content
stringlengths
1
1.05M
input_ids
sequencelengths
1
883k
ratio_char_token
float64
1
22.9
token_count
int64
1
883k
import tempfile from pathlib import Path import pytest from dug_helpers.dug_utils import FileFetcher, get_topmed_files, get_dbgap_files from roger.Config import config
[ 11748, 20218, 7753, 198, 198, 6738, 3108, 8019, 1330, 10644, 198, 198, 11748, 12972, 9288, 198, 198, 6738, 18735, 62, 16794, 364, 13, 646, 70, 62, 26791, 1330, 9220, 37, 316, 2044, 11, 651, 62, 4852, 1150, 62, 16624, 11, 651, 62, 9945, 43554, 62, 16624, 198, 6738, 686, 1362, 13, 16934, 1330, 4566, 628, 628 ]
3.107143
56
# coding: utf-8 # truepy # Copyright (C) 2014-2015 Moses Palmr # # This program is free software: you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see <http://www.gnu.org/licenses/>. import unittest from datetime import datetime from truepy import fromstring, tostring from truepy._bean import snake_to_camel, camel_to_snake from truepy._bean import value_to_xml from truepy._bean import deserialize, serialize, to_document from truepy._bean_serializers import _DESERIALIZER_CLASSES, bean_class
[ 2, 19617, 25, 3384, 69, 12, 23, 198, 2, 2081, 9078, 198, 2, 15069, 357, 34, 8, 1946, 12, 4626, 19010, 18358, 81, 198, 2, 198, 2, 770, 1430, 318, 1479, 3788, 25, 345, 460, 17678, 4163, 340, 290, 14, 273, 13096, 340, 739, 198, 2, 262, 2846, 286, 262, 22961, 3611, 5094, 13789, 355, 3199, 416, 262, 3232, 10442, 198, 2, 5693, 11, 2035, 2196, 513, 286, 262, 13789, 11, 393, 357, 265, 534, 3038, 8, 597, 1568, 198, 2, 2196, 13, 198, 2, 198, 2, 770, 1430, 318, 9387, 287, 262, 2911, 326, 340, 481, 307, 4465, 11, 475, 42881, 198, 2, 15529, 34764, 56, 26, 1231, 772, 262, 17142, 18215, 286, 34482, 3398, 1565, 5603, 25382, 393, 376, 46144, 198, 2, 7473, 317, 16652, 2149, 37232, 33079, 48933, 13, 4091, 262, 22961, 3611, 5094, 13789, 329, 517, 198, 2, 3307, 13, 198, 2, 198, 2, 921, 815, 423, 2722, 257, 4866, 286, 262, 22961, 3611, 5094, 13789, 1863, 351, 198, 2, 428, 1430, 13, 1002, 407, 11, 766, 1279, 4023, 1378, 2503, 13, 41791, 13, 2398, 14, 677, 4541, 15913, 13, 198, 198, 11748, 555, 715, 395, 628, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 198, 6738, 2081, 9078, 1330, 422, 8841, 11, 284, 8841, 198, 6738, 2081, 9078, 13557, 14289, 1330, 17522, 62, 1462, 62, 66, 17983, 11, 41021, 62, 1462, 62, 16184, 539, 198, 6738, 2081, 9078, 13557, 14289, 1330, 1988, 62, 1462, 62, 19875, 198, 6738, 2081, 9078, 13557, 14289, 1330, 748, 48499, 1096, 11, 11389, 1096, 11, 284, 62, 22897, 198, 6738, 2081, 9078, 13557, 14289, 62, 46911, 11341, 1330, 4808, 30910, 1137, 12576, 14887, 1137, 62, 31631, 1546, 11, 26394, 62, 4871, 628 ]
3.595745
282
# -*- coding: utf-8 -*- from elasticsearch import Elasticsearch from datetime import timedelta import datetime import os import json import logging from configparser import ConfigParser # logging.basicConfig(filename='logging_es.log', level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) def write_list_to_json(list, json_file_name, json_file_save_path): """ listjson :param list: :param json_file_name: json :param json_file_save_path: json :return: """ if not os.path.exists(json_file_save_path): os.makedirs(json_file_save_path) os.chdir(json_file_save_path) with open(json_file_name, 'w', encoding='utf-8') as f: json.dump(list, f, ensure_ascii=False) if __name__ == '__main__': start_date_time = datetime.datetime.now() + timedelta(days=-1) end_date_time = datetime.datetime.now() start_time = start_date_time.strftime("%Y-%m-%dT%H:00:00.000Z") end_time = end_date_time.strftime("%Y-%m-%dT%H:00:00.000Z") # es_dict = read_config() # BASE_DIR = os.getcwd() # esjson es_json(es_dict, start_time, end_time)
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 6738, 27468, 12947, 1330, 48567, 12947, 198, 6738, 4818, 8079, 1330, 28805, 12514, 198, 11748, 4818, 8079, 198, 11748, 28686, 198, 11748, 33918, 198, 11748, 18931, 198, 6738, 4566, 48610, 1330, 17056, 46677, 198, 198, 2, 220, 198, 6404, 2667, 13, 35487, 16934, 7, 34345, 11639, 6404, 2667, 62, 274, 13, 6404, 3256, 1241, 28, 6404, 2667, 13, 10778, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 5794, 11639, 4, 7, 292, 310, 524, 8, 82, 532, 4064, 7, 3672, 8, 82, 532, 4064, 7, 5715, 3672, 8, 82, 532, 4064, 7, 20500, 8, 82, 11537, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 628, 198, 198, 4299, 3551, 62, 4868, 62, 1462, 62, 17752, 7, 4868, 11, 33918, 62, 7753, 62, 3672, 11, 33918, 62, 7753, 62, 21928, 62, 6978, 2599, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 1351, 17752, 198, 220, 220, 220, 1058, 17143, 1351, 25, 198, 220, 220, 220, 1058, 17143, 33918, 62, 7753, 62, 3672, 25, 33918, 198, 220, 220, 220, 1058, 17143, 33918, 62, 7753, 62, 21928, 62, 6978, 25, 33918, 198, 220, 220, 220, 1058, 7783, 25, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 611, 407, 28686, 13, 6978, 13, 1069, 1023, 7, 17752, 62, 7753, 62, 21928, 62, 6978, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 17752, 62, 7753, 62, 21928, 62, 6978, 8, 198, 220, 220, 220, 28686, 13, 354, 15908, 7, 17752, 62, 7753, 62, 21928, 62, 6978, 8, 198, 220, 220, 220, 351, 1280, 7, 17752, 62, 7753, 62, 3672, 11, 705, 86, 3256, 21004, 11639, 40477, 12, 23, 11537, 355, 277, 25, 198, 220, 220, 220, 220, 220, 220, 220, 33918, 13, 39455, 7, 4868, 11, 277, 11, 4155, 62, 292, 979, 72, 28, 25101, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 923, 62, 4475, 62, 2435, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 1343, 28805, 12514, 7, 12545, 10779, 16, 8, 198, 220, 220, 220, 886, 62, 4475, 62, 2435, 796, 4818, 8079, 13, 19608, 8079, 13, 2197, 3419, 198, 220, 220, 220, 923, 62, 2435, 796, 923, 62, 4475, 62, 2435, 13, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 51, 4, 39, 25, 405, 25, 405, 13, 830, 57, 4943, 198, 220, 220, 220, 886, 62, 2435, 796, 886, 62, 4475, 62, 2435, 13, 2536, 31387, 7203, 4, 56, 12, 4, 76, 12, 4, 67, 51, 4, 39, 25, 405, 25, 405, 13, 830, 57, 4943, 198, 220, 220, 220, 1303, 220, 198, 220, 220, 220, 1658, 62, 11600, 796, 1100, 62, 11250, 3419, 198, 220, 220, 220, 1303, 220, 198, 220, 220, 220, 49688, 62, 34720, 796, 28686, 13, 1136, 66, 16993, 3419, 198, 220, 220, 220, 1303, 1658, 17752, 198, 220, 220, 220, 1658, 62, 17752, 7, 274, 62, 11600, 11, 923, 62, 2435, 11, 886, 62, 2435, 8, 628 ]
2.275992
529
__version__ = """1.8.4"""
[ 834, 9641, 834, 796, 37227, 16, 13, 23, 13, 19, 37811 ]
2.272727
11
from django.contrib import admin # general admin settings admin.site.site_header = 'Danesfield Admin' admin.site.site_title = 'Danesfield Admin'
[ 6738, 42625, 14208, 13, 3642, 822, 1330, 13169, 198, 198, 2, 2276, 13169, 6460, 198, 28482, 13, 15654, 13, 15654, 62, 25677, 796, 705, 35, 7305, 3245, 32053, 6, 198, 28482, 13, 15654, 13, 15654, 62, 7839, 796, 705, 35, 7305, 3245, 32053, 6, 198 ]
3.244444
45
#!/usr/bin/env python # encoding: utf-8 """ expfitting.py Provide single or double exponential fits to data. """ import lmfit import numpy as np import scipy.optimize
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 21004, 25, 3384, 69, 12, 23, 198, 37811, 198, 11201, 32232, 13, 9078, 198, 15946, 485, 2060, 393, 4274, 39682, 11414, 284, 1366, 13, 198, 37811, 198, 198, 11748, 300, 76, 11147, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 629, 541, 88, 13, 40085, 1096, 628, 198 ]
2.931034
58
