally regenerated if the creation time is older than the last call to :meth:`.invalidate`. :param key: Key to be retrieved. While it's typical for a key to be a string, it is ultimately passed directly down to the cache backend, before being optionally processed by the key_mangler function, so can be of any type recognized by the backend or by the key_mangler function, if present. :param creator: function which creates a new value. :param expiration_time: optional expiration time which will overide the expiration time already configured on this :class:`.CacheRegion` if not None. To set no expiration, use the value -1. :param should_cache_fn: optional callable function which will receive the value returned by the "creator", and will then return True or False, indicating if the value should actually be cached or not. If it returns False, the value is still returned, but isn't cached. E.g.:: def dont_cache_none(value): return value is not None value = region.get_or_create("some key", create_value, should_cache_fn=dont_cache_none) Above, the function returns the value of create_value() if the cache is invalid, however if the return value is None, it won't be cached. .. versionadded:: 0.4.3 .. seealso:: :meth:`.CacheRegion.cache_on_arguments` - applies :meth:`.get_or_create` to any function using a decorator. :meth:`.CacheRegion.get_or_create_multi` - multiple key/value version """ orig_key = key if self.key_mangler: key = self.key_mangler(key) if expiration_time is None: expiration_time = self.expiration_time if (expiration_time is None and self.region_invalidator.was_soft_invalidated()): raise exception.DogpileCacheException( "Non-None expiration time required " "for soft invalidation") if expiration_time == -1: expiration_time = None if self.async_creation_runner: else: async_creator = None with Lock( self._mutex(key), gen_value, get_value, expiration_time, async_creator) as value: return value def get_or_create_multi( self, keys, creator, expiration_time=None, should_cache_fn=None): """Return a sequence of cached values based on a sequence of keys. The behavior for generation of values based on keys corresponds to that of :meth:`.Region.get_or_create`, with the exception that the ``creator()`` function may be asked to generate any subset of the given keys. The list of keys to be generated is passed to ``creator()``, and ``creator()`` should return the generated values as a sequence corresponding to the order of the keys. The method uses the same approach as :meth:`.Region.get_multi` and :meth:`.Region.set_multi` to get and set values from the backend. If you are using a :class:`.CacheBackend` or :class:`.ProxyBackend` that modifies values, take note this function invokes ``.set_multi()`` for newly generated values using the same values it returns to the calling function. A correct implementation of ``.set_multi()`` will not modify values in-place on the submitted ``mapping`` dict. :param keys: Sequence of keys to be retrieved. :param creator: function which accepts a sequence of keys and returns a sequence of new values. :param expiration_time: optional expiration time which will overide the expiration time already configured on this :class:`.CacheRegion` if not None. To set no expiration, use the value -1. :param should_cache_fn: optional callable function which will receive each value returned by the "creator", and will then return True or False, indicating if the value should actually be cached or not. If it returns False, the value is still returned, but isn't cached. .. versionadded:: 0.5.0 .. seealso:: :meth:`.CacheRegion.cache_multi_on_arguments` :meth:`.CacheRegion.get_or_create` """ if expiration_time is None: expiration_time = self.expiration_time if (expiration_time is None and self.region_invalidator.was_soft_invalidated()): raise exception.DogpileCacheException( "Non-None expiration time required " "for soft invalidation") if expiration_time == -1: expiration_time = None mutexes = {} sorted_unique_keys = sorted(set(keys)) if self.key_mangler: mangled_keys = [self.key_mangler(k) for k in sorted_unique_keys] else: mangled_keys = sorted_unique_keys orig_to_mangled = dict(zip(sorted_unique_keys, mangled_keys)) values = dict(zip(mangled_keys, self.backend.get_multi(mangled_keys))) for orig_key, mangled_key in orig_to_mangled.items(): with Lock( self._mutex(mangled_key), gen_value, lambda: get_value(mangled_key), expiration_time, async_creator=lambda mutex: async_creator(orig_key, mutex) ): pass try: if mutexes: # sort the keys, the idea is to prevent deadlocks. # though haven't been able to simulate one anyway. keys_to_get = sorted(mutexes) new_values = creator(*keys_to_get) values_w_created = dict( (orig_to_mangled[k], self._value(v)) for k, v in zip(keys_to_get, new_values) ) if not should_cache_fn: self.backend.set_multi(values_w_created) else: self.backend.set_multi(dict( (k, v) for k, v in values_w_created.items() if should_cache_fn(v[0]) )) values.update(values_w_created) return [values[orig_to_mangled[k]].payload for k in keys] finally: for mutex in mutexes.values(): mutex.release() def _value(self, value): """Return a :class:`.CachedValue` given a value.""" return CachedValue( value, { "ct": time.time(), "v": value_version }) def set(self, key, value): """Place a new value in the cache under the given key.""" if self.key_mangler: key = self.key_mangler(key) self.backend.set(key, self._value(value)) def set_multi(self, mapping): """Place new values in the cache under the given keys. .. versionadded:: 0.5.0 """ if not mapping: return if self.key_mangler: mapping = dict(( self.key_mangler(k), self._value(v)) for k, v in mapping.items()) else: mapping = dict((k, self._value(v)) for k, v in mapping.items()) self.backend.set_multi(mapping) def delete(self, key): """Remove a value from the cache. This operation is idempotent (can be called multiple times, or on a non-existent key, safely) """ if self.key_mangler: key = self.key_mangler(key) self.backend.delete(key) def delete_multi(self, keys): """Remove multiple values from the cache. This operation is idempotent (can be called multiple times, or on a non-existent key, safely) .. versionadded:: 0.5.0 """ if self.key_mangler: keys = list(map(lambda key: self.key_mangler(key), keys)) self.backend.delete_multi(keys) def cache_on_arguments( self, namespace=None, expiration_time=None, should_cache_fn=None, to_str=compat.string_type, function_key_generator=None): """A function decorator that will cache the return value of the function using a key derived from the function itself and its arguments. The decorator internally makes use of the :meth:`.CacheRegion.get_or_create` method to access the cache and conditionally call the function. See that method for additional behavioral details. E.g.:: @someregion.cache_on_arguments() def generate_something(x, y): return somedatabase.query(x, y) The decorated function can then be called normally, where data will be pulled from the cache region unless a new value is needed:: result = generate_something(5, 6) The function is also given an attribute ``invalidate()``, which provides for invalidation of the value. Pass to ``invalidate()`` the same arguments you'd pass to the function itself to represent a particular value:: generate_something.invalidate(5, 6) Another attribute ``set()`` is added to provide extra caching possibilities relative to the function. This is a convenience method for :meth:`.CacheRegion.set` which will store a given value directly without calling the decorated function. The value to be cached is passed as the first argument, and the arguments which would normally be passed to the function should follow:: generate_something.set(3, 5, 6) The above example is equivalent to calling ``generate_something(5, 6)``, if the function were to produce the value ``3`` as the value to be cached. .. versionadded:: 0.4.1 Added ``set()`` method to decorated function. Similar to ``set()`` is ``refresh()``. This attribute will invoke the decorated function and populate a new value into the cache with the new value, as well as returning that value:: newvalue = generate_something.refresh(5, 6) .. versionadded:: 0.5.0 Added ``refresh()`` method to decorated function. Lastly, the ``get()`` method returns either the value cached for the given key, or the token ``NO_VALUE`` if no such key exists:: value = generate_something.get(5, 6) .. versionadded:: 0.5.3 Added ``get()`` method to decorated function. The default key generation will use the name of the function, the module name for the function, the arguments passed, as well as an optional "namespace" parameter in order to generate a cache key. Given a function ``one`` inside the module ``myapp.tools``:: @region.cache_on_arguments(namespace="foo") def one(a, b): return a + b Above, calling ``one(3, 4)`` will produce a cache key as follows:: myapp.tools:one|foo|3 4 The key generator will ignore an initial argument of ``self`` or ``cls``, making the decorator suitable (with caveats) for use with instance or class methods. Given the example:: class MyClass(object): @region.cache_on_arguments(namespace="foo") def one(self, a, b): return a + b The cache key above for ``MyClass().one(3, 4)`` will again produce the same cache key of ``myapp.tools:one|foo|3 4`` - the name ``self`` is skipped. The ``namespace`` parameter is optional, and is used normally to disambiguate two functions of the same name within the same module, as can occur when decorating instance or class methods as below:: class MyClass(object): @region.cache_on_arguments(namespace='MC') def somemethod(self, x, y): "" class MyOtherClass(object): @region.cache_on_arguments(namespace='MOC') def somemethod(self, x, y): "" Above, the ``namespace`` parameter disambiguates between ``somemethod`` on ``MyClass`` and ``MyOtherClass``. Python class declaration mechanics otherwise prevent the decorator from having awareness of the ``MyClass`` and ``MyOtherClass`` names, as the function is received by the decorator before it becomes an instance method. The function key generation can be entirely replaced on a per-region basis using the ``function_key_generator`` argument present on :func:`.make_region` and :class:`.CacheRegion`. If defaults to :func:`.function_key_generator`. :param namespace: optional string argument which will be established as part of the cache key. This may be needed to disambiguate functions of the same name within the same source file, such as those associated with classes - note that the decorator itself can't see the parent class on a function as the class is being declared. :param expiration_time: if not None, will override the normal expiration time. May be specified as a callable, taking no arguments, that returns a value to be used as the ``expiration_time``. This callable will be called whenever the decorated function itself is called, in caching or retrieving. Thus, this can be used to determine a *dynamic* expiration time for the cached function result. Example use cases include "cache the result until the end of the day, week or time period" and "cache until a certain date or time passes". .. versionchanged:: 0.5.0 ``expiration_time`` may be passed as a callable to :meth:`.CacheRegion.cache_on_arguments`. :param should_cache_fn: passed to :meth:`.CacheRegion.get_or_create`. .. versionadded:: 0.4.3 :param to_str: callable, will be called on each function argument in order to convert to a string. Defaults to ``str()``. If the function accepts