# pylint: disable=no-member from datetime import datetime from typing import Optional, Dict from django.db import transaction, models from django.apps import apps from django_cloud_tasks import tasks, serializers __all__ = ( "Routine", "RoutineVertex", "Pipeline", )
[ 2, 279, 2645, 600, 25, 15560, 28, 3919, 12, 19522, 198, 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 19720, 1330, 32233, 11, 360, 713, 198, 6738, 42625, 14208, 13, 9945, 1330, 8611, 11, 4981, 198, 6738, 42625, 14208, 13, 18211, 1330, 6725, 198, 6738, 42625, 14208, 62, 17721, 62, 83, 6791, 1330, 8861, 11, 11389, 11341, 628, 628, 198, 198, 834, 439, 834, 796, 357, 198, 220, 220, 220, 366, 49, 28399, 1600, 198, 220, 220, 220, 366, 49, 28399, 13414, 16886, 1600, 198, 220, 220, 220, 366, 47, 541, 4470, 1600, 198, 8, 198 ]
2.958333
96
from datetime import datetime from uuid import UUID from ...serializer import IfoodSerializable from ...utils import auto_str from uuid import UUID
[ 6738, 4818, 8079, 1330, 4818, 8079, 198, 6738, 334, 27112, 1330, 471, 27586, 198, 6738, 2644, 46911, 7509, 1330, 1002, 702, 32634, 13821, 198, 6738, 2644, 26791, 1330, 8295, 62, 2536, 198, 198, 6738, 334, 27112, 1330, 471, 27586, 628, 198 ]
3.682927
41
# Importing section import json import requests import argparse import logging import time import datetime from classes.time_utils import TimeUtils import utilities as u # Main if __name__ == "__main__": arg_parser = argparse.ArgumentParser() arg_parser.add_argument('-c', help='config file') arg_parser.add_argument('-l', help='log file') args = arg_parser.parse_args() cfg = json.loads(open(args.c).read()) # Get configuration about connections to InfluxDB and remote service related to data retrieving tmp_config = json.loads(open(cfg['connectionsFile']).read()) cfg.update(tmp_config) # set logging object logger = logging.getLogger() logger.setLevel(logging.INFO) if not args.l: log_file = None else: log_file = args.l logger = logging.getLogger() logging.basicConfig(format='%(asctime)-15s::%(threadName)s::%(levelname)s::%(funcName)s::%(message)s', level=logging.INFO, filename=log_file) url_prefix = cfg['sidechainRestApi'] logger.info('Starting program') # Get the aggregator res = requests.get('%s/aggregator' % cfg['sidechainRestApi']) aggregator_id = json.loads(res.text)['Aggregator']['idx'] # Cycle over the configured SLAs for sla in cfg['slas']: dt_start, dt_end, _ = TimeUtils.get_start_end(sla['duration'], cfg['utils']['timeZone']) dt_start = dt_start - datetime.timedelta(minutes=cfg['shiftBackMinutes']['kpiSetting']) dt_end = dt_end - datetime.timedelta(minutes=cfg['shiftBackMinutes']['kpiSetting']) sla_idx = '%s_%i-%i' % (sla['idPrefix'], int(dt_start.timestamp()), int(dt_end.timestamp())) params = { 'idx': sla_idx, 'start': int(dt_start.timestamp()), 'end': int(dt_end.timestamp()), } u.send_post('%s/createSla' % url_prefix, params, logger) time.sleep(cfg['utils']['sleepBetweenTransactions']) # Cycle over the configured KPIs for kpi in sla['kpis']: params = { 'idx': '%s_%i-%i' % (kpi['idPrefix'], int(dt_start.timestamp()), int(dt_end.timestamp())), 'idxSla': sla_idx, 'rule': kpi['rule'], 'limit': kpi['limit'], 'measureUnit': kpi['mu'], 'penalty': kpi['penalty'], 'players': kpi['players'], } u.send_post('%s/createKpiFeatures' % url_prefix, params, logger) time.sleep(cfg['utils']['sleepBetweenTransactions']) logger.info('Ending program')
[ 2, 17267, 278, 2665, 198, 11748, 33918, 198, 11748, 7007, 198, 11748, 1822, 29572, 198, 11748, 18931, 198, 11748, 640, 198, 11748, 4818, 8079, 198, 6738, 6097, 13, 2435, 62, 26791, 1330, 3862, 18274, 4487, 198, 198, 11748, 20081, 355, 334, 198, 198, 2, 8774, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1822, 62, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 66, 3256, 1037, 11639, 11250, 2393, 11537, 198, 220, 220, 220, 1822, 62, 48610, 13, 2860, 62, 49140, 10786, 12, 75, 3256, 1037, 11639, 6404, 2393, 11537, 628, 220, 220, 220, 26498, 796, 1822, 62, 48610, 13, 29572, 62, 22046, 3419, 198, 220, 220, 220, 30218, 70, 796, 33918, 13, 46030, 7, 9654, 7, 22046, 13, 66, 737, 961, 28955, 628, 220, 220, 220, 1303, 3497, 8398, 546, 8787, 284, 4806, 22564, 11012, 290, 6569, 2139, 3519, 284, 1366, 50122, 198, 220, 220, 220, 45218, 62, 11250, 796, 33918, 13, 46030, 7, 9654, 7, 37581, 17816, 8443, 507, 8979, 20520, 737, 961, 28955, 198, 220, 220, 220, 30218, 70, 13, 19119, 7, 22065, 62, 11250, 8, 628, 220, 220, 220, 1303, 900, 18931, 2134, 198, 220, 220, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 3419, 198, 220, 220, 220, 49706, 13, 2617, 4971, 7, 6404, 2667, 13, 10778, 8, 198, 220, 220, 220, 611, 407, 26498, 13, 75, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 7753, 796, 6045, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 7753, 796, 26498, 13, 75, 628, 220, 220, 220, 49706, 796, 18931, 13, 1136, 11187, 1362, 3419, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 18982, 11639, 4, 7, 292, 310, 524, 13219, 1314, 82, 3712, 4, 7, 16663, 5376, 8, 82, 3712, 4, 7, 5715, 3672, 8, 82, 3712, 4, 7, 20786, 5376, 8, 82, 3712, 4, 7, 20500, 8, 82, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1241, 28, 6404, 2667, 13, 10778, 11, 29472, 28, 6404, 62, 7753, 8, 628, 220, 220, 220, 19016, 62, 40290, 796, 30218, 70, 17816, 1589, 7983, 19452, 32, 14415, 20520, 628, 220, 220, 220, 49706, 13, 10951, 10786, 22851, 1430, 11537, 628, 220, 220, 220, 1303, 3497, 262, 13262, 1352, 198, 220, 220, 220, 581, 796, 7007, 13, 1136, 10786, 4, 82, 14, 9460, 2301, 1352, 6, 4064, 30218, 70, 17816, 1589, 7983, 19452, 32, 14415, 6, 12962, 198, 220, 220, 220, 13262, 1352, 62, 312, 796, 33918, 13, 46030, 7, 411, 13, 5239, 8, 17816, 46384, 2301, 1352, 6, 7131, 6, 312, 87, 20520, 628, 220, 220, 220, 1303, 26993, 625, 262, 17839, 12419, 1722, 198, 220, 220, 220, 329, 1017, 64, 287, 30218, 70, 17816, 6649, 292, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 9688, 11, 288, 83, 62, 437, 11, 4808, 796, 3862, 18274, 4487, 13, 1136, 62, 9688, 62, 437, 7, 82, 5031, 17816, 32257, 6, 4357, 30218, 70, 17816, 26791, 6, 7131, 6, 2435, 26961, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 9688, 796, 288, 83, 62, 9688, 532, 4818, 8079, 13, 16514, 276, 12514, 7, 1084, 1769, 28, 37581, 17816, 30846, 7282, 9452, 1769, 6, 7131, 6, 74, 14415, 34149, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 288, 83, 62, 437, 796, 288, 83, 62, 437, 532, 4818, 8079, 13, 16514, 276, 12514, 7, 1084, 1769, 28, 37581, 17816, 30846, 7282, 9452, 1769, 6, 7131, 6, 74, 14415, 34149, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1017, 64, 62, 312, 87, 796, 705, 4, 82, 62, 4, 72, 12, 4, 72, 6, 4064, 357, 82, 5031, 17816, 312, 36698, 844, 6, 4357, 493, 7, 28664, 62, 9688, 13, 16514, 27823, 3419, 828, 493, 7, 28664, 62, 437, 13, 16514, 27823, 3419, 4008, 628, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 87, 10354, 1017, 64, 62, 312, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 9688, 10354, 493, 7, 28664, 62, 9688, 13, 16514, 27823, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 437, 10354, 493, 7, 28664, 62, 437, 13, 16514, 27823, 3419, 828, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 334, 13, 21280, 62, 7353, 10786, 4, 82, 14, 17953, 50, 5031, 6, 4064, 19016, 62, 40290, 11, 42287, 11, 49706, 8, 198, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 37581, 17816, 26791, 6, 7131, 6, 42832, 25262, 8291, 