non-ascii unicode arguments on Python 2.x, the ``unicode()`` builtin can be substituted, but note this will produce unicode cache keys which may require key mangling before reaching the cache. .. versionadded:: 0.5.0 :param function_key_generator: a function that will produce a "cache key". This function will supersede the one configured on the :class:`.CacheRegion` itself. .. versionadded:: 0.5.5 .. seealso:: :meth:`.CacheRegion.cache_multi_on_arguments` :meth:`.CacheRegion.get_or_create` """ expiration_time_is_callable = compat.callable(expiration_time) if function_key_generator is None: function_key_generator = self.function_key_generator return decorator def cache_multi_on_arguments( self, namespace=None, expiration_time=None, should_cache_fn=None, asdict=False, to_str=compat.string_type, function_multi_key_generator=None): """A function decorator that will cache multiple return values from the function using a sequence of keys derived from the function itself and the arguments passed to it. This method is the "multiple key" analogue to the :meth:`.CacheRegion.cache_on_arguments` method. Example:: @someregion.cache_multi_on_arguments() def generate_something(*keys): return [ somedatabase.query(key) for key in keys ] The decorated function can be called normally. The decorator will produce a list of cache keys using a mechanism similar to that of :meth:`.CacheRegion.cache_on_arguments`, combining the name of the function with the optional namespace and with the string form of each key. It will then consult the cache using the same mechanism as that of :meth:`.CacheRegion.get_multi` to retrieve all current values; the originally passed keys corresponding to those values which aren't generated or need regeneration will be assembled into a new argument list, and the decorated function is then called with that subset of arguments. The returned result is a list:: result = generate_something("key1", "key2", "key3") The decorator internally makes use of the :meth:`.CacheRegion.get_or_create_multi` method to access the cache and conditionally call the function. See that method for additional behavioral details. Unlike the :meth:`.CacheRegion.cache_on_arguments` method, :meth:`.CacheRegion.cache_multi_on_arguments` works only with a single function signature, one which takes a simple list of keys as arguments. Like :meth:`.CacheRegion.cache_on_arguments`, the decorated function is also provided with a ``set()`` method, which here accepts a mapping of keys and values to set in the cache:: generate_something.set({"k1": "value1", "k2": "value2", "k3": "value3"}) ...an ``invalidate()`` method, which has the effect of deleting the given sequence of keys using the same mechanism as that of :meth:`.CacheRegion.delete_multi`:: generate_something.invalidate("k1", "k2", "k3") ...a ``refresh()`` method, which will call the creation function, cache the new values, and return them:: values = generate_something.refresh("k1", "k2", "k3") ...and a ``get()`` method, which will return values based on the given arguments:: values = generate_something.get("k1", "k2", "k3") .. versionadded:: 0.5.3 Added ``get()`` method to decorated function. Parameters passed to :meth:`.CacheRegion.cache_multi_on_arguments` have the same meaning as those passed to :meth:`.CacheRegion.cache_on_arguments`. :param namespace: optional string argument which will be established as part of each cache key. :param expiration_time: if not None, will override the normal expiration time. May be passed as an integer or a callable. :param should_cache_fn: passed to :meth:`.CacheRegion.get_or_create_multi`. This function is given a value as returned by the creator, and only if it returns True will that value be placed in the cache. :param asdict: if ``True``, the decorated function should return its result as a dictionary of keys->values, and the final result of calling the decorated function will also be a dictionary. If left at its default value of ``False``, the decorated function should return its result as a list of values, and the final result of calling the decorated function will also be a list. When ``asdict==True`` if the dictionary returned by the decorated function is missing keys, those keys will not be cached. :param to_str: callable, will be called on each function argument in order to convert to a string. Defaults to ``str()``. If the function accepts non-ascii unicode arguments on Python 2.x, the ``unicode()`` builtin can be substituted, but note this will produce unicode cache keys which may require key mangling before reaching the cache. .. versionadded:: 0.5.0 :param function_multi_key_generator: a function that will produce a list of keys. This function will supersede the one configured on the :class:`.CacheRegion` itself. .. versionadded:: 0.5.5 .. seealso:: :meth:`.CacheRegion.cache_on_arguments` :meth:`.CacheRegion.get_or_create_multi` """ expiration_time_is_callable = compat.callable(expiration_time) if function_multi_key_generator is None: function_multi_key_generator = self.function_multi_key_generator return decorator def make_region(*arg, **kw): """Instantiate a new :class:`.CacheRegion`. Currently, :func:`.make_region` is a passthrough to :class:`.CacheRegion`. See that class for constructor arguments. """ return CacheRegion(*arg, **kw)
[ 6738, 11593, 37443, 834, 1330, 351, 62, 26090, 198, 6738, 11485, 1330, 13656, 11, 10664, 8081, 877, 341, 16922, 198, 6738, 11485, 22602, 1330, 6530, 8081, 4592, 198, 6738, 764, 1330, 6631, 198, 6738, 11485, 22602, 1330, 42636, 17401, 11, 16155, 1143, 62, 26745, 11, 31255, 344, 62, 8841, 62, 10414, 198, 6738, 764, 22602, 1330, 2163, 62, 2539, 62, 8612, 1352, 11, 2163, 62, 41684, 62, 2539, 62, 8612, 1352, 198, 6738, 764, 15042, 1330, 8005, 62, 39488, 11, 327, 2317, 11395, 198, 6738, 764, 36436, 1330, 38027, 7282, 437, 198, 6738, 11485, 22602, 1330, 8330, 198, 11748, 640, 198, 11748, 4818, 8079, 198, 6738, 3146, 1330, 7913, 198, 6738, 1257, 310, 10141, 1330, 27521, 198, 11748, 4704, 278, 198, 198, 62, 1891, 437, 62, 29356, 796, 42636, 17401, 7203, 9703, 79, 576, 13, 23870, 4943, 198, 30238, 62, 1891, 437, 796, 4808, 1891, 437, 62, 29356, 13, 30238, 198, 6738, 764, 1330, 736, 2412, 220, 1303, 645, 20402, 198, 198, 8367, 62, 9641, 796, 352, 198, 37811, 2025, 18253, 4624, 287, 262, 1058, 4871, 25, 44646, 34, 2317, 11395, 63, 198, 568, 326, 649, 6300, 286, 3290, 79, 576, 13, 23870, 460, 4886, 39986, 198, 27160, 422, 257, 2180, 11, 16196, 12, 259, 38532, 2196, 13, 198, 198, 37811, 628, 628, 198, 220, 220, 220, 825, 4808, 403, 1069, 6474, 62, 8367, 62, 22184, 7, 944, 11, 28385, 62, 2435, 11, 8856, 62, 1069, 10514, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 611, 8856, 62, 1069, 10514, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 37456, 1988, 25, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 28385, 62, 2435, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28385, 62, 2435, 796, 2116, 13, 1069, 10514, 62, 2435, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1459, 62, 2435, 796, 640, 13, 2435, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 62, 22184, 628, 220, 220, 220, 825, 651, 62, 41684, 7, 944, 11, 8251, 11, 28385, 62, 2435, 28, 14202, 11, 8856, 62, 1069, 10514, 28, 25101, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 3294, 3815, 422, 262, 12940, 11, 1912, 319, 262, 1813, 8251, 13, 628, 220, 220, 220, 220, 220, 220, 220, 16409, 3815, 355, 257, 1351, 12336, 262, 8251, 1813, 13, 628, 220, 220, 220, 220, 220, 220, 220, 412, 13, 70, 13, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 3814, 13, 1136, 62, 41684, 7, 14692, 505, 1600, 366, 11545, 1600, 366, 15542, 8973, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1675, 10385, 3815, 284, 257, 22155, 11, 779, 7559, 13344, 3419, 15506, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 14631, 505, 1600, 366, 11545, 1600, 366, 15542, 8973, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 3814, 13, 1136, 62, 41684, 7, 13083, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 22155, 796, 8633, 7, 13344, 7, 13083, 11, 3815, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 26363, 543, 3588, 470, 1944, 287, 262, 1351, 389, 4504, 355, 198, 220, 220, 220, 220, 220, 220, 220, 262, 7559, 15285, 62, 39488, 15506, 11241, 13, 220, 7559, 15285, 62, 39488, 15506, 47850, 284, 10352, 11, 198, 220, 220, 220, 220, 220, 220, 220, 475, 318, 4553, 422, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 14202, 15506, 284, 15714, 1022, 257, 39986, 1988, 286, 7559, 14202, 15506, 13, 628, 220, 220, 220, 220, 220, 220, 220, 2750, 4277, 11, 262, 17839, 28385, 640, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 44646, 30562, 47371, 47671, 393, 46596, 262, 28385, 198, 220, 220, 220, 220, 220, 220, 220, 640, 14275, 416, 262, 7559, 1069, 10514, 62, 2435, 15506, 4578, 11, 198, 220, 220, 220, 220, 220, 220, 220, 318, 6789, 1028, 262, 6282, 640, 286, 262, 29517, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 9051, 262, 1459, 640, 357, 292, 2098, 416, 7559, 2435, 13, 2435, 3419, 15506, 737, 198, 220, 220, 220, 220, 220, 220, 220, 1002, 39985, 11, 262, 39986, 1988, 318, 9514, 290, 262, 7559, 15285, 62, 39488, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 11241, 318, 4504, 13, 220, 46389, 262, 6056, 7559, 46430, 62, 1069, 10514, 28, 17821, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 17286, 274, 262, 28385, 640, 2198, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 20, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 8251, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 17635, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2539, 62, 76, 49910, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 1351, 7, 8899, 7, 50033, 1994, 25, 2116, 13, 2539, 62, 76, 49910, 7, 2539, 828, 8251, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 30203, 62, 27160, 796, 2116, 13, 1891, 437, 13, 1136, 62, 41684, 7, 13083, 8, 628, 220, 220, 220, 220, 220, 220, 220, 4808, 403, 1069, 6474, 62, 8367, 62, 22184, 796, 2116, 13557, 403, 1069, 6474, 62, 8367, 62, 22184, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28385, 62, 2435, 11, 8856, 62, 1069, 10514, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 13, 15577, 2220, 611, 1988, 318, 407, 8005, 62, 39488, 2073, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1988, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4808, 403, 1069, 6474, 62, 8367, 62, 22184, 7, 8367, 8, 329, 1988, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30203, 62, 27160, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 825, 651, 62, 273, 62, 17953, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 1994, 11, 13172, 11, 28385, 62, 2435, 28, 14202, 11, 815, 62, 23870, 62, 22184, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 39986, 1988, 1912, 319, 262, 1813, 1994, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 1988, 857, 407, 2152, 393, 318, 3177, 284, 307, 21350, 198, 220, 220, 220, 220, 220, 220, 220, 1912, 319, 663, 6282, 640, 11, 262, 1813, 198, 220, 220, 220, 220, 220, 220, 220, 6282, 2163, 743, 393, 743, 407, 307, 973, 284, 32049, 262, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 290, 21160, 262, 8308, 7560, 1988, 287, 262, 12940, 13, 628, 220, 220, 220, 220, 220, 220, 220, 10127, 393, 407, 262, 2163, 318, 973, 8338, 319, 611, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1635, 9703, 79, 576, 5793, 9, 460, 307, 9477, 393, 407, 13, 220, 1002, 340, 460, 470, 11, 340, 1724, 198, 