4658, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 26993, 625, 262, 17839, 45814, 3792, 198, 220, 220, 220, 220, 220, 220, 220, 329, 479, 14415, 287, 1017, 64, 17816, 74, 79, 271, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 42287, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 87, 10354, 705, 4, 82, 62, 4, 72, 12, 4, 72, 6, 4064, 357, 74, 14415, 17816, 312, 36698, 844, 6, 4357, 493, 7, 28664, 62, 9688, 13, 16514, 27823, 3419, 828, 493, 7, 28664, 62, 437, 13, 16514, 27823, 28955, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 312, 87, 50, 5031, 10354, 1017, 64, 62, 312, 87, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 25135, 10354, 479, 14415, 17816, 25135, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32374, 10354, 479, 14415, 17816, 32374, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 1326, 5015, 26453, 10354, 479, 14415, 17816, 30300, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3617, 6017, 10354, 479, 14415, 17816, 3617, 6017, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 32399, 10354, 479, 14415, 17816, 32399, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 334, 13, 21280, 62, 7353, 10786, 4, 82, 14, 17953, 42, 14415, 23595, 6, 4064, 19016, 62, 40290, 11, 42287, 11, 49706, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 37581, 17816, 26791, 6, 7131, 6, 42832, 25262, 8291, 4658, 6, 12962, 628, 220, 220, 220, 49706, 13, 10951, 10786, 12915, 278, 1430, 11537, 198 ]
2.204411
1,179
from spinnman.messages.scp.abstract_messages.abstract_scp_request\ import AbstractSCPRequest from spinnman.messages.sdp.sdp_flag import SDPFlag from spinnman.messages.sdp.sdp_header import SDPHeader from spinnman.messages.scp.scp_request_header import SCPRequestHeader from spinnman.messages.scp.scp_command import SCPCommand from spinnman.messages.scp.impl.scp_version_response import SCPVersionResponse
[ 6738, 599, 3732, 805, 13, 37348, 1095, 13, 1416, 79, 13, 397, 8709, 62, 37348, 1095, 13, 397, 8709, 62, 1416, 79, 62, 25927, 59, 198, 220, 220, 220, 1330, 27741, 48956, 18453, 198, 6738, 599, 3732, 805, 13, 37348, 1095, 13, 21282, 79, 13, 21282, 79, 62, 32109, 1330, 311, 6322, 34227, 198, 6738, 599, 3732, 805, 13, 37348, 1095, 13, 21282, 79, 13, 21282, 79, 62, 25677, 1330, 311, 6322, 39681, 198, 6738, 599, 3732, 805, 13, 37348, 1095, 13, 1416, 79, 13, 1416, 79, 62, 25927, 62, 25677, 1330, 17527, 18453, 39681, 198, 6738, 599, 3732, 805, 13, 37348, 1095, 13, 1416, 79, 13, 1416, 79, 62, 21812, 1330, 6374, 5662, 2002, 392, 198, 6738, 599, 3732, 805, 13, 37348, 1095, 13, 1416, 79, 13, 23928, 13, 1416, 79, 62, 9641, 62, 26209, 1330, 17527, 14815, 31077, 628 ]
2.907801
141
from Cocoa import * from Quartz import * from SampleCIView import SampleCIView from math import sin import objc NUM_POINTS=4
[ 6738, 18490, 12162, 1330, 1635, 198, 6738, 45976, 1330, 1635, 198, 198, 6738, 27565, 34, 3824, 769, 1330, 27565, 34, 3824, 769, 198, 198, 6738, 10688, 1330, 7813, 198, 198, 11748, 26181, 66, 198, 198, 41359, 62, 16402, 1268, 4694, 28, 19, 198 ]
3
43
from pathlib import Path from fhir.resources.codesystem import CodeSystem from oops_fhir.utils import CodeSystemConcept __all__ = ["RequestIntent"] _resource = CodeSystem.parse_file(Path(__file__).with_suffix(".json"))
[ 6738, 3108, 8019, 1330, 10644, 198, 198, 6738, 277, 71, 343, 13, 37540, 13, 40148, 6781, 1330, 6127, 11964, 198, 198, 6738, 267, 2840, 62, 69, 71, 343, 13, 26791, 1330, 6127, 11964, 3103, 984, 628, 198, 834, 439, 834, 796, 14631, 18453, 5317, 298, 8973, 198, 198, 62, 31092, 796, 6127, 11964, 13, 29572, 62, 7753, 7, 15235, 7, 834, 7753, 834, 737, 4480, 62, 37333, 844, 7, 1911, 17752, 48774, 628 ]
3.082192
73
if __name__ == '__main__': main()
[ 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.105263
19
from .app import create_app # creates the app by calling the package APP = create_app()
[ 6738, 764, 1324, 1330, 2251, 62, 1324, 198, 198, 2, 8075, 262, 598, 416, 4585, 262, 5301, 198, 24805, 796, 2251, 62, 1324, 3419 ]
3.666667
24
from flask_restplus import Api API = Api( title="Book API", version='1.0', description="This Api provides endpoint for accessing books and their reviews." )
[ 6738, 42903, 62, 2118, 9541, 1330, 5949, 72, 198, 198, 17614, 796, 5949, 72, 7, 198, 220, 220, 220, 3670, 2625, 10482, 7824, 1600, 198, 220, 220, 220, 2196, 11639, 16, 13, 15, 3256, 198, 220, 220, 220, 6764, 2625, 1212, 5949, 72, 3769, 36123, 329, 22534, 3835, 290, 511, 8088, 526, 198, 8, 198 ]
3.090909
55
import unittest from game import Game from suit import Suit if __name__ == '__main__': unittest.main()
[ 11748, 555, 715, 395, 198, 198, 6738, 983, 1330, 3776, 198, 6738, 6050, 1330, 28871, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 555, 715, 395, 13, 12417, 3419, 198 ]
2.846154
39
from PyConstants import Paths from PyConstants import Codes from PyConstants import CacheTimes from PyBaseTest import BaseTest from PyRequest import PyRequest import time
[ 6738, 9485, 34184, 1187, 1330, 10644, 82, 198, 6738, 9485, 34184, 1187, 1330, 44380, 198, 6738, 9485, 34184, 1187, 1330, 34088, 28595, 198, 6738, 9485, 14881, 14402, 1330, 7308, 14402, 198, 6738, 9485, 18453, 1330, 9485, 18453, 198, 11748, 640, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198 ]
3.6
50
from __future__ import unicode_literals from hypothesis.strategies import integers from star_ratings import app_settings
[ 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 14078, 13, 2536, 2397, 444, 1330, 37014, 198, 6738, 3491, 62, 10366, 654, 1330, 598, 62, 33692, 628 ]
3.967742
31
'''''' from .Bird import Bird from .Pipe import Pipe
[ 39115, 7061, 198, 6738, 764, 42562, 1330, 14506, 198, 6738, 764, 47, 3757, 1330, 36039 ]
3.466667
15
import os.path import configparser from dircheck import get_yesno_input import create_jobscripts from create_dirname_config import config_dirname_cfg from create_all_dirs import create_all import socket import cgns_load_data # Script that creates the two configuration files (case and render files) necessary to run the scripts, with a data file from Abhiram's body flow simulation as input. # Check whether scripts being run on Mox if socket.gethostname()[0:3] == "mox": mox = True blender_dir = "/gscratch/ferrante/blender/blender-2.78c-linux-glibc219-x86_64/./" else: mox = False blender_dir = "" # Check if dirname.cfg, which contains directory paths used throughout the scripts, exists - otherwise, create it if not os.path.exists("dirname.cfg"): config_dirname_cfg() # Load important directories dirname_config = configparser.ConfigParser() dirname_config.read("dirname.cfg") # Get case name. This corresponds to a specific .h5dns file and is specified by the user. A case config file will be created with its name. case_name = input("Enter case name. This can be any string that refers to a particular VIZ.cgns file. ") create_all(case_name) case_config_path = dirname_config["DIRECTORIES"]["RenderConfig"] + case_name + "-case.cfg" # If existing case config file exists, the user is specifying a particular .h5dns file that is already associated with # this case name, so move on to render settings config. Otherwise, create case config file from user input. if os.path.exists(case_config_path): print("Found existing case configuration: " + case_config_path) existing_case_config = configparser.ConfigParser() existing_case_config.read(case_config_path) print("data