220, 220, 220, 220, 220, 220, 220, 257, 1180, 4704, 393, 1429, 318, 1541, 2491, 257, 6282, 198, 220, 220, 220, 220, 220, 220, 220, 2163, 329, 428, 1994, 1028, 262, 12940, 13, 220, 1649, 262, 3290, 79, 576, 198, 220, 220, 220, 220, 220, 220, 220, 5793, 2314, 307, 9477, 11, 262, 2446, 481, 2512, 611, 645, 198, 220, 220, 220, 220, 220, 220, 220, 2180, 1988, 318, 1695, 11, 1566, 262, 5793, 318, 2716, 290, 198, 220, 220, 220, 220, 220, 220, 220, 257, 649, 1988, 1695, 13, 220, 1002, 257, 2180, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 318, 1695, 11, 326, 1988, 318, 4504, 3393, 1231, 12013, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 262, 1058, 76, 2788, 25, 44646, 259, 12102, 378, 63, 2446, 468, 587, 1444, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 262, 29517, 1988, 338, 41033, 318, 4697, 621, 262, 12515, 341, 198, 220, 220, 220, 220, 220, 220, 220, 41033, 11, 262, 1988, 318, 31776, 8736, 13351, 422, 198, 220, 220, 220, 220, 220, 220, 220, 852, 4504, 13, 220, 383, 2446, 481, 2230, 284, 12831, 262, 3290, 79, 576, 198, 220, 220, 220, 220, 220, 220, 220, 5793, 284, 7716, 257, 649, 1988, 11, 393, 481, 4043, 198, 220, 220, 220, 220, 220, 220, 220, 1566, 262, 5793, 318, 2716, 284, 1441, 262, 649, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 40985, 3712, 657, 13, 18, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 318, 31776, 8736, 16935, 515, 611, 262, 6282, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 318, 4697, 621, 262, 938, 869, 284, 1058, 76, 2788, 25, 44646, 259, 12102, 378, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 1994, 25, 7383, 284, 307, 29517, 13, 2893, 340, 338, 7226, 329, 257, 1994, 284, 307, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 4731, 11, 340, 318, 6165, 3804, 3264, 866, 284, 262, 12940, 30203, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 878, 852, 42976, 13686, 416, 262, 1994, 62, 76, 49910, 2163, 11, 523, 460, 198, 220, 220, 220, 220, 220, 220, 220, 220, 307, 286, 597, 2099, 8018, 416, 262, 30203, 393, 416, 262, 1994, 62, 76, 49910, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 11, 611, 1944, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 13172, 25, 2163, 543, 8075, 257, 649, 1988, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 28385, 62, 2435, 25, 11902, 28385, 640, 543, 481, 625, 485, 198, 220, 220, 220, 220, 220, 220, 220, 220, 262, 28385, 640, 1541, 17839, 319, 428, 1058, 4871, 25, 44646, 30562, 47371, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 6045, 13, 220, 220, 1675, 900, 645, 28385, 11, 779, 262, 1988, 532, 16, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 815, 62, 23870, 62, 22184, 25, 11902, 869, 540, 2163, 543, 481, 3328, 198, 220, 220, 220, 220, 220, 220, 220, 220, 262, 1988, 4504, 416, 262, 366, 45382, 1600, 290, 481, 788, 1441, 6407, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 11, 12739, 611, 262, 1988, 815, 1682, 307, 39986, 393, 407, 13, 220, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 340, 5860, 10352, 11, 262, 1988, 318, 991, 4504, 11, 475, 2125, 470, 39986, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 412, 13, 70, 13, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 17666, 62, 23870, 62, 23108, 7, 8367, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 318, 407, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 3814, 13, 1136, 62, 273, 62, 17953, 7203, 11246, 1994, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2251, 62, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 815, 62, 23870, 62, 22184, 28, 67, 756, 62, 23870, 62, 23108, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 23302, 11, 262, 2163, 5860, 262, 1988, 286, 2251, 62, 8367, 3419, 611, 198, 220, 220, 220, 220, 220, 220, 220, 220, 262, 12940, 318, 12515, 11, 2158, 611, 262, 1441, 1988, 318, 6045, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 340, 1839, 470, 307, 39986, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 19, 13, 18, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 23870, 62, 261, 62, 853, 2886, 63, 532, 8991, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 1136, 62, 273, 62, 17953, 63, 284, 597, 2163, 1262, 257, 11705, 1352, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 1136, 62, 273, 62, 17953, 62, 41684, 63, 532, 3294, 1994, 14, 8367, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2196, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 2539, 796, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2539, 62, 76, 49910, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 2116, 13, 2539, 62, 76, 49910, 7, 2539, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 28385, 62, 2435, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28385, 62, 2435, 796, 2116, 13, 1069, 10514, 62, 2435, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 1069, 10514, 62, 2435, 318, 6045, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36996, 62, 259, 12102, 1352, 13, 9776, 62, 4215, 62, 259, 12102, 515, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32942, 79, 576, 30562, 16922, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15419, 12, 14202, 28385, 640, 2672, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1640, 2705, 12515, 341, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 28385, 62, 2435, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28385, 62, 2435, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 292, 13361, 62, 38793, 62, 16737, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 62, 45382, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 351, 13656, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 21973, 1069, 7, 2539, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2429, 62, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 651, 62, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28385, 62, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 62, 45382, 8, 355, 1988, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 1988, 628, 220, 220, 220, 825, 651, 62, 273, 62, 17953, 62, 41684, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 8251, 11, 13172, 11, 28385, 62, 2435, 28, 14202, 11, 815, 62, 23870, 62, 22184, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 8379, 286, 39986, 3815, 1912, 319, 257, 8379, 286, 8251, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 4069, 329, 5270, 286, 3815, 1912, 319, 8251, 24866, 198, 220, 220, 220, 220, 220, 220, 220, 284, 326, 286, 1058, 76, 2788, 25, 44646, 47371, 13, 1136, 62, 273, 62, 17953, 47671, 351, 262, 6631, 326, 198, 220, 220, 220, 220, 220, 220, 220, 262, 7559, 45382, 3419, 15506, 2163, 743, 307, 1965, 284, 7716, 597, 24637, 286, 198, 220, 220, 220, 220, 220, 220, 220, 262, 1813, 8251, 13, 220, 220, 383, 1351, 286, 8251, 284, 307, 7560, 318, 3804, 284, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 45382, 3419, 15506, 11, 290, 7559, 45382, 3419, 15506, 815, 1441, 262, 7560, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 355, 257, 8379, 11188, 284, 262, 1502, 286, 262, 8251, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 2446, 3544, 262, 976, 3164, 355, 1058, 76, 2788, 25, 44646, 47371, 13, 1136, 62, 41684, 63, 198, 220, 220, 220, 220, 220, 220, 220, 290, 1058, 76, 2788, 25, 44646, 47371, 13, 2617, 62, 41684, 63, 284, 651, 290, 900, 3815, 422, 262, 198, 220, 220, 220, 220, 220, 220, 220, 30203, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1002, 345, 389, 1262, 257, 1058, 4871, 25, 44646, 30562, 7282, 437, 63, 393, 1058, 4871, 25, 44646, 44148, 7282, 437, 63, 198, 220, 220, 220, 220, 220, 220, 220, 326, 953, 6945, 3815, 11, 1011, 3465, 428, 2163, 800, 3369, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 13, 2617, 62, 41684, 3419, 15506, 329, 8308, 7560, 3815, 1262, 262, 976, 3815, 340, 198, 220, 220, 220, 220, 220, 220, 220, 5860, 284, 262, 4585, 2163, 13, 317, 3376, 7822, 286, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 13, 2617, 62, 41684, 3419, 15506, 481, 407, 13096, 3815, 287, 12, 5372, 319, 262, 8948, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 76, 5912, 15506, 8633, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 8251, 25, 45835, 286, 8251, 284, 307, 29517, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 13172, 25, 2163, 543, 18178, 257, 8379, 286, 8251, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 257, 8379, 286, 649, 3815, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 28385, 62, 2435, 25, 11902, 28385, 640, 543, 481, 625, 485, 198, 220, 220, 220, 220, 220, 220, 220, 220, 262, 28385, 640, 1541, 17839, 319, 428, 1058, 4871, 25, 44646, 30562, 47371, 63, 198, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 6045, 13, 220, 220, 1675, 900, 645, 28385, 11, 779, 262, 1988, 532, 16, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 815, 62, 23870, 62, 22184, 25, 11902, 869, 540, 2163, 543, 481, 3328, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1123, 1988, 4504, 416, 262, 366, 45382, 1600, 290, 481, 788, 1441, 6407, 393, 198, 220, 220, 220, 220, 220, 220, 220, 220, 10352, 11, 12739, 611, 262, 1988, 815, 1682, 307, 39986, 393, 407, 13, 220, 1002, 198, 220, 220, 220, 220, 220, 220, 220, 220, 340, 5860, 10352, 11, 262, 1988, 318, 991, 4504, 11, 475, 2125, 470, 39986, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 20, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 766, 14508, 3712, 628, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 23870, 62, 41684, 62, 261, 62, 853, 2886, 63, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 1136, 62, 273, 62, 17953, 63, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 28385, 62, 2435, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28385, 62, 2435, 796, 2116, 13, 1069, 10514, 62, 2435, 628, 220, 220, 220, 220, 220, 220, 220, 611, 357, 1069, 10514, 62, 2435, 318, 6045, 290, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 36996, 62, 259, 12102, 1352, 13, 9776, 62, 4215, 62, 259, 12102, 515, 3419, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5298, 6631, 13, 32942, 79, 576, 30562, 16922, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 15419, 12, 14202, 28385, 640, 2672, 366, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 1640, 2705, 12515, 341, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 611, 28385, 62, 2435, 6624, 532, 16, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28385, 62, 2435, 796, 6045, 628, 220, 220, 220, 220, 220, 220, 220, 4517, 1069, 274, 796, 23884, 628, 220, 220, 220, 220, 220, 220, 220, 23243, 62, 34642, 62, 13083, 796, 23243, 7, 2617, 7, 13083, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2539, 62, 76, 49910, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45663, 992, 62, 13083, 796, 685, 944, 13, 2539, 62, 76, 49910, 7, 74, 8, 329, 479, 287, 23243, 62, 34642, 62, 13083, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 45663, 992, 62, 13083, 796, 23243, 62, 34642, 62, 13083, 628, 220, 220, 220, 220, 220, 220, 220, 1796, 62, 1462, 62, 76, 22393, 796, 8633, 7, 13344, 7, 82, 9741, 62, 34642, 62, 13083, 11, 45663, 992, 62, 13083, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 8633, 7, 13344, 7, 76, 22393, 62, 13083, 11, 2116, 13, 1891, 437, 13, 1136, 62, 41684, 7, 76, 22393, 62, 13083, 22305, 628, 220, 220, 220, 220, 220, 220, 220, 329, 1796, 62, 2539, 11, 45663, 992, 62, 2539, 287, 1796, 62, 1462, 62, 76, 22393, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 351, 13656, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13557, 21973, 