file: " + existing_case_config["STRING"]["h5dns_path"]) else: # Create new case config file new_case_config = configparser.ConfigParser() # There are different sections for each datatype (this is how the scripts know what data types to load, when they are all saved as strings) new_case_config["STRING"] = {} new_case_config["FLOAT"] = {} new_case_config["INT"] = {} # Save important strings new_case_config["STRING"]["case_name"] = case_name new_case_config["STRING"]["data_file_type"] = "bodyflow" h5dns_path = input("Enter absolute path to data file: ") new_case_config["STRING"]["h5dns_path"] = h5dns_path # Load data file and save important params params = cgns_load_data.get_important_data(h5dns_path) new_case_config["INT"]["tres"] = str(params["tres"]) new_case_config["INT"]["ires"] = str(params["ires"]) new_case_config["INT"]["jres"] = str(params["jres"]) new_case_config["INT"]["kres"] = str(params["kres"]) # Write case config file with open(case_config_path, "w") as case_config_file: new_case_config.write(case_config_file) # Get render-specific config settings from user. This specifies what type of render to perform (photorealistic, surface # temperature, ...), and other render settings (scale of droplet to render, etc.) render_type = int(input("Select type of render to perform (enter number).\n 1 Streamline render\n 2 Vortex line render\n")) render_name = input("Enter render profile name. This can be any string that refers to specific rendering settings for a data case. ") # Initialize categories based on data types new_render_config = configparser.ConfigParser() new_render_config["STRING"] = {} new_render_config["INT"] = {} new_render_config["FLOAT"] = {} new_render_config["BOOL"] = {} new_render_config["STRING"]["render_name"] = render_name # Determine settings from user that are specific to each type. if (render_type == 1): # Streamline # Name render config file based on the type of render being performed render_config_path = dirname_config["DIRECTORIES"]["RenderConfig"] + render_name + "-render-streamline.cfg" # Get some other settings elif (render_type == 2): # Vortex line render_config_path = dirname_config["DIRECTORIES"]["RenderConfig"] + render_name + "-render-vortexline.cfg" # General inputs new_render_config["INT"]["num_streamlines"] = input("Specify number of streamlines: ") new_render_config["INT"]["streamline_seed"] = "777" #input("Specify random seed number to determine streamline start positions from: ") new_render_config["FLOAT"]["view_fraction"] = input("Specify desired render frame width as multiple of domain length: ") new_render_config["FLOAT"]["camera_azimuth_angle"] = input("Specify camera azimuth angle from the x-axis (deg): ") new_render_config["FLOAT"]["camera_elevation_angle"] = input("Specify camera elevation angle from the horizontal (deg): ") bg_image_enabled = get_yesno_input("Use custom background image? ") if bg_image_enabled: new_render_config["STRING"]["bg_image_filepath"] = dirname_config["DIRECTORIES"]["background_images"] + input("Specify background image name (in \"Render2018/BackgroundImages\"): ") new_render_config["STRING"]["bg_color_1"] = "" new_render_config["STRING"]["bg_color_2"] = "" else: new_render_config["STRING"]["bg_image_filepath"] = "" new_render_config["STRING"]["bg_color_1"] = input("Specify R,G,B value of lower background color (separate floats by commas, values range from 0 to 1): ") new_render_config["STRING"]["bg_color_2"] = input("Specify R,G,B value of upper background color (separate floats by commas, values range from 0 to 1): ") new_render_config["FLOAT"]["resolution_percentage"] = input("Specify resolution percentage out of 100, as a percentage of 4K: ") # Write render config file with open(render_config_path, "w") as render_config_file: new_render_config.write(render_config_file) # Create slurm jobscript to run on Mox slurm_name = case_name + "_" + render_name + ".slurm" create_jobscripts.create_mox_slurm(slurm_dir=dirname_config["DIRECTORIES"]["RenderJobscripts"], slurm_name=slurm_name, job_name=case_name+"_"+render_name, lib_dir=os.getcwd(), python_file_to_run="render_init.py", case_config_path=case_config_path, render_config_path=render_config_path) local_py_name = case_name + "_" + render_name + ".py" create_jobscripts.create_local_py(python_dir=dirname_config["DIRECTORIES"]["RenderJobscripts"], python_filename=local_py_name, lib_dir=dirname_config["DIRECTORIES"]["lib"], python_file_to_run="render_init.py", case_config_path=case_config_path, render_config_path=render_config_path) # Run jobscript if user desires if mox: if get_yesno_input("Run " + slurm_name + " to launch this rendering job?"): os.system("sbatch -p ferrante -A ferrante " + dirname_config["DIRECTORIES"]["RenderJobscripts"] + "/" + slurm_name) else: if get_yesno_input("Run " + local_py_name + " to launch this rendering job?"): os.system("python3 " + dirname_config["DIRECTORIES"]["RenderJobscripts"] + local_py_name)
[ 11748, 28686, 13, 6978, 198, 11748, 4566, 48610, 198, 6738, 288, 1980, 258, 694, 1330, 651, 62, 8505, 3919, 62, 15414, 198, 11748, 2251, 62, 21858, 46521, 198, 6738, 2251, 62, 15908, 3672, 62, 11250, 1330, 4566, 62, 15908, 3672, 62, 37581, 198, 6738, 2251, 62, 439, 62, 15908, 82, 1330, 2251, 62, 439, 198, 11748, 17802, 198, 11748, 269, 4593, 82, 62, 2220, 62, 7890, 198, 2, 12327, 326, 8075, 262, 734, 8398, 3696, 357, 7442, 290, 8543, 3696, 8, 3306, 284, 1057, 262, 14750, 11, 351, 257, 1366, 2393, 422, 2275, 71, 343, 321, 338, 1767, 5202, 18640, 355, 5128, 13, 198, 198, 2, 6822, 1771, 14750, 852, 1057, 319, 337, 1140, 198, 361, 17802, 13, 1136, 4774, 3672, 3419, 58, 15, 25, 18, 60, 6624, 366, 76, 1140, 1298, 198, 220, 220, 220, 285, 1140, 796, 6407, 198, 220, 220, 220, 40047, 62, 15908, 796, 12813, 70, 1416, 36722, 14, 2232, 5250, 68, 14, 2436, 2194, 14, 2436, 2194, 12, 17, 13, 3695, 66, 12, 23289, 12, 4743, 571, 66, 28896, 12, 87, 4521, 62, 2414, 11757, 30487, 198, 17772, 25, 198, 220, 220, 220, 285, 1140, 796, 10352, 198, 220, 220, 220, 40047, 62, 15908, 796, 13538, 198, 198, 2, 6822, 611, 26672, 3672, 13, 37581, 11, 543, 4909, 8619, 13532, 973, 3690, 262, 14750, 11, 7160, 532, 4306, 11, 2251, 340, 198, 361, 407, 28686, 13, 6978, 13, 1069, 1023, 7203, 15908, 3672, 13, 37581, 1, 2599, 198, 220, 220, 220, 4566, 62, 15908, 3672, 62, 37581, 3419, 198, 198, 2, 8778, 1593, 29196, 198, 15908, 3672, 62, 11250, 796, 4566, 48610, 13, 16934, 46677, 3419, 198, 15908, 3672, 62, 11250, 13, 961, 7203, 15908, 3672, 13, 37581, 4943, 198, 198, 2, 3497, 1339, 1438, 13, 770, 24866, 284, 257, 2176, 764, 71, 20, 67, 5907, 2393, 290, 318, 7368, 416, 262, 2836, 13, 317, 1339, 4566, 2393, 481, 307, 2727, 351, 663, 1438, 13, 198, 7442, 62, 3672, 796, 5128, 7203, 17469, 1339, 1438, 13, 770, 460, 307, 597, 4731, 326, 10229, 284, 257, 1948, 13889, 57, 13, 66, 4593, 82, 2393, 13, 366, 8, 198, 17953, 62, 439, 7, 7442, 62, 3672, 8, 198, 7442, 62, 11250, 62, 6978, 796, 26672, 3672, 62, 11250, 14692, 17931, 23988, 1581, 11015, 1, 7131, 1, 45819, 16934, 8973, 1343, 1339, 62, 3672, 1343, 27444, 7442, 13, 37581, 1, 198, 198, 2, 1002, 4683, 1339, 4566, 2393, 7160, 11, 262, 2836, 318, 31577, 257, 1948, 764, 71, 20, 67, 5907, 2393, 326, 318, 1541, 3917, 351, 198, 2, 428, 1339, 1438, 11, 523, 1445, 319, 284, 8543, 6460, 4566, 13, 15323, 11, 2251, 1339, 4566, 2393, 422, 2836, 5128, 13, 198, 361, 28686, 13, 6978, 13, 1069, 1023, 7, 7442, 62, 11250, 62, 6978, 2599, 198, 220, 220, 220, 3601, 7203, 21077, 4683, 1339, 8398, 25, 366, 1343, 1339, 62, 11250, 62, 6978, 8, 198, 220, 220, 220, 4683, 62, 7442, 62, 11250, 796, 4566, 48610, 13, 16934, 46677, 3419, 198, 220, 220, 220, 4683, 62, 7442, 62, 11250, 13, 961, 7, 7442, 62, 11250, 62, 6978, 8, 198, 220, 220, 220, 3601, 7203, 7890, 2393, 25, 366, 1343, 4683, 62, 7442, 62, 11250, 14692, 18601, 2751, 1, 7131, 1, 71, 20, 67, 5907, 62, 6978, 8973, 8, 198, 17772, 25, 198, 220, 220, 220, 1303, 13610, 649, 1339, 4566, 2393, 198, 220, 220, 220, 649, 62, 7442, 62, 11250, 796, 4566, 48610, 13, 16934, 46677, 3419, 628, 220, 220, 220, 1303, 1318, 389, 1180, 9004, 329, 1123, 4818, 265, 2981, 357, 5661, 318, 703, 262, 14750, 760, 644, 1366, 3858, 284, 3440, 11, 618, 484, 389, 477, 7448, 355, 13042, 8, 198, 220, 220, 220, 649, 62, 7442, 62, 11250, 14692, 18601, 2751, 8973, 796, 23884, 198, 220, 220, 220, 649, 62, 7442, 62, 11250, 14692, 3697, 46, 1404, 8973, 796, 23884, 198, 220, 220, 220, 649, 62, 7442, 62, 11250, 14692, 12394, 8973, 796, 23884, 628, 220, 220, 220, 1303, 12793, 1593, 13042, 198, 220, 220, 220, 649, 62, 7442, 62, 11250, 14692, 18601, 2751, 1, 7131, 1, 7442, 62, 3672, 8973, 796, 1339, 62, 3672, 198, 220, 220, 220, 649, 62, 7442, 62, 11250, 14692, 18601, 2751, 1, 7131, 1, 7890, 62, 7753, 62, 4906, 8973, 796, 366, 2618, 11125, 1, 198, 220, 220, 220, 289, 20, 67, 5907, 62, 6978, 796, 5128, 7203, 17469, 4112, 3108, 284, 1366, 2393, 25, 366, 8, 198, 220, 220, 220, 649, 62, 7442, 62, 11250, 14692, 18601, 2751, 1, 7131, 1, 71, 20, 67, 5907, 62, 6978, 8973, 796, 289, 20, 67, 5907, 62, 6978, 628, 220, 220, 220, 1303, 8778, 1366, 2393, 290, 3613, 1593, 42287, 198, 220, 220, 220, 42287, 796, 269, 4593, 82, 62, 2220, 62, 7890, 13, 1136, 62, 18049, 62, 7890, 7, 71, 20, 67, 5907, 62, 6978, 8, 198, 220, 220, 220, 649, 62, 7442, 62, 11250, 14692, 12394, 1, 7131, 1, 83, 411, 8973, 796, 965, 7, 37266, 14692, 83, 411, 8973, 8, 198, 220, 220, 220, 649, 62, 7442, 62, 11250, 14692, 12394, 1, 7131, 1, 2387, 8973, 796, 965, 7, 37266, 14692, 2387, 8973, 8, 198, 220, 220, 220, 649, 62, 7442, 62, 11250, 14692, 12394, 1, 7131, 1, 73, 411, 8973, 796, 965, 7, 37266, 14692, 73, 411, 8973, 8, 198, 220, 220, 220, 649, 62, 7442, 62, 11250, 14692, 12394, 1, 7131, 1, 74, 411, 8973, 796, 965, 7, 37266, 14692, 74, 411, 8973, 8, 628, 220, 220, 220, 1303, 19430, 1339, 4566, 2393, 198, 220, 220, 220, 351, 1280, 7, 7442, 62, 11250, 62, 6978, 11, 366, 86, 4943, 355, 1339, 62, 11250, 62, 7753, 25, 198, 220, 220, 220, 220, 220, 220, 220, 649, 62, 7442, 62, 11250, 13, 13564, 7, 7442, 62, 11250, 62, 7753, 8, 198, 198, 2, 3497, 8543, 12, 11423, 4566, 6460, 422, 2836, 13, 770, 26052, 644, 2099, 286, 8543, 284, 1620, 357, 38611, 39396, 2569, 11, 4417, 198, 2, 5951, 11, 2644, 828, 290, 584, 8543, 6460, 357, 9888, 286, 3102, 37069, 284, 8543, 11, 3503, 2014, 198, 13287, 62, 4906, 796, 493, 7, 15414, 7203, 17563, 2099, 286, 8543, 284, 1620, 357, 9255, 1271, 737, 59, 77, 352, 220, 13860, 1370, 8543, 59, 77, 362, 220, 49790, 1627, 8543, 59, 77, 48774, 198, 13287, 62, 3672, 796, 5128, 7203, 17469, 8543, 7034, 1438, 13, 770, 460, 307, 597, 4731, 326, 10229, 284, 2176, 14837, 6460, 329, 257, 1366, 1339, 13, 366, 8, 198, 198, 2, 20768, 1096, 9376, 1912, 319, 1366, 3858, 198, 3605, 62, 13287, 62, 11250, 796, 4566, 48610, 13, 16934, 46677, 3419, 198, 3605, 62, 13287, 62, 11250, 14692, 18601, 2751, 8973, 796, 23884, 198, 3605, 62, 13287, 62, 11250, 14692, 12394, 8973, 796, 23884, 198, 3605, 62, 13287, 62, 11250, 14692, 3697, 46, 1404, 8973, 796, 23884, 198, 3605, 62, 13287, 62, 11250, 14692, 8202, 3535, 8973, 796, 23884, 198, 3605, 62, 13287, 62, 11250, 14692, 18601, 2751, 1, 7131, 1, 13287, 62, 3672, 8973, 796, 8543, 62, 3672, 198, 198, 2, 45559, 3810, 6460, 422, 2836, 326, 389, 2176, 284, 1123, 2099, 13, 198, 361, 357, 13287, 62, 4906, 6624, 352, 2599, 1303, 13860, 1370, 198, 220, 220, 220, 1303, 6530, 8543, 4566, 2393, 1912, 319, 262, 2099, 286, 8543, 852, 6157, 198, 220, 220, 220, 8543, 62, 11250, 62, 6978, 796, 26672, 3672, 62, 11250, 14692, 17931, 23988, 1581, 11015, 1, 7131, 1, 45819, 16934, 8973, 1343, 8543, 62, 3672, 1343, 27444, 13287, 12, 5532, 1370, 13, 37581, 1, 198, 220, 220, 220, 1303, 3497, 617, 584, 6460, 198, 198, 417, 361, 357, 13287, 62, 4906, 6624, 362, 2599, 1303, 49790, 1627, 198, 220, 220, 220, 8543, 62, 11250, 62, 6978, 796, 26672, 3672, 62, 11250, 14692, 17931, 23988, 1581, 11015, 1, 7131, 1, 45819, 16934, 8973, 1343, 8543, 62, 3672, 1343, 27444, 13287, 12, 85, 26158, 1370, 13, 37581, 1, 198, 198, 2, 3611, 17311, 198, 3605, 62, 13287, 62, 11250, 14692, 12394, 1, 7131, 1, 22510, 62, 5532, 6615, 8973, 796, 5128, 7203, 22882, 1958, 1271, 286, 4269, 6615, 25, 366, 8, 198, 3605, 62, 13287, 62, 11250, 14692, 12394, 1, 7131, 1, 5532, 1370, 62, 28826, 8973, 796, 366, 29331, 1, 1303, 15414, 7203, 22882, 1958, 4738, 9403, 1271, 284, 5004, 4269, 1370, 923, 6116, 422, 25, 366, 8, 198, 3605, 62, 13287, 62, 11250, 14692, 3697, 46, 1404, 1, 7131, 1, 1177, 62, 69, 7861, 8973, 796, 5128, 7203, 22882, 1958, 10348, 8543, 5739, 9647, 355, 3294, 286, 7386, 4129, 25, 366, 8, 198, 3605, 62, 13287, 62, 11250, 14692, 3697, 46, 1404, 1, 7131, 1, 25695, 62, 1031, 320, 1071, 62, 9248, 8973, 796, 5128, 7203, 22882, 1958, 4676, 35560, 320, 1071, 9848, 422, 262, 2124, 12, 22704, 357, 13500, 2599, 366, 8, 198, 3605, 62, 13287, 62, 11250, 14692, 3697, 46, 1404, 1, 7131, 1, 25695, 62, 68, 2768, 341, 62, 9248, 8973, 796, 5128, 7203, 22882, 1958, 4676, 22910, 9848, 422, 262, 16021, 357, 13500, 2599, 366, 8, 198, 35904, 62, 9060, 62, 25616, 796, 651, 62, 8505, 3919, 62, 15414, 7203, 11041, 2183, 4469, 2939, 30, 366, 8, 198, 361, 275, 70, 62, 9060, 62, 25616, 25, 198, 220, 220, 220, 649, 62, 13287, 62, 11250, 14692, 18601, 2751, 1, 7131, 1, 35904, 62, 9060, 62, 7753, 6978, 8973, 796, 26672, 3672, 62, 11250, 14692, 17931, 23988, 1581, 11015, 1, 7131, 1, 25249, 62, 17566, 8973, 1343, 5128, 7203, 22882, 1958, 4469, 2939, 1438, 357, 259, 19990, 45819, 7908, 14, 21756, 29398, 7879, 2599, 366, 8, 198, 220, 220, 220, 649, 62, 13287, 62, 11250, 14692, 18601, 2751, 1, 7131, 1, 35904, 62, 8043, 62, 16, 8973, 796, 13538, 198, 220, 220, 220, 649, 62, 13287, 62, 11250, 14692, 18601, 2751, 1, 7131, 1, 35904, 62, 8043, 62, 17, 8973, 796, 13538, 198, 17772, 25, 198, 220, 220, 220, 649, 62, 13287, 62, 11250, 14692, 18601, 2751, 1, 7131, 1, 35904, 62, 9060, 62, 7753, 6978, 8973, 796, 13538, 198, 220, 220, 220, 649, 62, 13287, 62, 11250, 14692, 18601, 2751, 1, 7131, 1, 35904, 62, 8043, 62, 16, 8973, 796, 5128, 7203, 22882, 1958, 371, 11, 38, 11, 33, 1988, 286, 2793, 4469, 3124, 357, 25512, 378, 36016, 416, 725, 292, 11, 3815, 2837, 422, 657, 284, 352, 2599, 366, 8, 198, 220, 220, 220, 649, 62, 13287, 62, 11250, 14692, 18601, 2751, 1, 7131, 1, 35904, 62, 8043, 62, 17, 8973, 796, 5128, 7203, 22882, 1958, 371, 11, 38, 11, 33, 1988, 286, 6727, 4469, 3124, 357, 25512, 378, 36016, 416, 725, 292, 11, 3815, 2837, 422, 657, 284, 352, 2599, 366, 8, 198, 3605, 62, 13287, 62, 11250, 14692, 3697, 46, 1404, 1, 7131, 1, 29268, 62, 25067, 496, 8973, 796, 5128, 7203, 22882, 1958, 6323, 5873, 503, 286, 1802, 11, 355, 257, 5873, 286, 604, 42, 25, 366, 8, 198, 198, 2, 19430, 8543, 4566, 2393, 198, 4480, 1280, 7, 13287, 