1069, 7, 76, 22393, 62, 2539, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2429, 62, 8367, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 37456, 25, 651, 62, 8367, 7, 76, 22393, 62, 2539, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28385, 62, 2435, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 30351, 62, 45382, 28, 50033, 4517, 1069, 25, 30351, 62, 45382, 7, 11612, 62, 2539, 11, 4517, 1069, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15179, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1208, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 4517, 1069, 274, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 3297, 262, 8251, 11, 262, 2126, 318, 284, 2948, 2636, 28860, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 996, 4398, 470, 587, 1498, 284, 29308, 530, 6949, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8251, 62, 1462, 62, 1136, 796, 23243, 7, 21973, 1069, 274, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 62, 27160, 796, 13172, 46491, 13083, 62, 1462, 62, 1136, 8, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 62, 86, 62, 25598, 796, 8633, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 11612, 62, 1462, 62, 76, 22393, 58, 74, 4357, 2116, 13557, 8367, 7, 85, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 19974, 7, 13083, 62, 1462, 62, 1136, 11, 649, 62, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 815, 62, 23870, 62, 22184, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1891, 437, 13, 2617, 62, 41684, 7, 27160, 62, 86, 62, 25598, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1891, 437, 13, 2617, 62, 41684, 7, 11600, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 74, 11, 410, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 3815, 62, 86, 62, 25598, 13, 23814, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 815, 62, 23870, 62, 22184, 7, 85, 58, 15, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 13, 19119, 7, 27160, 62, 86, 62, 25598, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 27160, 58, 11612, 62, 1462, 62, 76, 22393, 58, 74, 60, 4083, 15577, 2220, 329, 479, 287, 8251, 60, 198, 220, 220, 220, 220, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 4517, 1069, 287, 4517, 1069, 274, 13, 27160, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4517, 1069, 13, 20979, 3419, 628, 220, 220, 220, 825, 4808, 8367, 7, 944, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 13615, 257, 1058, 4871, 25, 44646, 34, 2317, 11395, 63, 1813, 257, 1988, 526, 15931, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 327, 2317, 11395, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 310, 1298, 640, 13, 2435, 22784, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 85, 1298, 1988, 62, 9641, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 32092, 628, 220, 220, 220, 825, 900, 7, 944, 11, 1994, 11, 1988, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27271, 257, 649, 1988, 287, 262, 12940, 739, 262, 1813, 1994, 526, 15931, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2539, 62, 76, 49910, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 2116, 13, 2539, 62, 76, 49910, 7, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1891, 437, 13, 2617, 7, 2539, 11, 2116, 13557, 8367, 7, 8367, 4008, 628, 220, 220, 220, 825, 900, 62, 41684, 7, 944, 11, 16855, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27271, 649, 3815, 287, 262, 12940, 739, 262, 1813, 8251, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 20, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 16855, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2539, 62, 76, 49910, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16855, 796, 8633, 19510, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2539, 62, 76, 49910, 7, 74, 828, 2116, 13557, 8367, 7, 85, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 479, 11, 410, 287, 16855, 13, 23814, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16855, 796, 8633, 19510, 74, 11, 2116, 13557, 8367, 7, 85, 4008, 329, 479, 11, 410, 287, 16855, 13, 23814, 28955, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1891, 437, 13, 2617, 62, 41684, 7, 76, 5912, 8, 628, 220, 220, 220, 825, 12233, 7, 944, 11, 1994, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27914, 257, 1988, 422, 262, 12940, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 4905, 318, 4686, 368, 13059, 298, 357, 5171, 307, 1444, 3294, 1661, 11, 393, 319, 257, 198, 220, 220, 220, 220, 220, 220, 220, 1729, 12, 32786, 1994, 11, 11512, 8, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2539, 62, 76, 49910, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1994, 796, 2116, 13, 2539, 62, 76, 49910, 7, 2539, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1891, 437, 13, 33678, 7, 2539, 8, 628, 220, 220, 220, 825, 12233, 62, 41684, 7, 944, 11, 8251, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 27914, 3294, 3815, 422, 262, 12940, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 4905, 318, 4686, 368, 13059, 298, 357, 5171, 307, 1444, 3294, 1661, 11, 393, 319, 257, 198, 220, 220, 220, 220, 220, 220, 220, 1729, 12, 32786, 1994, 11, 11512, 8, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 20, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2116, 13, 2539, 62, 76, 49910, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8251, 796, 1351, 7, 8899, 7, 50033, 1994, 25, 2116, 13, 2539, 62, 76, 49910, 7, 2539, 828, 8251, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 1891, 437, 13, 33678, 62, 41684, 7, 13083, 8, 628, 220, 220, 220, 825, 12940, 62, 261, 62, 853, 2886, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 25745, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28385, 62, 2435, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 815, 62, 23870, 62, 22184, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 284, 62, 2536, 28, 5589, 265, 13, 8841, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 2539, 62, 8612, 1352, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 32, 2163, 11705, 1352, 326, 481, 12940, 262, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 286, 262, 2163, 1262, 257, 1994, 10944, 422, 262, 198, 220, 220, 220, 220, 220, 220, 220, 2163, 2346, 290, 663, 7159, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 11705, 1352, 20947, 1838, 779, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 1136, 62, 273, 62, 17953, 63, 2446, 284, 1895, 262, 198, 220, 220, 220, 220, 220, 220, 220, 12940, 290, 4006, 453, 869, 262, 2163, 13, 220, 4091, 326, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 329, 3224, 17211, 3307, 13, 628, 220, 220, 220, 220, 220, 220, 220, 412, 13, 70, 13, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 11246, 36996, 13, 23870, 62, 261, 62, 853, 2886, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 7716, 62, 18927, 7, 87, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 3870, 276, 265, 5754, 13, 22766, 7, 87, 11, 331, 8, 628, 220, 220, 220, 220, 220, 220, 220, 383, 24789, 2163, 460, 788, 307, 1444, 7685, 11, 810, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 481, 307, 5954, 422, 262, 12940, 3814, 4556, 257, 649, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 318, 2622, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 7716, 62, 18927, 7, 20, 11, 718, 8, 628, 220, 220, 220, 220, 220, 220, 220, 383, 2163, 318, 635, 1813, 281, 11688, 7559, 259, 12102, 378, 3419, 15506, 11, 543, 198, 220, 220, 220, 220, 220, 220, 220, 3769, 329, 12515, 341, 286, 262, 1988, 13, 220, 6251, 284, 7559, 259, 12102, 378, 3419, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 262, 976, 7159, 345, 1549, 1208, 284, 262, 2163, 2346, 284, 2380, 198, 220, 220, 220, 220, 220, 220, 220, 257, 1948, 1988, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7716, 62, 18927, 13, 259, 12102, 378, 7, 20, 11, 718, 8, 628, 220, 220, 220, 220, 220, 220, 220, 6023, 11688, 7559, 2617, 3419, 15506, 318, 2087, 284, 2148, 3131, 40918, 198, 220, 220, 220, 220, 220, 220, 220, 12779, 3585, 284, 262, 2163, 13, 220, 220, 770, 318, 257, 15607, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 329, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 2617, 63, 543, 481, 3650, 257, 1813, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 3264, 1231, 4585, 262, 24789, 2163, 13, 198, 220, 220, 220, 220, 220, 220, 220, 383, 1988, 284, 307, 39986, 318, 3804, 355, 262, 717, 4578, 11, 290, 262, 198, 220, 220, 220, 220, 220, 220, 220, 7159, 543, 561, 7685, 307, 3804, 284, 262, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 815, 1061, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7716, 62, 18927, 13, 2617, 7, 18, 11, 642, 11, 718, 8, 628, 220, 220, 220, 220, 220, 220, 220, 383, 2029, 1672, 318, 7548, 284, 4585, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 8612, 378, 62, 18927, 7, 20, 11, 718, 8, 15506, 11, 611, 262, 2163, 547, 284, 4439, 198, 220, 220, 220, 220, 220, 220, 220, 262, 1988, 7559, 18, 15506, 355, 262, 1988, 284, 307, 39986, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 19, 13, 16, 10687, 7559, 2617, 3419, 15506, 2446, 284, 24789, 2163, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11014, 284, 7559, 2617, 3419, 15506, 318, 7559, 5420, 3447, 3419, 15506, 13, 220, 220, 770, 11688, 481, 198, 220, 220, 220, 220, 220, 220, 220, 26342, 262, 24789, 2163, 290, 48040, 257, 649, 1988, 656, 198, 220, 220, 220, 220, 220, 220, 220, 262, 12940, 351, 262, 649, 1988, 11, 355, 880, 355, 8024, 326, 1988, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 649, 8367, 796, 7716, 62, 18927, 13, 5420, 3447, 7, 20, 11, 718, 8, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 20, 13, 15, 10687, 7559, 5420, 3447, 3419, 15506, 2446, 284, 24789, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 13, 628, 220, 220, 220, 220, 220, 220, 220, 36778, 11, 262, 7559, 1136, 3419, 15506, 2446, 5860, 2035, 262, 1988, 39986, 198, 220, 220, 220, 220, 220, 220, 220, 329, 262, 1813, 1994, 11, 393, 262, 11241, 7559, 15285, 62, 39488, 15506, 611, 645, 884, 1994, 198, 220, 220, 220, 220, 220, 220, 220, 7160, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 7716, 62, 18927, 13, 1136, 7, 20, 11, 718, 8, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 20, 13, 18, 10687, 7559, 1136, 3419, 15506, 2446, 284, 24789, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 4277, 1994, 5270, 481, 779, 262, 1438, 198, 220, 220, 220, 220, 220, 220, 220, 286, 262, 2163, 11, 262, 8265, 1438, 329, 262, 2163, 11, 198, 220, 220, 220, 220, 220, 220, 220, 262, 7159, 3804, 11, 355, 880, 355, 281, 11902, 366, 14933, 10223, 1, 198, 220, 220, 220, 220, 220, 220, 220, 11507, 287, 1502, 284, 7716, 257, 12940, 1994, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11259, 257, 2163, 7559, 505, 15506, 2641, 262, 8265, 198, 220, 220, 220, 220, 220, 220, 220, 7559, 1820, 1324, 13, 31391, 15506, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 36996, 13, 23870, 62, 261, 62, 853, 2886, 7, 14933, 10223, 2625, 21943, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 530, 7, 64, 11, 275, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 257, 1343, 275, 628, 220, 220, 220, 220, 220, 220, 220, 23302, 11, 4585, 7559, 505, 7, 18, 11, 604, 8, 15506, 481, 4439, 257, 198, 220, 220, 220, 220, 220, 220, 220, 12940, 1994, 355, 5679, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 616, 1324, 13, 31391, 25, 505, 91, 21943, 91, 18, 604, 628, 220, 220, 220, 220, 220, 220, 220, 383, 