62, 11250, 62, 6978, 11, 366, 86, 4943, 355, 8543, 62, 11250, 62, 7753, 25, 198, 220, 220, 220, 649, 62, 13287, 62, 11250, 13, 13564, 7, 13287, 62, 11250, 62, 7753, 8, 198, 198, 2, 13610, 40066, 76, 1693, 12048, 284, 1057, 319, 337, 1140, 198, 6649, 333, 76, 62, 3672, 796, 1339, 62, 3672, 1343, 45434, 1, 1343, 8543, 62, 3672, 1343, 27071, 6649, 333, 76, 1, 198, 17953, 62, 21858, 46521, 13, 17953, 62, 76, 1140, 62, 6649, 333, 76, 7, 6649, 333, 76, 62, 15908, 28, 15908, 3672, 62, 11250, 14692, 17931, 23988, 1581, 11015, 1, 7131, 1, 45819, 33308, 46521, 33116, 40066, 76, 62, 3672, 28, 6649, 333, 76, 62, 3672, 11, 1693, 62, 3672, 28, 7442, 62, 3672, 10, 1, 62, 1, 10, 13287, 62, 3672, 11, 9195, 62, 15908, 28, 418, 13, 1136, 66, 16993, 22784, 21015, 62, 7753, 62, 1462, 62, 5143, 2625, 13287, 62, 15003, 13, 9078, 1600, 1339, 62, 11250, 62, 6978, 28, 7442, 62, 11250, 62, 6978, 11, 8543, 62, 11250, 62, 6978, 28, 13287, 62, 11250, 62, 6978, 8, 198, 12001, 62, 9078, 62, 3672, 796, 1339, 62, 3672, 1343, 45434, 1, 1343, 8543, 62, 3672, 1343, 27071, 9078, 1, 198, 17953, 62, 21858, 46521, 13, 17953, 62, 12001, 62, 9078, 7, 29412, 62, 15908, 28, 15908, 3672, 62, 11250, 14692, 17931, 23988, 1581, 11015, 1, 7131, 1, 45819, 33308, 46521, 33116, 21015, 62, 34345, 28, 12001, 62, 9078, 62, 3672, 11, 9195, 62, 15908, 28, 15908, 3672, 62, 11250, 14692, 17931, 23988, 1581, 11015, 1, 7131, 1, 8019, 33116, 21015, 62, 7753, 62, 1462, 62, 5143, 2625, 13287, 62, 15003, 13, 9078, 1600, 1339, 62, 11250, 62, 6978, 28, 7442, 62, 11250, 62, 6978, 11, 8543, 62, 11250, 62, 6978, 28, 13287, 62, 11250, 62, 6978, 8, 198, 198, 2, 5660, 1693, 12048, 611, 2836, 15997, 198, 361, 285, 1140, 25, 198, 220, 220, 220, 611, 651, 62, 8505, 3919, 62, 15414, 7203, 10987, 366, 1343, 40066, 76, 62, 3672, 1343, 366, 284, 4219, 428, 14837, 1693, 1701, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 10057, 7203, 36299, 963, 532, 79, 11354, 5250, 68, 532, 32, 11354, 5250, 68, 366, 1343, 26672, 3672, 62, 11250, 14692, 17931, 23988, 1581, 11015, 1, 7131, 1, 45819, 33308, 46521, 8973, 1343, 12813, 1, 1343, 40066, 76, 62, 3672, 8, 198, 17772, 25, 198, 220, 220, 220, 611, 651, 62, 8505, 3919, 62, 15414, 7203, 10987, 366, 1343, 1957, 62, 9078, 62, 3672, 1343, 366, 284, 4219, 428, 14837, 1693, 1701, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 10057, 7203, 29412, 18, 366, 1343, 26672, 3672, 62, 11250, 14692, 17931, 23988, 1581, 11015, 1, 7131, 1, 45819, 33308, 46521, 8973, 1343, 1957, 62, 9078, 62, 3672, 8, 220, 198 ]
3.008818
2,268
#!/usr/bin/python import sys import simplejson as json if __name__ == "__main__": main()
[ 2, 48443, 14629, 14, 8800, 14, 29412, 198, 11748, 25064, 198, 11748, 2829, 17752, 355, 33918, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.685714
35
#!/usr/bin/env python2 import copy import random from classes.Pokemons import * from classes.Battle import *
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 17, 198, 198, 11748, 4866, 198, 11748, 4738, 198, 6738, 6097, 13, 47, 2088, 11567, 1330, 1635, 198, 6738, 6097, 13, 24064, 1330, 1635, 628 ]
3.363636
33
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.core.urlresolvers import reverse from django.utils.translation import ugettext_lazy as _ import horizon_hpe_storage.api.keystone_api as keystone import horizon_hpe_storage.api.barbican_api as barbican from horizon import exceptions from horizon import forms from horizon import messages
[ 2, 49962, 739, 262, 24843, 13789, 11, 10628, 362, 13, 15, 357, 1169, 366, 34156, 15341, 345, 743, 198, 2, 407, 779, 428, 2393, 2845, 287, 11846, 351, 262, 13789, 13, 921, 743, 7330, 198, 2, 257, 4866, 286, 262, 13789, 379, 198, 2, 198, 2, 220, 220, 220, 220, 220, 2638, 1378, 2503, 13, 43073, 13, 2398, 14, 677, 4541, 14, 43, 2149, 24290, 12, 17, 13, 15, 198, 2, 198, 2, 17486, 2672, 416, 9723, 1099, 393, 4987, 284, 287, 3597, 11, 3788, 198, 2, 9387, 739, 262, 13789, 318, 9387, 319, 281, 366, 1921, 3180, 1, 29809, 1797, 11, 42881, 198, 2, 34764, 11015, 6375, 7102, 49828, 11053, 3963, 15529, 509, 12115, 11, 2035, 4911, 393, 17142, 13, 4091, 262, 198, 2, 13789, 329, 262, 2176, 3303, 15030, 21627, 290, 11247, 198, 2, 739, 262, 13789, 13, 198, 198, 6738, 42625, 14208, 13, 7295, 13, 6371, 411, 349, 690, 1330, 9575, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 198, 11748, 17810, 62, 71, 431, 62, 35350, 13, 15042, 13, 2539, 6440, 62, 15042, 355, 1994, 6440, 198, 11748, 17810, 62, 71, 431, 62, 35350, 13, 15042, 13, 5657, 65, 7490, 62, 15042, 355, 42577, 7490, 198, 198, 6738, 17810, 1330, 13269, 198, 6738, 17810, 1330, 5107, 198, 6738, 17810, 1330, 6218, 628, 198 ]
3.740088
227
from diem import chain_ids from liquidity import create_liquidity_provider, init_liquidity_provider from liquidity.liquidity import FaucetLiquidityProvider, DDLiquidityProvider CUSTODY_PRIVATE_KEYS = ( '{"liquidity":"c6537e56d844fa4a15f3bf5eacd41c9123a19ef19a1026f2325a6b2dd33a13f1"}' )
[ 6738, 2566, 368, 1330, 6333, 62, 2340, 198, 198, 6738, 31061, 1330, 2251, 62, 39250, 414, 62, 15234, 1304, 11, 2315, 62, 39250, 414, 62, 15234, 1304, 198, 6738, 31061, 13, 39250, 414, 1330, 376, 14272, 316, 41966, 414, 29495, 11, 360, 19260, 6394, 414, 29495, 198, 198, 34, 7759, 33076, 62, 4805, 3824, 6158, 62, 7336, 16309, 796, 357, 198, 220, 220, 220, 705, 4895, 39250, 414, 2404, 66, 2996, 2718, 68, 3980, 67, 23, 2598, 13331, 19, 64, 1314, 69, 18, 19881, 20, 68, 330, 67, 3901, 66, 24, 10163, 64, 1129, 891, 1129, 64, 940, 2075, 69, 1954, 1495, 64, 21, 65, 17, 1860, 2091, 64, 1485, 69, 16, 20662, 6, 198, 8, 628, 628 ]
2.508475
118
from .l2norm import L2Norm from .multibox_loss import MultiBoxLoss __all__ = ['L2Norm', 'MultiBoxLoss']
[ 6738, 764, 75, 17, 27237, 220, 220, 220, 220, 220, 220, 220, 1330, 406, 17, 35393, 198, 6738, 764, 16680, 571, 1140, 62, 22462, 1330, 15237, 14253, 43, 793, 198, 198, 834, 439, 834, 796, 37250, 43, 17, 35393, 3256, 705, 29800, 14253, 43, 793, 20520, 198 ]
2.382979
47
import pymetry pym = pymetry pym.octagon(150, "yellow", 8)
[ 11748, 12972, 41935, 198, 79, 4948, 796, 12972, 41935, 198, 79, 4948, 13, 38441, 1840, 7, 8628, 11, 366, 36022, 1600, 807, 8, 198 ]
2.458333
24
""" Remote debugging support. This addon allows you to use a remote Python debugger with PyCharm, PyDev and possibly other IDEs. As it is, without modification, it only supports PyCharm, but it may work by pointing it at a similar egg file shipped with PyDev. Before using, point the addon to your pycharm-debug-py3k.egg file in the addon preferences screen. For more information on how to use this addon, please read my article at http://code.blender.org/2015/10/debugging-python-code-with-pycharm/ """ bl_info = { 'name': 'Remote debugger', 'author': 'Sybren A. Stvel', 'version': (0, 4), 'blender': (2, 80, 0), 'location': 'Press [Space], search for "debugger"', 'category': 'Development', } import bpy import os.path from bpy.types import AddonPreferences from bpy.props import StringProperty # Get references to all property definition functions in bpy.props, # so that they can be used to replace 'x = IntProperty()' to 'x: IntProperty()' # dynamically when working on Blender 2.80+ __all_prop_funcs = { getattr(bpy.props, propname) for propname in dir(bpy.props) if propname.endswith('Property') } def convert_properties(class_): """Class decorator to avoid warnings in Blender 2.80+ This decorator replaces property definitions like this: someprop = bpy.props.IntProperty() to annotations, as introduced in Blender 2.80: someprop: bpy.props.IntProperty() No-op if running on Blender 2.79 or older. """ if bpy.app.version < (2, 80): return class_ if not hasattr(class_, '__annotations__'): class_.