1994, 17301, 481, 8856, 281, 4238, 4578, 198, 220, 220, 220, 220, 220, 220, 220, 286, 7559, 944, 15506, 393, 7559, 565, 82, 15506, 11, 1642, 262, 11705, 1352, 11080, 198, 220, 220, 220, 220, 220, 220, 220, 357, 4480, 47155, 8, 329, 779, 351, 4554, 393, 1398, 5050, 13, 198, 220, 220, 220, 220, 220, 220, 220, 11259, 262, 1672, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 2011, 9487, 7, 15252, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 36996, 13, 23870, 62, 261, 62, 853, 2886, 7, 14933, 10223, 2625, 21943, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 530, 7, 944, 11, 257, 11, 275, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 257, 1343, 275, 628, 220, 220, 220, 220, 220, 220, 220, 383, 12940, 1994, 2029, 329, 7559, 3666, 9487, 22446, 505, 7, 18, 11, 604, 8, 15506, 481, 198, 220, 220, 220, 220, 220, 220, 220, 757, 4439, 262, 976, 12940, 1994, 286, 7559, 1820, 1324, 13, 31391, 25, 505, 91, 21943, 91, 18, 604, 15506, 532, 198, 220, 220, 220, 220, 220, 220, 220, 262, 1438, 7559, 944, 15506, 318, 26684, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 7559, 14933, 10223, 15506, 11507, 318, 11902, 11, 290, 318, 973, 198, 220, 220, 220, 220, 220, 220, 220, 7685, 284, 595, 4131, 328, 4985, 734, 5499, 286, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 1626, 262, 976, 8265, 11, 355, 460, 3051, 618, 11705, 803, 198, 220, 220, 220, 220, 220, 220, 220, 4554, 393, 1398, 5050, 355, 2174, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 2011, 9487, 7, 15252, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 36996, 13, 23870, 62, 261, 62, 853, 2886, 7, 14933, 10223, 11639, 9655, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 3870, 19261, 2065, 7, 944, 11, 2124, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 2011, 6395, 9487, 7, 15252, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 36996, 13, 23870, 62, 261, 62, 853, 2886, 7, 14933, 10223, 11639, 44, 4503, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 3870, 19261, 2065, 7, 944, 11, 2124, 11, 331, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13538, 628, 220, 220, 220, 220, 220, 220, 220, 23302, 11, 262, 7559, 14933, 10223, 15506, 11507, 595, 4131, 328, 12632, 198, 220, 220, 220, 220, 220, 220, 220, 1022, 7559, 82, 296, 19261, 2065, 15506, 319, 7559, 3666, 9487, 15506, 290, 7559, 3666, 6395, 9487, 15506, 13, 198, 220, 220, 220, 220, 220, 220, 220, 11361, 1398, 14305, 12933, 4306, 2948, 198, 220, 220, 220, 220, 220, 220, 220, 262, 11705, 1352, 422, 1719, 9359, 286, 262, 7559, 3666, 9487, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 290, 7559, 3666, 6395, 9487, 15506, 3891, 11, 355, 262, 2163, 318, 2722, 198, 220, 220, 220, 220, 220, 220, 220, 416, 262, 11705, 1352, 878, 340, 4329, 281, 4554, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 2163, 1994, 5270, 460, 307, 5000, 6928, 198, 220, 220, 220, 220, 220, 220, 220, 319, 257, 583, 12, 36996, 4308, 1262, 262, 7559, 8818, 62, 2539, 62, 8612, 1352, 15506, 198, 220, 220, 220, 220, 220, 220, 220, 4578, 1944, 319, 1058, 20786, 25, 44646, 15883, 62, 36996, 63, 290, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 44646, 30562, 47371, 44646, 1002, 26235, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 20786, 25, 44646, 8818, 62, 2539, 62, 8612, 1352, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 25745, 25, 11902, 4731, 4578, 543, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 4920, 355, 636, 286, 262, 12940, 1994, 13, 220, 220, 770, 743, 307, 2622, 198, 220, 220, 220, 220, 220, 220, 220, 220, 284, 595, 4131, 328, 4985, 5499, 286, 262, 976, 1438, 1626, 262, 976, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2723, 2393, 11, 884, 355, 883, 198, 220, 220, 220, 220, 220, 220, 220, 220, 3917, 351, 6097, 532, 3465, 326, 262, 11705, 1352, 2346, 198, 220, 220, 220, 220, 220, 220, 220, 220, 460, 470, 766, 262, 2560, 1398, 319, 257, 2163, 355, 262, 1398, 318, 198, 220, 220, 220, 220, 220, 220, 220, 220, 852, 6875, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 28385, 62, 2435, 25, 611, 407, 6045, 11, 481, 20957, 262, 3487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 28385, 640, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 1737, 307, 7368, 355, 257, 869, 540, 11, 2263, 645, 7159, 11, 326, 198, 220, 220, 220, 220, 220, 220, 220, 220, 5860, 257, 1988, 284, 307, 973, 355, 262, 7559, 1069, 10514, 62, 2435, 15506, 13, 770, 869, 540, 198, 220, 220, 220, 220, 220, 220, 220, 220, 481, 307, 1444, 8797, 262, 24789, 2163, 2346, 318, 1444, 11, 287, 198, 220, 220, 220, 220, 220, 220, 220, 220, 40918, 393, 50122, 13, 6660, 11, 428, 460, 307, 973, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 5004, 257, 1635, 67, 28995, 9, 28385, 640, 329, 262, 39986, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 13, 220, 17934, 779, 2663, 2291, 366, 23870, 262, 1255, 1566, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 886, 286, 262, 1110, 11, 1285, 393, 640, 2278, 1, 290, 366, 23870, 1566, 257, 1728, 3128, 198, 220, 220, 220, 220, 220, 220, 220, 220, 393, 640, 8318, 1911, 628, 220, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 40985, 3712, 657, 13, 20, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 1069, 10514, 62, 2435, 15506, 743, 307, 3804, 355, 257, 869, 540, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 23870, 62, 261, 62, 853, 2886, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 815, 62, 23870, 62, 22184, 25, 3804, 284, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 1136, 62, 273, 62, 17953, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 19, 13, 18, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 284, 62, 2536, 25, 869, 540, 11, 481, 307, 1444, 319, 1123, 2163, 4578, 198, 220, 220, 220, 220, 220, 220, 220, 220, 287, 1502, 284, 10385, 284, 257, 4731, 13, 220, 2896, 13185, 284, 7559, 2536, 3419, 15506, 13, 220, 1002, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 18178, 1729, 12, 292, 979, 72, 28000, 1098, 7159, 319, 11361, 362, 13, 87, 11, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 46903, 1098, 3419, 15506, 3170, 259, 460, 307, 31601, 11, 475, 3465, 428, 481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 4439, 28000, 1098, 12940, 8251, 543, 743, 2421, 1994, 582, 40799, 878, 198, 220, 220, 220, 220, 220, 220, 220, 220, 8978, 262, 12940, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 20, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2163, 62, 2539, 62, 8612, 1352, 25, 257, 2163, 326, 481, 4439, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 366, 23870, 1994, 1911, 770, 2163, 481, 22754, 18654, 262, 530, 17839, 319, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 44646, 30562, 47371, 63, 2346, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 20, 13, 20, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 23870, 62, 41684, 62, 261, 62, 853, 2886, 63, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 1136, 62, 273, 62, 17953, 63, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28385, 62, 2435, 62, 271, 62, 13345, 540, 796, 8330, 13, 13345, 540, 7, 1069, 10514, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2163, 62, 2539, 62, 8612, 1352, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 2539, 62, 8612, 1352, 796, 2116, 13, 8818, 62, 2539, 62, 8612, 1352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 11705, 1352, 628, 220, 220, 220, 825, 12940, 62, 41684, 62, 261, 62, 853, 2886, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 11, 25745, 28, 14202, 11, 28385, 62, 2435, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 815, 62, 23870, 62, 22184, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 355, 11600, 28, 25101, 11, 284, 62, 2536, 28, 5589, 265, 13, 8841, 62, 4906, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 41684, 62, 2539, 62, 8612, 1352, 28, 14202, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 37227, 32, 2163, 11705, 1352, 326, 481, 12940, 3294, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 3815, 422, 262, 2163, 1262, 257, 8379, 286, 8251, 10944, 422, 262, 198, 220, 220, 220, 220, 220, 220, 220, 2163, 2346, 290, 262, 7159, 3804, 284, 340, 13, 628, 220, 220, 220, 220, 220, 220, 220, 770, 2446, 318, 262, 366, 48101, 1994, 1, 45304, 284, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 23870, 62, 261, 62, 853, 2886, 63, 2446, 13, 628, 220, 220, 220, 220, 220, 220, 220, 17934, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2488, 11246, 36996, 13, 23870, 62, 41684, 62, 261, 62, 853, 2886, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 825, 7716, 62, 18927, 46491, 13083, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 685, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3870, 276, 265, 5754, 13, 22766, 7, 2539, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1994, 287, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2361, 628, 220, 220, 220, 220, 220, 220, 220, 383, 24789, 2163, 460, 307, 1444, 7685, 13, 220, 383, 11705, 1352, 198, 220, 220, 220, 220, 220, 220, 220, 481, 4439, 257, 1351, 286, 12940, 8251, 1262, 257, 9030, 2092, 284, 198, 220, 220, 220, 220, 220, 220, 220, 326, 286, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 23870, 62, 261, 62, 853, 2886, 47671, 19771, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1438, 286, 262, 2163, 351, 262, 11902, 25745, 290, 351, 262, 198, 220, 220, 220, 220, 220, 220, 220, 4731, 1296, 286, 1123, 1994, 13, 220, 632, 481, 788, 5725, 262, 12940, 1262, 198, 220, 220, 220, 220, 220, 220, 220, 262, 976, 9030, 355, 326, 286, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 1136, 62, 41684, 63, 198, 220, 220, 220, 220, 220, 220, 220, 284, 19818, 477, 1459, 3815, 26, 262, 6198, 3804, 8251, 198, 220, 220, 220, 220, 220, 220, 220, 11188, 284, 883, 3815, 543, 3588, 470, 7560, 393, 761, 198, 220, 220, 220, 220, 220, 220, 220, 27597, 481, 307, 16030, 656, 257, 649, 4578, 1351, 11, 290, 198, 220, 220, 220, 220, 220, 220, 220, 262, 24789, 2163, 318, 788, 1444, 351, 326, 24637, 286, 198, 220, 220, 220, 220, 220, 220, 220, 7159, 13, 628, 220, 220, 220, 220, 220, 220, 220, 383, 4504, 1255, 318, 257, 1351, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 7716, 62, 18927, 7203, 2539, 16, 1600, 366, 2539, 17, 1600, 366, 2539, 18, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 383, 11705, 1352, 20947, 1838, 779, 286, 262, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 1136, 62, 273, 62, 17953, 62, 41684, 63, 2446, 284, 1895, 262, 198, 220, 220, 220, 220, 220, 220, 220, 12940, 290, 4006, 453, 869, 262, 2163, 13, 220, 4091, 326, 198, 220, 220, 220, 220, 220, 220, 220, 2446, 329, 3224, 17211, 3307, 13, 628, 220, 220, 220, 220, 220, 220, 220, 12101, 262, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 23870, 62, 261, 62, 853, 2886, 63, 2446, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 23870, 62, 41684, 62, 261, 62, 853, 2886, 63, 2499, 691, 351, 198, 220, 220, 220, 220, 220, 220, 220, 257, 2060, 2163, 9877, 11, 530, 543, 2753, 257, 2829, 1351, 286, 198, 220, 220, 220, 220, 220, 220, 220, 8251, 355, 7159, 13, 628, 220, 220, 220, 220, 220, 220, 220, 4525, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 23870, 62, 261, 62, 853, 2886, 47671, 262, 24789, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 318, 635, 2810, 351, 257, 7559, 2617, 3419, 15506, 2446, 11, 543, 994, 18178, 257, 198, 220, 220, 220, 220, 220, 220, 220, 16855, 286, 8251, 290, 3815, 284, 900, 287, 262, 12940, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7716, 