__annotations__ = {} attrs_to_delete = [] for name, value in class_.__dict__.items(): if not isinstance(value, tuple) or len(value) != 2: continue prop_func, kwargs = value if prop_func not in __all_prop_funcs: continue # This is a property definition, replace it with annotation. attrs_to_delete.append(name) class_.__annotations__[name] = value for attr_name in attrs_to_delete: delattr(class_, attr_name) return class_ def register(): bpy.utils.register_class(DEBUG_OT_connect_debugger_pycharm) bpy.utils.register_class(DEBUG_OT_connect_debugger_pydev) bpy.utils.register_class(DebuggerAddonPreferences) def unregister(): bpy.utils.unregister_class(DEBUG_OT_connect_debugger_pycharm) bpy.utils.unregister_class(DEBUG_OT_connect_debugger_pydev) bpy.utils.unregister_class(DebuggerAddonPreferences) if __name__ == '__main__': register()
[ 37811, 198, 36510, 28769, 1104, 13, 198, 198, 1212, 48557, 3578, 345, 284, 779, 257, 6569, 11361, 49518, 351, 9485, 1925, 1670, 11, 9485, 13603, 290, 198, 39363, 584, 4522, 23041, 13, 1081, 340, 318, 11, 1231, 17613, 11, 340, 691, 6971, 9485, 1925, 1670, 11, 198, 4360, 340, 743, 670, 416, 10609, 340, 379, 257, 2092, 5935, 2393, 14338, 351, 9485, 13603, 13, 198, 198, 8421, 1262, 11, 966, 262, 48557, 284, 534, 12972, 354, 1670, 12, 24442, 12, 9078, 18, 74, 13, 33856, 2393, 287, 262, 198, 48078, 15387, 3159, 13, 198, 198, 1890, 517, 1321, 319, 703, 284, 779, 428, 48557, 11, 3387, 1100, 616, 2708, 379, 198, 4023, 1378, 8189, 13, 2436, 2194, 13, 2398, 14, 4626, 14, 940, 14, 24442, 2667, 12, 29412, 12, 8189, 12, 4480, 12, 9078, 354, 1670, 14, 198, 37811, 198, 198, 2436, 62, 10951, 796, 1391, 198, 220, 220, 220, 705, 3672, 10354, 705, 36510, 49518, 3256, 198, 220, 220, 220, 705, 9800, 10354, 705, 13940, 65, 918, 317, 13, 520, 626, 3256, 198, 220, 220, 220, 705, 9641, 10354, 357, 15, 11, 604, 828, 198, 220, 220, 220, 705, 2436, 2194, 10354, 357, 17, 11, 4019, 11, 657, 828, 198, 220, 220, 220, 705, 24886, 10354, 705, 13800, 685, 14106, 4357, 2989, 329, 366, 24442, 1362, 1, 3256, 198, 220, 220, 220, 705, 22872, 10354, 705, 41206, 3256, 198, 92, 198, 198, 11748, 275, 9078, 198, 11748, 28686, 13, 6978, 198, 6738, 275, 9078, 13, 19199, 1330, 3060, 261, 36698, 4972, 198, 6738, 275, 9078, 13, 1676, 862, 1330, 10903, 21746, 628, 198, 2, 3497, 10288, 284, 477, 3119, 6770, 5499, 287, 275, 9078, 13, 1676, 862, 11, 198, 2, 523, 326, 484, 460, 307, 973, 284, 6330, 705, 87, 796, 2558, 21746, 3419, 6, 284, 705, 87, 25, 2558, 21746, 3419, 6, 198, 2, 32366, 618, 1762, 319, 1086, 2194, 362, 13, 1795, 10, 198, 834, 439, 62, 22930, 62, 12543, 6359, 796, 1391, 198, 220, 220, 220, 651, 35226, 7, 65, 9078, 13, 1676, 862, 11, 2632, 3672, 8, 198, 220, 220, 220, 329, 2632, 3672, 287, 26672, 7, 65, 9078, 13, 1676, 862, 8, 198, 220, 220, 220, 611, 2632, 3672, 13, 437, 2032, 342, 10786, 21746, 11537, 198, 92, 198, 198, 4299, 10385, 62, 48310, 7, 4871, 62, 2599, 198, 220, 220, 220, 37227, 9487, 11705, 1352, 284, 3368, 14601, 287, 1086, 2194, 362, 13, 1795, 10, 628, 220, 220, 220, 770, 11705, 1352, 24020, 3119, 17336, 588, 428, 25, 628, 220, 220, 220, 220, 220, 220, 220, 617, 22930, 796, 275, 9078, 13, 1676, 862, 13, 5317, 21746, 3419, 628, 220, 220, 220, 284, 37647, 11, 355, 5495, 287, 1086, 2194, 362, 13, 1795, 25, 628, 220, 220, 220, 220, 220, 220, 220, 617, 22930, 25, 275, 9078, 13, 1676, 862, 13, 5317, 21746, 3419, 628, 220, 220, 220, 1400, 12, 404, 611, 2491, 319, 1086, 2194, 362, 13, 3720, 393, 4697, 13, 198, 220, 220, 220, 37227, 628, 220, 220, 220, 611, 275, 9078, 13, 1324, 13, 9641, 1279, 357, 17, 11, 4019, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1441, 1398, 62, 628, 220, 220, 220, 611, 407, 468, 35226, 7, 4871, 62, 11, 705, 834, 34574, 602, 834, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 44807, 834, 34574, 602, 834, 796, 23884, 628, 220, 220, 220, 708, 3808, 62, 1462, 62, 33678, 796, 17635, 198, 220, 220, 220, 329, 1438, 11, 1988, 287, 1398, 44807, 834, 11600, 834, 13, 23814, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 318, 39098, 7, 8367, 11, 46545, 8, 393, 18896, 7, 8367, 8, 14512, 362, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 2632, 62, 20786, 11, 479, 86, 22046, 796, 1988, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2632, 62, 20786, 407, 287, 11593, 439, 62, 22930, 62, 12543, 6359, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 770, 318, 257, 3119, 6770, 11, 6330, 340, 351, 23025, 13, 198, 220, 220, 220, 220, 220, 220, 220, 708, 3808, 62, 1462, 62, 33678, 13, 33295, 7, 3672, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1398, 44807, 834, 34574, 602, 834, 58, 3672, 60, 796, 1988, 628, 220, 220, 220, 329, 708, 81, 62, 3672, 287, 708, 3808, 62, 1462, 62, 33678, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1619, 35226, 7, 4871, 62, 11, 708, 81, 62, 3672, 8, 628, 220, 220, 220, 1441, 1398, 62, 628, 628, 628, 198, 4299, 7881, 33529, 198, 220, 220, 220, 275, 9078, 13, 26791, 13, 30238, 62, 4871, 7, 30531, 62, 2394, 62, 8443, 62, 24442, 1362, 62, 9078, 354, 1670, 8, 198, 220, 220, 220, 275, 9078, 13, 26791, 13, 30238, 62, 4871, 7, 30531, 62, 2394, 62, 8443, 62, 24442, 1362, 62, 79, 5173, 1990, 8, 198, 220, 220, 220, 275, 9078, 13, 26791, 13, 30238, 62, 4871, 7, 27509, 1362, 4550, 261, 36698, 4972, 8, 628, 198, 4299, 555, 30238, 33529, 198, 220, 220, 220, 275, 9078, 13, 26791, 13, 403, 30238, 62, 4871, 7, 30531, 62, 2394, 62, 8443, 62, 24442, 1362, 62, 9078, 354, 1670, 8, 198, 220, 220, 220, 275, 9078, 13, 26791, 13, 403, 30238, 62, 4871, 7, 30531, 62, 2394, 62, 8443, 62, 24442, 1362, 62, 79, 5173, 1990, 8, 198, 220, 220, 220, 275, 9078, 13, 26791, 13, 403, 30238, 62, 4871, 7, 27509, 1362, 4550, 261, 36698, 4972, 8, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 7881, 3419, 198 ]
2.711297
956
import datetime from django.contrib import messages from django.contrib.auth.decorators import login_required, user_passes_test from django.http import HttpResponse from django.shortcuts import render from .book_assign import send_email_reject_book from todo.forms import SearchForm from todo.models import Task, Book, Editor, Writer
[ 11748, 4818, 8079, 198, 198, 6738, 42625, 14208, 13, 3642, 822, 1330, 6218, 198, 6738, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12501, 273, 2024, 1330, 17594, 62, 35827, 11, 2836, 62, 6603, 274, 62, 9288, 198, 6738, 42625, 14208, 13, 4023, 1330, 367, 29281, 31077, 198, 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 6738, 764, 2070, 62, 562, 570, 1330, 3758, 62, 12888, 62, 260, 752, 62, 2070, 198, 198, 6738, 284, 4598, 13, 23914, 1330, 11140, 8479, 198, 6738, 284, 4598, 13, 27530, 1330, 15941, 11, 4897, 11, 12058, 11, 26606, 628 ]
3.474227
97
import matplotlib.pyplot as plt # number of threads used to compute product of 2 matrices of dim. 1024 data_x = [1, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096] # execution time in seconds data_y = [3.300059, 1.664494, 2.294884, 3.200235, 2.915945, 3.082389, 3.023162, 3.012096, 2.958028, 2.939918, 2.847527, 2.898556, 2.876036, 2.963720] plt.figure() plt.plot(data_x, data_y) plt.xlabel('# of threads') plt.xscale('log') plt.ylabel('execution time in seconds') plt.title('Exection times of 1024x1024 matrix multi with different thread counts') plt.show()