62, 18927, 13, 2617, 7, 4895, 74, 16, 1298, 366, 8367, 16, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 366, 74, 17, 1298, 366, 8367, 17, 1600, 366, 74, 18, 1298, 366, 8367, 18, 20662, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2644, 272, 7559, 259, 12102, 378, 3419, 15506, 2446, 11, 543, 468, 262, 1245, 286, 34817, 198, 220, 220, 220, 220, 220, 220, 220, 262, 1813, 8379, 286, 8251, 1262, 262, 976, 9030, 355, 326, 286, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 33678, 62, 41684, 63, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7716, 62, 18927, 13, 259, 12102, 378, 7203, 74, 16, 1600, 366, 74, 17, 1600, 366, 74, 18, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 2644, 64, 7559, 5420, 3447, 3419, 15506, 2446, 11, 543, 481, 869, 262, 6282, 198, 220, 220, 220, 220, 220, 220, 220, 2163, 11, 12940, 262, 649, 3815, 11, 290, 1441, 606, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 7716, 62, 18927, 13, 5420, 3447, 7203, 74, 16, 1600, 366, 74, 17, 1600, 366, 74, 18, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 2644, 392, 257, 7559, 1136, 3419, 15506, 2446, 11, 543, 481, 1441, 3815, 198, 220, 220, 220, 220, 220, 220, 220, 1912, 319, 262, 1813, 7159, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3815, 796, 7716, 62, 18927, 13, 1136, 7203, 74, 16, 1600, 366, 74, 17, 1600, 366, 74, 18, 4943, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 20, 13, 18, 10687, 7559, 1136, 3419, 15506, 2446, 284, 24789, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 13, 628, 220, 220, 220, 220, 220, 220, 220, 40117, 3804, 284, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 23870, 62, 41684, 62, 261, 62, 853, 2886, 63, 198, 220, 220, 220, 220, 220, 220, 220, 423, 262, 976, 3616, 355, 883, 3804, 284, 198, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 23870, 62, 261, 62, 853, 2886, 44646, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 25745, 25, 11902, 4731, 4578, 543, 481, 307, 198, 220, 220, 220, 220, 220, 220, 220, 220, 4920, 355, 636, 286, 1123, 12940, 1994, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 28385, 62, 2435, 25, 611, 407, 6045, 11, 481, 20957, 262, 3487, 198, 220, 220, 220, 220, 220, 220, 220, 220, 28385, 640, 13, 220, 1737, 307, 3804, 355, 281, 18253, 393, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 869, 540, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 815, 62, 23870, 62, 22184, 25, 3804, 284, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 1136, 62, 273, 62, 17953, 62, 41684, 44646, 770, 2163, 318, 1813, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 355, 4504, 416, 262, 13172, 11, 290, 691, 611, 340, 5860, 6407, 481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 326, 1988, 307, 4624, 287, 262, 12940, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 355, 11600, 25, 611, 7559, 17821, 15506, 11, 262, 24789, 2163, 815, 1441, 198, 220, 220, 220, 220, 220, 220, 220, 220, 663, 1255, 355, 257, 22155, 286, 8251, 3784, 27160, 11, 290, 262, 2457, 1255, 198, 220, 220, 220, 220, 220, 220, 220, 220, 286, 4585, 262, 24789, 2163, 481, 635, 307, 257, 22155, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1002, 1364, 379, 663, 4277, 1988, 286, 7559, 25101, 15506, 11, 262, 24789, 2163, 198, 220, 220, 220, 220, 220, 220, 220, 220, 815, 1441, 663, 1255, 355, 257, 1351, 286, 3815, 11, 290, 262, 2457, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 286, 4585, 262, 24789, 2163, 481, 635, 307, 257, 1351, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 1649, 7559, 292, 11600, 855, 17821, 15506, 611, 262, 22155, 4504, 416, 262, 24789, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 318, 4814, 8251, 11, 883, 8251, 481, 407, 307, 39986, 13, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 284, 62, 2536, 25, 869, 540, 11, 481, 307, 1444, 319, 1123, 2163, 4578, 198, 220, 220, 220, 220, 220, 220, 220, 220, 287, 1502, 284, 10385, 284, 257, 4731, 13, 220, 2896, 13185, 284, 7559, 2536, 3419, 15506, 13, 220, 1002, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 18178, 1729, 12, 292, 979, 72, 28000, 1098, 7159, 319, 11361, 362, 13, 87, 11, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 7559, 46903, 1098, 3419, 15506, 3170, 259, 460, 307, 31601, 11, 475, 3465, 428, 481, 198, 220, 220, 220, 220, 220, 220, 220, 220, 4439, 28000, 1098, 12940, 8251, 543, 743, 2421, 1994, 582, 40799, 878, 198, 220, 220, 220, 220, 220, 220, 220, 220, 8978, 262, 12940, 13, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 20, 13, 15, 628, 220, 220, 220, 220, 220, 220, 220, 1058, 17143, 2163, 62, 41684, 62, 2539, 62, 8612, 1352, 25, 257, 2163, 326, 481, 4439, 257, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 8251, 13, 770, 2163, 481, 22754, 18654, 262, 530, 17839, 319, 262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 4871, 25, 44646, 30562, 47371, 63, 2346, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 11485, 2196, 29373, 3712, 657, 13, 20, 13, 20, 628, 220, 220, 220, 220, 220, 220, 220, 11485, 766, 14508, 3712, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 23870, 62, 261, 62, 853, 2886, 63, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1058, 76, 2788, 25, 44646, 30562, 47371, 13, 1136, 62, 273, 62, 17953, 62, 41684, 63, 628, 220, 220, 220, 220, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 28385, 62, 2435, 62, 271, 62, 13345, 540, 796, 8330, 13, 13345, 540, 7, 1069, 10514, 62, 2435, 8, 628, 220, 220, 220, 220, 220, 220, 220, 611, 2163, 62, 41684, 62, 2539, 62, 8612, 1352, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2163, 62, 41684, 62, 2539, 62, 8612, 1352, 796, 2116, 13, 8818, 62, 41684, 62, 2539, 62, 8612, 1352, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 11705, 1352, 628, 198, 4299, 787, 62, 36996, 46491, 853, 11, 12429, 46265, 2599, 198, 220, 220, 220, 37227, 49933, 9386, 257, 649, 1058, 4871, 25, 44646, 30562, 47371, 44646, 628, 220, 220, 220, 16888, 11, 1058, 20786, 25, 44646, 15883, 62, 36996, 63, 318, 257, 38836, 48476, 740, 198, 220, 220, 220, 284, 1058, 4871, 25, 44646, 30562, 47371, 44646, 220, 4091, 326, 1398, 329, 198, 220, 220, 220, 23772, 7159, 13, 628, 220, 220, 220, 37227, 198, 220, 220, 220, 1441, 34088, 47371, 46491, 853, 11, 12429, 46265, 8, 198 ]
2.491484
10,216
# -*- coding: utf-8 -*- """ Module projectparallelprogrammeren.codesimulatie ================================================================= Deze module simuleert alles. """ import projectparallelprogrammeren def simulatie(): """ Deze functie voert alle versies uit zodat deze vergeleken kunnen worden qua timing. """ from importlib import import_module for i in range(4): #alle versies van de simulatie importeren en achtereenvolgens uitvoeren. version = f"montecarlo_v{i}" montecarlo = import_module(version) montecarlo.simulatie(100,50) #Deze waarden dienen enkel als test if __name__ == "__main__": simulatie() #eof
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 37811, 198, 26796, 1628, 1845, 29363, 23065, 76, 14226, 13, 40148, 320, 377, 265, 494, 220, 198, 23926, 28, 198, 198, 5005, 2736, 8265, 985, 2261, 861, 477, 274, 13, 198, 198, 37811, 198, 198, 11748, 1628, 1845, 29363, 23065, 76, 14226, 198, 198, 4299, 39698, 265, 494, 33529, 198, 197, 37811, 198, 197, 5005, 2736, 1257, 310, 494, 7608, 861, 28654, 1646, 444, 334, 270, 1976, 375, 265, 390, 2736, 27373, 293, 3464, 479, 20935, 268, 1573, 268, 627, 64, 10576, 13, 198, 197, 37811, 198, 197, 6738, 1330, 8019, 1330, 1330, 62, 21412, 198, 197, 1640, 1312, 287, 2837, 7, 19, 2599, 198, 197, 197, 2, 6765, 1646, 444, 5719, 390, 39698, 265, 494, 1330, 14226, 551, 257, 21474, 567, 268, 10396, 70, 641, 334, 270, 13038, 14226, 13, 198, 197, 197, 9641, 796, 277, 1, 2144, 660, 7718, 5439, 62, 85, 90, 72, 36786, 198, 197, 197, 2144, 660, 7718, 5439, 796, 1330, 62, 21412, 7, 9641, 8, 198, 197, 197, 2144, 660, 7718, 5439, 13, 14323, 377, 265, 494, 7, 3064, 11, 1120, 8, 1303, 5005, 2736, 2082, 5872, 288, 2013, 268, 551, 7750, 435, 82, 1332, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 197, 14323, 377, 265, 494, 3419, 198, 197, 198, 2, 68, 1659, 198 ]
2.780172
232
#!/usr/bin/env python from __future__ import unicode_literals # Allow direct execution import os import sys import unittest sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from haruhi_dl.aes import aes_decrypt, aes_encrypt, aes_cbc_decrypt, aes_cbc_encrypt, aes_decrypt_text from haruhi_dl.utils import bytes_to_intlist, intlist_to_bytes import base64 # the encrypted data can be generate with 'devscripts/generate_aes_testdata.py' if __name__ == '__main__': unittest.main()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 2, 22507, 1277, 9706, 198, 11748, 28686, 198, 11748, 25064, 198, 11748, 555, 715, 395, 198, 17597, 13, 6978, 13, 28463, 7, 15, 11, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 397, 2777, 776, 7, 834, 7753, 834, 35514, 198, 198, 6738, 3971, 84, 5303, 62, 25404, 13, 64, 274, 1330, 257, 274, 62, 12501, 6012, 11, 257, 274, 62, 12685, 6012, 11, 257, 274, 62, 66, 15630, 62, 12501, 6012, 11, 257, 274, 62, 66, 15630, 62, 12685, 6012, 11, 257, 274, 62, 12501, 6012, 62, 5239, 198, 6738, 3971, 84, 5303, 62, 25404, 13, 26791, 1330, 9881, 62, 1462, 62, 600, 4868, 11, 493, 4868, 62, 1462, 62, 33661, 198, 11748, 2779, 2414, 198, 198, 2, 262, 19365, 1366, 460, 307, 7716, 351, 705, 7959, 46521, 14, 8612, 378, 62, 64, 274, 62, 9288, 7890, 13, 9078, 6, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.629442
197
import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc def generate_dropdown_selection(): "return a Div containing the dropdown selection box" return dcc.Dropdown( id='dropdown_select_process', style={"display": "none"}, options=[ {'label': 'Homogeneous Poisson process', 'value': 1}, {'label': 'Inhomogeneous Poisson process', 'value': 2}, {'label': 'Cluster process', 'value': 3}, # {'label': 'Strauss process', 'value': 4} ], # set the initial value=0 to hide the user input interface value=0) def generate_user_input(): "return a Div containing users' input interface" input_n_toolkits = html.Div(html.Div([html.A('Number of transects:', className='col-sm-4'), dcc.Input( type='number', placeholder=2, value = 2, id='input_n_toolkits', className='col-sm-4' ) ], className='row'), id='input_n_toolkits_container', style={'display': 'none'}) # slider # input_n_toolkits = html.Div(html.Div([ # html.A("Number of transects",className='col-sm-4'), # dcc.Slider(min=1, # max=5, # step=1, # value=2, # marks={i: '{}'.format(i) for i in range(1, 6)}, # id='input_n_toolkits', # className='col-sm-4') # ], className='row'), id='input_n_toolkits_container', # className='row', # style={'display': 'none'}) input_disease_prevalence = html.Div(html.Div([html.A('disease prevalence: ', id='input_disease_prevalence_tooltip', className='col-sm-4'), dcc.Input( type='number', placeholder=0.1, value = 0.1, step=0.1, min=0, max=1, id='input_disease_prevalence', className='col-sm-4' ) ], className='row'), id='input_disease_prevalence_container', style={'display': 'none'}) input_disease_prevalence_tooltip = dbc.Tooltip('the proportion of corals which get infected by a disease', target='input_disease_prevalence_tooltip') # text or number input input_fun_lambda = html.Div(html.Div([html.A('proportion cover function:', className='col-sm-4'), dcc.Input( id="input_fun_lambda", type='text', placeholder="1000 * np.exp(-(((x - 50) / 50) ** 2 + ((y - 50) / 50) ** 2) / 0.5 ** 2)", value="1000 * np.exp(-(((x - 50) / 50) ** 2 + ((y - 50) / 50) ** 2) / 0.5 ** 2)", className='col-sm-4' )],className='row'),id='show_input_fun_lambda',style={'display':'none'}) input_parent_prop = html.Div(html.Div([html.A('parent corals / total corals:', className='col-sm-4'), dcc.Input( id="input_parent_prop", type='number', placeholder=0.01, value=0.01, step=0.01, className='col-sm-4' )],className='row'),id='show_input_parent_prop',style={'display':'none'}) input_parent_range = html.Div(html.Div([html.A('parent range:', className='col-sm-4'), dcc.Input( id="input_parent_range", type='number', placeholder=5, value=5, className='col-sm-4' )],className='row'),id='show_input_parent_range',style={'display':'none'}) input_strauss_beta = dcc.Input( id="input_strauss_beta", type='number', placeholder="strauss_beta", style={'display': 'none'} ) input_strauss_gamma = dcc.Input( id="input_strauss_gamma", type='number', placeholder="strauss_gamma", style={'display': 'none'} ) input_strauss_R = dcc.Input( id="input_strauss_R", type='number', placeholder="strauss_R", style={'display': 'none'} ) input_transect_length = html.Div(html.Div([html.A('transect width (m): ', className='col-sm-4'), dcc.Input( type='number', placeholder=25, value=25, id='dcc_input_transect_length', className='col-sm-4' ) ], className='row'), id='input_transect_length', style={'display': 'none'}) input_transect_width = html.Div(html.Div([html.A('transect length (m): ', className='col-sm-4'), dcc.Input( type='number', placeholder=6, value = 6, id='dcc_input_transect_width', className='col-sm-4' ) ], className='row'), id='input_transect_width', style={'display': 'none'}) line_intercept_ratio = html.Div(html.Div([html.A('transect width / plot width', className='col-sm-4'), dcc.Input( type='number', placeholder=1/5, value = 1/5, step=0.1, id='dcc_line_intercept_ratio', className='col-sm-4') ],className='row'), id='line_intercept_ratio', style={'display': 'none'}) coral_size = html.Div(html.Div([html.A('coral size (m^2): ', id='coral_size_tooltip',className='col-sm-4'), dcc.Input( type='number', placeholder=0.0068, value = 0.0068, step=0.0001, id='coral_size', className='col-sm-4' ) ],className='row' ), id='coral_size_input', style={'display': 'none'}) coral_size_tooltip = dbc.Tooltip('the average size of an individual coral, measured in m^3', target='coral_size_tooltip') coral_size_std = html.Div(html.Div([html.A('coral size standard error: ', id='coral_size_std_tooltip', className='col-sm-4'), dcc.Input( type='number', placeholder=0.001, value = 0.001, step=0.001, id='coral_size_std', className='col-sm-4' )], className='row') , id='coral_size_std_input', style={'display': 'none'}) coral_size_std_tooltip = dbc.Tooltip('the standard deviation of the average size of an individual coral', target='coral_size_std_tooltip') prop_cover = html.Div(html.Div([html.A('proportion cover: ', className='col-sm-4', id='prop_cover_tooltip'), dcc.Input( type='number', placeholder=0, value = 0, step=0.1, min=0, max=1, id='prop_cover', className='col-sm-4' ) ],className='row'), id='prop_cover_input', style={'display': 'none'}) prop_cover_tooltip = dbc.Tooltip('Proportion cover of coral. If it equals 0, its estimation based on the historical data will be used in the simulation', target='prop_cover_tooltip') num_of_replications = html.Div(html.Div([html.A('number of replications', className='col-sm-4'), dcc.Input( type='number', placeholder=10, value = 10, step=1, min=1, id='num_of_replications', className='col-sm-4' ) ],className='row'), id='number_of_replications_input', style={'display': 'none'}) return html.Div([ input_n_toolkits, prop_cover, prop_cover_tooltip, input_fun_lambda, coral_size, coral_size_tooltip, coral_size_std, coral_size_std_tooltip, input_disease_prevalence, input_disease_prevalence_tooltip, input_parent_prop, input_parent_range, input_strauss_beta, input_strauss_gamma, input_strauss_R, input_transect_length, input_transect_width, line_intercept_ratio, num_of_replications ], id='input_process_parameters')
[ 11748, 14470, 62, 7295, 62, 5589, 3906, 355, 288, 535, 198, 11748, 14470, 62, 6494, 62, 5589, 3906, 355, 27711, 198, 11748, 14470, 62, 18769, 26418, 62, 5589, 3906, 355, 288, 15630, 628, 198, 4299, 7716, 62, 14781, 2902, 62, 49283, 33529, 198, 220, 220, 220, 366, 7783, 257, 4777, 7268, 262, 4268, 2902, 6356, 3091, 1, 198, 220, 220, 220, 1441, 288, 535, 13, 26932, 2902, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 14781, 2902, 62, 19738, 62, 14681, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 3918, 28, 4895, 13812, 1298, 366, 23108, 25719, 198, 220, 220, 220, 220, 220, 220, 220, 3689, 41888, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 18242, 10354, 705, 28718, 32269, 7695, 30927, 1429, 3256, 705, 8367, 10354, 352, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 18242, 10354, 705, 818, 26452, 32269, 7695, 30927, 1429, 3256, 705, 8367, 10354, 362, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1391, 6, 18242, 10354, 705, 2601, 5819, 1429, 3256, 705, 8367, 10354, 513, 5512, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 1391, 6, 18242, 10354, 705, 41347, 1046, 1429, 3256, 705, 8367, 10354, 604, 92, 198, 220, 220, 220, 220, 220, 220, 220, 16589, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 900, 262, 4238, 1988, 28, 15, 284, 7808, 262, 2836, 5128, 7071, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 28, 15, 8, 628, 198, 198, 4299, 7716, 62, 7220, 62, 15414, 33529, 198, 220, 220, 220, 366, 7783, 257, 4777, 7268, 2985, 6, 5128, 7071, 1, 628, 198, 220, 220, 220, 5128, 62, 77, 62, 25981, 74, 896, 796, 27711, 13, 24095, 7, 6494, 13, 24095, 26933, 6494, 13, 32, 10786, 15057, 286, 491, 272, 8831, 82, 25, 3256, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 535, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46076, 28, 17, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 362, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 15414, 62, 77, 62, 25981, 74, 896, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 1398, 5376, 11639, 808, 33809, 4686, 11639, 15414, 62, 77, 62, 25981, 74, 896, 62, 34924, 3256, 3918, 34758, 6, 13812, 10354, 705, 23108, 6, 30072, 628, 220, 220, 220, 1303, 28982, 198, 220, 220, 220, 1303, 5128, 62, 77, 62, 25981, 74, 896, 796, 27711, 13, 24095, 7, 6494, 13, 24095, 26933, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 27711, 13, 32, 7203, 15057, 286, 491, 272, 8831, 82, 1600, 4871, 5376, 11639, 4033, 12, 5796, 12, 19, 33809, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 535, 13, 11122, 1304, 7, 1084, 28, 16, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 28, 20, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 28, 16, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 28, 17, 11, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8849, 34758, 72, 25, 705, 90, 92, 4458, 18982, 7, 72, 8, 329, 1312, 287, 2837, 7, 16, 11, 718, 8, 5512, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 15414, 62, 77, 62, 25981, 74, 896, 3256, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 11537, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 1398, 5376, 11639, 808, 33809, 4686, 11639, 15414, 62, 77, 62, 25981, 74, 896, 62, 34924, 3256, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 808, 3256, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3918, 34758, 6, 13812, 10354, 705, 23108, 6, 30072, 628, 198, 220, 220, 220, 5128, 62, 67, 786, 589, 62, 3866, 2100, 594, 796, 27711, 13, 24095, 7, 6494, 13, 24095, 26933, 6494, 13, 32, 10786, 67, 786, 589, 16815, 25, 46083, 4686, 11639, 15414, 62, 67, 786, 589, 62, 3866, 2100, 594, 62, 25981, 22504, 3256, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 535, 13, 20560, 7, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46076, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 657, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 15414, 62, 67, 786, 589, 62, 3866, 2100, 594, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 1398, 5376, 11639, 808, 33809, 4686, 11639, 15414, 62, 67, 786, 589, 62, 3866, 2100, 594, 62, 34924, 3256, 3918, 34758, 6, 13812, 10354, 705, 23108, 6, 30072, 628, 220, 220, 220, 5128, 62, 67, 786, 589, 62, 3866, 2100, 594, 62, 25981, 22504, 796, 288, 15630, 13, 25391, 22504, 10786, 1169, 9823, 286, 1162, 874, 543, 651, 14112, 416, 257, 4369, 3256, 2496, 11639, 15414, 62, 67, 786, 589, 62, 3866, 2100, 594, 62, 25981, 22504, 11537, 628, 220, 220, 220, 1303, 2420, 393, 1271, 5128, 198, 220, 220, 220, 5128, 62, 12543, 62, 50033, 796, 27711, 13, 24095, 7, 6494, 13, 24095, 26933, 6494, 13, 32, 10786, 1676, 16864, 3002, 2163, 25, 3256, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 33809, 288, 535, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 2625, 15414, 62, 12543, 62, 50033, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 5239, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 46076, 2625, 12825, 1635, 45941, 13, 11201, 32590, 19510, 7, 87, 532, 2026, 8, 1220, 2026, 8, 12429, 362, 1343, 14808, 88, 532, 2026, 8, 1220, 2026, 8, 12429, 362, 8, 1220, 657, 13, 20, 12429, 362, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 2625, 12825, 1635, 45941, 13, 11201, 32590, 19510, 7, 87, 532, 2026, 8, 1220, 2026, 8, 12429, 362, 1343, 14808, 88, 532, 2026, 8, 1220, 2026, 8, 12429, 362, 8, 1220, 657, 13, 20, 12429, 362, 42501, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 6, 198, 220, 220, 220, 1267, 4357, 4871, 5376, 11639, 808, 33809, 312, 11639, 12860, 62, 15414, 62, 12543, 62, 50033, 3256, 7635, 34758, 6, 13812, 10354, 6, 23108, 6, 30072, 628, 220, 220, 220, 5128, 62, 8000, 62, 22930, 796, 27711, 13, 24095, 7, 6494, 13, 24095, 26933, 6494, 13, 32, 10786, 8000, 1162, 874, 1220, 2472, 1162, 874, 25, 3256, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 33809, 288, 535, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 2625, 15414, 62, 8000, 62, 22930, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 46076, 28, 15, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 28, 15, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2239, 28, 15, 13, 486, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 6, 198, 220, 220, 220, 1267, 4357, 4871, 5376, 11639, 808, 33809, 312, 11639, 12860, 62, 15414, 62, 8000, 62, 22930, 3256, 7635, 34758, 6, 13812, 10354, 6, 23108, 6, 30072, 628, 220, 220, 220, 5128, 62, 8000, 62, 9521, 796, 27711, 13, 24095, 7, 6494, 13, 24095, 26933, 6494, 13, 32, 10786, 8000, 2837, 25, 3256, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 33809, 288, 535, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 2625, 15414, 62, 8000, 62, 9521, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 46076, 28, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1988, 28, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 6, 198, 220, 220, 220, 1267, 4357, 4871, 5376, 11639, 808, 33809, 312, 11639, 12860, 62, 15414, 62, 8000, 62, 9521, 3256, 7635, 34758, 6, 13812, 10354, 6, 23108, 6, 30072, 628, 220, 220, 220, 5128, 62, 12044, 1046, 62, 31361, 796, 288, 535, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 2625, 15414, 62, 12044, 1046, 62, 31361, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 46076, 2625, 12044, 1046, 62, 31361, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3918, 34758, 6, 13812, 10354, 705, 23108, 6, 92, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 5128, 62, 12044, 1046, 62, 28483, 2611, 796, 288, 535, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 2625, 15414, 62, 12044, 1046, 62, 28483, 2611, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 46076, 2625, 12044, 1046, 62, 28483, 2611, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3918, 34758, 6, 13812, 10354, 705, 23108, 6, 92, 198, 220, 220, 220, 1267, 198, 220, 220, 220, 5128, 62, 12044, 1046, 62, 49, 796, 288, 535, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 4686, 2625, 15414, 62, 12044, 1046, 62, 49, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 46076, 2625, 12044, 1046, 62, 49, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 3918, 34758, 6, 13812, 10354, 705, 23108, 6, 92, 198, 220, 220, 220, 1267, 628, 220, 220, 220, 5128, 62, 2213, 272, 8831, 62, 13664, 796, 27711, 13, 24095, 7, 6494, 13, 24095, 26933, 6494, 13, 32, 10786, 2213, 272, 8831, 9647, 357, 76, 2599, 46083, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 535, 13, 20560, 7, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46076, 28, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 28, 1495, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 67, 535, 62, 15414, 62, 2213, 272, 8831, 62, 13664, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 1398, 5376, 11639, 808, 33809, 4686, 11639, 15414, 62, 2213, 272, 8831, 62, 13664, 3256, 3918, 34758, 6, 13812, 10354, 705, 23108, 6, 30072, 628, 628, 220, 220, 220, 5128, 62, 2213, 272, 8831, 62, 10394, 796, 27711, 13, 24095, 7, 6494, 13, 24095, 26933, 6494, 13, 32, 10786, 2213, 272, 8831, 4129, 357, 76, 2599, 46083, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 535, 13, 20560, 7, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46076, 28, 21, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 718, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 67, 535, 62, 15414, 62, 2213, 272, 8831, 62, 10394, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 1398, 5376, 11639, 808, 33809, 4686, 11639, 15414, 62, 2213, 272, 8831, 62, 10394, 3256, 3918, 34758, 6, 13812, 10354, 705, 23108, 6, 30072, 628, 628, 198, 220, 220, 220, 1627, 62, 3849, 984, 62, 10366, 952, 796, 27711, 13, 24095, 7, 6494, 13, 24095, 26933, 6494, 13, 32, 10786, 2213, 272, 8831, 9647, 1220, 7110, 9647, 3256, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 535, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46076, 28, 16, 14, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 352, 14, 20, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 67, 535, 62, 1370, 62, 3849, 984, 62, 10366, 952, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 4871, 5376, 11639, 808, 33809, 4686, 11639, 1370, 62, 3849, 984, 62, 10366, 952, 3256, 3918, 34758, 6, 13812, 10354, 705, 23108, 6, 30072, 628, 220, 220, 220, 29537, 62, 7857, 796, 27711, 13, 24095, 7, 6494, 13, 24095, 26933, 6494, 13, 32, 10786, 66, 6864, 2546, 357, 76, 61, 17, 2599, 46083, 4686, 11639, 66, 6864, 62, 7857, 62, 25981, 22504, 3256, 4871, 5376, 11639, 4033, 12, 5796, 12, 19, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 535, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46076, 28, 15, 13, 405, 3104, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 657, 13, 405, 3104, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 28, 15, 13, 18005, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 66, 6864, 62, 7857, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 4871, 5376, 11639, 808, 6, 10612, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 66, 6864, 62, 7857, 62, 15414, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3918, 34758, 6, 13812, 10354, 705, 23108, 6, 30072, 628, 220, 220, 220, 29537, 62, 7857, 62, 25981, 22504, 796, 288, 15630, 13, 25391, 22504, 10786, 1169, 2811, 2546, 286, 281, 1981, 29537, 11, 8630, 287, 285, 61, 18, 3256, 2496, 11639, 66, 6864, 62, 7857, 62, 25981, 22504, 11537, 628, 220, 220, 220, 29537, 62, 7857, 62, 19282, 796, 27711, 13, 24095, 7, 6494, 13, 24095, 26933, 6494, 13, 32, 10786, 66, 6864, 2546, 3210, 4049, 25, 46083, 4686, 11639, 66, 6864, 62, 7857, 62, 19282, 62, 25981, 22504, 3256, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 535, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46076, 28, 15, 13, 8298, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 657, 13, 8298, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 28, 15, 13, 8298, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 66, 6864, 62, 7857, 62, 19282, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 6, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 4357, 1398, 5376, 11639, 808, 11537, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 837, 4686, 11639, 66, 6864, 62, 7857, 62, 19282, 62, 15414, 3256, 3918, 34758, 6, 13812, 10354, 705, 23108, 6, 30072, 628, 220, 220, 220, 29537, 62, 7857, 62, 19282, 62, 25981, 22504, 796, 288, 15630, 13, 25391, 22504, 10786, 1169, 3210, 28833, 286, 262, 2811, 2546, 286, 281, 1981, 29537, 3256, 2496, 11639, 66, 6864, 62, 7857, 62, 19282, 62, 25981, 22504, 11537, 628, 220, 220, 220, 2632, 62, 9631, 796, 27711, 13, 24095, 7, 6494, 13, 24095, 26933, 6494, 13, 32, 10786, 1676, 16864, 3002, 25, 46083, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 3256, 4686, 11639, 22930, 62, 9631, 62, 25981, 22504, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 535, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46076, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 657, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 28, 15, 13, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3509, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 22930, 62, 9631, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 4871, 5376, 11639, 808, 33809, 4686, 11639, 22930, 62, 9631, 62, 15414, 3256, 3918, 34758, 6, 13812, 10354, 705, 23108, 6, 30072, 628, 220, 220, 220, 2632, 62, 9631, 62, 25981, 22504, 796, 288, 15630, 13, 25391, 22504, 10786, 2964, 16864, 3002, 286, 29537, 13, 1002, 340, 21767, 657, 11, 663, 31850, 1912, 319, 262, 6754, 1366, 481, 307, 973, 287, 262, 18640, 3256, 2496, 11639, 22930, 62, 9631, 62, 25981, 22504, 11537, 628, 220, 220, 220, 997, 62, 1659, 62, 35666, 3736, 796, 27711, 13, 24095, 7, 6494, 13, 24095, 26933, 6494, 13, 32, 10786, 17618, 286, 2186, 3736, 3256, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 288, 535, 13, 20560, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 11639, 17618, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 46076, 28, 940, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1988, 796, 838, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 949, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4686, 11639, 22510, 62, 1659, 62, 35666, 3736, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1398, 5376, 11639, 4033, 12, 5796, 12, 19, 6, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16589, 4871, 5376, 11639, 808, 33809, 4686, 11639, 17618, 62, 1659, 62, 35666, 3736, 62, 15414, 3256, 3918, 34758, 6, 13812, 10354, 705, 23108, 6, 30072, 628, 198, 220, 220, 220, 1441, 27711, 13, 24095, 26933, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 77, 62, 25981, 74, 896, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2632, 62, 9631, 11, 198, 220, 220, 220, 220, 220, 220, 220, 2632, 62, 9631, 62, 25981, 22504, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12543, 62, 50033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 29537, 62, 7857, 11, 198, 220, 220, 220, 220, 220, 220, 220, 29537, 62, 7857, 62, 25981, 22504, 11, 198, 220, 220, 220, 220, 220, 220, 220, 29537, 62, 7857, 62, 19282, 11, 198, 220, 220, 220, 220, 220, 220, 220, 29537, 62, 7857, 62, 19282, 62, 25981, 22504, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 67, 786, 589, 62, 3866, 2100, 594, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 67, 786, 589, 62, 3866, 2100, 594, 62, 25981, 22504, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 8000, 62, 22930, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 8000, 62, 9521, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12044, 1046, 62, 31361, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12044, 1046, 62, 28483, 2611, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 12044, 1046, 62, 49, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 2213, 272, 8831, 62, 13664, 11, 198, 220, 220, 220, 220, 220, 220, 220, 5128, 62, 2213, 272, 8831, 62, 10394, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1627, 62, 3849, 984, 62, 10366, 952, 11, 198, 220, 220, 220, 220, 220, 220, 220, 997, 62, 1659, 62, 35666, 3736, 198, 220, 220, 220, 16589, 4686, 11639, 15414, 62, 14681, 62, 17143, 7307, 11537 ]
1.63074
6,272
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # This test is based on the test suite implemented for Recommenders project # https://github.com/Microsoft/Recommenders/tree/master/tests import papermill as pm import pytest import scrapbook as sb from utils_cv.common.data import unzip_url from utils_cv.detection.data import Urls # Unless manually modified, python3 should be # the name of the current jupyter kernel # that runs on the activated conda environment KERNEL_NAME = "python3" OUTPUT_NOTEBOOK = "output.ipynb"
[ 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 13789, 13, 198, 198, 2, 770, 1332, 318, 1912, 319, 262, 1332, 18389, 9177, 329, 19237, 7338, 1628, 198, 2, 3740, 1378, 12567, 13, 785, 14, 15905, 14, 24898, 7338, 14, 21048, 14, 9866, 14, 41989, 198, 198, 11748, 3348, 17805, 355, 9114, 198, 11748, 12972, 9288, 198, 11748, 15881, 2070, 355, 264, 65, 198, 198, 6738, 3384, 4487, 62, 33967, 13, 11321, 13, 7890, 1330, 555, 13344, 62, 6371, 198, 6738, 3384, 4487, 62, 33967, 13, 15255, 3213, 13, 7890, 1330, 8799, 7278, 198, 198, 2, 17486, 14500, 9518, 11, 21015, 18, 815, 307, 198, 2, 262, 1438, 286, 262, 1459, 474, 929, 88, 353, 9720, 198, 2, 326, 4539, 319, 262, 13906, 1779, 64, 2858, 198, 42, 28778, 3698, 62, 20608, 796, 366, 29412, 18, 1, 198, 2606, 7250, 3843, 62, 16580, 39453, 796, 366, 22915, 13, 541, 2047, 65, 1, 628, 628, 628 ]
3.512195
164
_base_ = [ '../retinanet_r50_fpn_1x_coco.py', '../../_base_/datasets/hdr_detection_minmax_glob_gamma.py', ] # optimizer # lr is set for a batch size of 8 optimizer = dict(type='SGD', lr=0.0005, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[10]) runner = dict( type='EpochBasedRunner', max_epochs=20)
[ 62, 8692, 62, 796, 685, 198, 220, 220, 220, 705, 40720, 1186, 259, 272, 316, 62, 81, 1120, 62, 69, 21999, 62, 16, 87, 62, 66, 25634, 13, 9078, 3256, 198, 220, 220, 220, 705, 40720, 40720, 62, 8692, 62, 14, 19608, 292, 1039, 14, 71, 7109, 62, 15255, 3213, 62, 1084, 9806, 62, 4743, 672, 62, 28483, 2611, 13, 9078, 3256, 198, 60, 628, 198, 2, 6436, 7509, 198, 2, 300, 81, 318, 900, 329, 257, 15458, 2546, 286, 807, 198, 40085, 7509, 796, 8633, 7, 4906, 11639, 38475, 35, 3256, 300, 81, 28, 15, 13, 830, 20, 11, 12858, 28, 15, 13, 24, 11, 3463, 62, 12501, 323, 28, 15, 13, 18005, 8, 198, 40085, 7509, 62, 11250, 796, 8633, 7, 9744, 62, 15036, 28, 14202, 8, 1303, 8633, 7, 9744, 62, 15036, 28, 11600, 7, 9806, 62, 27237, 28, 2327, 11, 2593, 62, 4906, 28, 17, 4008, 198, 2, 4673, 2450, 198, 14050, 62, 11250, 796, 8633, 7, 198, 220, 220, 220, 2450, 11639, 9662, 3256, 198, 220, 220, 220, 5814, 929, 11639, 29127, 3256, 198, 220, 220, 220, 5814, 929, 62, 270, 364, 28, 4059, 11, 198, 220, 220, 220, 5814, 929, 62, 10366, 952, 28, 15, 13, 8298, 11, 198, 220, 220, 220, 2239, 41888, 940, 12962, 198, 16737, 796, 8633, 7, 198, 220, 220, 220, 2099, 11639, 13807, 5374, 15001, 49493, 3256, 3509, 62, 538, 5374, 82, 28, 1238, 8, 198 ]
2.21097
237