[ 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 198, 2, 1271, 286, 14390, 973, 284, 24061, 1720, 286, 362, 2603, 45977, 286, 5391, 13, 28119, 198, 7890, 62, 87, 796, 685, 16, 11, 362, 11, 513, 11, 604, 11, 807, 11, 1467, 11, 3933, 11, 5598, 11, 13108, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17759, 11, 22243, 11, 28119, 11, 36117, 11, 42479, 60, 198, 2, 9706, 640, 287, 4201, 198, 7890, 62, 88, 796, 685, 18, 13, 23924, 3270, 11, 352, 13, 21, 2414, 39449, 11, 362, 13, 1959, 2780, 5705, 11, 513, 13, 2167, 22370, 11, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 13, 24, 19707, 2231, 11, 513, 13, 2919, 1954, 4531, 11, 513, 13, 45310, 25061, 11, 513, 13, 486, 1238, 4846, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 13, 3865, 1795, 2078, 11, 362, 13, 6052, 2079, 1507, 11, 362, 13, 5705, 2425, 1983, 11, 362, 13, 23, 4089, 37864, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 362, 13, 5774, 1899, 2623, 11, 362, 13, 4846, 2718, 1238, 60, 198, 198, 489, 83, 13, 26875, 3419, 198, 489, 83, 13, 29487, 7, 7890, 62, 87, 11, 1366, 62, 88, 8, 198, 489, 83, 13, 87, 18242, 10786, 2, 286, 14390, 11537, 198, 489, 83, 13, 87, 9888, 10786, 6404, 11537, 198, 489, 83, 13, 2645, 9608, 10786, 18558, 1009, 640, 287, 4201, 11537, 198, 489, 83, 13, 7839, 10786, 3109, 3213, 1661, 286, 28119, 87, 35500, 17593, 5021, 351, 1180, 4704, 9853, 11537, 198, 489, 83, 13, 12860, 3419 ]
2.210145
276
# memoro.wsgi # WSGI config for memoro project. # # Author: Benjamin Bengfort <[email protected]> # Created: Sat Nov 28 13:44:01 2020 -0500 # # Copyright (C) 2020 Bengfort.com # For license information, see LICENSE # # ID: wsgi.py [] [email protected] $ """ WSGI config for memoro project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ ########################################################################## ## Imports ########################################################################## import os from django.core.wsgi import get_wsgi_application from dotenv import find_dotenv, load_dotenv ########################################################################## ## Load environment and create WSGI application ########################################################################## load_dotenv(find_dotenv()) os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'memoro.settings.development') application = get_wsgi_application()
[ 198, 2, 16181, 78, 13, 18504, 12397, 198, 2, 25290, 18878, 4566, 329, 16181, 78, 1628, 13, 198, 2, 198, 2, 6434, 25, 220, 220, 14533, 14964, 3319, 1279, 11722, 13337, 31, 65, 1516, 3319, 13, 785, 29, 198, 2, 15622, 25, 220, 7031, 5267, 2579, 1511, 25, 2598, 25, 486, 12131, 532, 2713, 405, 198, 2, 198, 2, 15069, 357, 34, 8, 12131, 14964, 3319, 13, 785, 198, 2, 1114, 5964, 1321, 11, 766, 38559, 24290, 198, 2, 198, 2, 4522, 25, 266, 82, 12397, 13, 9078, 17635, 1888, 13337, 31, 65, 1516, 3319, 13, 785, 720, 198, 198, 37811, 198, 19416, 18878, 4566, 329, 16181, 78, 1628, 13, 198, 198, 1026, 32142, 262, 25290, 18878, 869, 540, 355, 257, 8265, 12, 5715, 7885, 3706, 7559, 31438, 15506, 13, 198, 198, 1890, 517, 1321, 319, 428, 2393, 11, 766, 198, 5450, 1378, 31628, 13, 28241, 648, 404, 305, 752, 13, 785, 14, 268, 14, 18, 13, 16, 14, 4919, 1462, 14, 2934, 1420, 434, 14, 18504, 12397, 14, 198, 37811, 198, 198, 29113, 29113, 7804, 2235, 198, 2235, 1846, 3742, 198, 29113, 29113, 7804, 2235, 198, 198, 11748, 28686, 198, 198, 6738, 42625, 14208, 13, 7295, 13, 18504, 12397, 1330, 651, 62, 18504, 12397, 62, 31438, 198, 6738, 16605, 24330, 1330, 1064, 62, 26518, 24330, 11, 3440, 62, 26518, 24330, 628, 198, 29113, 29113, 7804, 2235, 198, 2235, 8778, 2858, 290, 2251, 25290, 18878, 3586, 198, 29113, 29113, 7804, 2235, 198, 198, 2220, 62, 26518, 24330, 7, 19796, 62, 26518, 24330, 28955, 198, 418, 13, 268, 2268, 13, 2617, 12286, 10786, 35028, 1565, 11230, 62, 28480, 51, 20754, 62, 33365, 24212, 3256, 705, 11883, 16522, 13, 33692, 13, 31267, 11537, 198, 31438, 796, 651, 62, 18504, 12397, 62, 31438, 3419, 198 ]
3.767123
292
""" Serialized Data Converter. Licensed under MIT Copyright (c) 2012 - 2015 Isaac Muse <[email protected]> """ import sublime import sublime_plugin import codecs import re import traceback import os from SerializedDataConverter.lib.log import error_msg from SerializedDataConverter.lib import plist_includes as plist from SerializedDataConverter.lib import yaml_includes as yaml from SerializedDataConverter.lib import json_includes as json PACKAGE_SETTINGS = "serialized_data_converter.sublime-settings" def to_hex(value): """Convert int value to hex string.""" return "%02x" % value ########################## # Plist <-> YAML ########################## ########################## # Plist <-> JSON ########################## ########################## # YAML <-> JSON ########################## ########################## # BPLIST <-> PLIST ##########################
[ 37811, 198, 32634, 1143, 6060, 35602, 353, 13, 198, 198, 26656, 15385, 739, 17168, 198, 15269, 357, 66, 8, 2321, 532, 1853, 19068, 32887, 1279, 9160, 330, 76, 1904, 31, 14816, 13, 785, 29, 198, 37811, 198, 11748, 41674, 198, 11748, 41674, 62, 33803, 198, 11748, 40481, 82, 198, 11748, 302, 198, 11748, 12854, 1891, 198, 11748, 28686, 198, 6738, 23283, 1143, 6601, 3103, 332, 353, 13, 8019, 13, 6404, 1330, 4049, 62, 19662, 198, 6738, 23283, 1143, 6601, 3103, 332, 353, 13, 8019, 1330, 458, 396, 62, 42813, 355, 458, 396, 198, 6738, 23283, 1143, 6601, 3103, 332, 353, 13, 8019, 1330, 331, 43695, 62, 42813, 355, 331, 43695, 198, 6738, 23283, 1143, 6601, 3103, 332, 353, 13, 8019, 1330, 33918, 62, 42813, 355, 33918, 198, 198, 47, 8120, 11879, 62, 28480, 51, 20754, 796, 366, 46911, 1143, 62, 7890, 62, 1102, 332, 353, 13, 7266, 27299, 12, 33692, 1, 628, 198, 4299, 284, 62, 33095, 7, 8367, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 493, 1988, 284, 17910, 4731, 526, 15931, 628, 220, 220, 220, 1441, 36521, 2999, 87, 1, 4064, 1988, 628, 628, 198, 14468, 7804, 2235, 198, 2, 1345, 396, 1279, 3784, 575, 2390, 43, 198, 14468, 7804, 2235, 628, 198, 198, 14468, 7804, 2235, 198, 2, 1345, 396, 1279, 3784, 19449, 198, 14468, 7804, 2235, 628, 198, 198, 14468, 7804, 2235, 198, 2, 575, 2390, 43, 1279, 3784, 19449, 198, 14468, 7804, 2235, 628, 198, 198, 14468, 7804, 2235, 198, 2, 347, 6489, 8808, 1279, 3784, 9297, 8808, 198, 14468, 7804, 2235, 198 ]
3.467181
259
#!/usr/bin/env python2.7 import urho v = urho.Vector3() c = urho.Context() fs = urho.FileSystem(c) from urho import StringHash as sh import os print (os.getcwd()) a = App(c) #help(a) var = urho.Variant(u'/home/nathan/Desktop/testClang') print(var) print(fs.GetCurrentDir()) #a.engineParameters[urho.StringHash('ResourcePrefixPaths')] = var #a.engineParameters["FullScreen"] = False #a.engineParameters[urho.StringHash('FullScreen')] = False a.engineParameters["WindowWidth"] = 500 c.GetSubsystem(sh('Input')).SetMouseVisible(True) del fs c.GetSubsystem(sh('Input')).SetMouseVisible(True) a.Run() #ep = a.engineParameters
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 17, 13, 22, 198, 198, 11748, 2956, 8873, 198, 85, 796, 2956, 8873, 13, 38469, 18, 3419, 198, 66, 796, 2956, 8873, 13, 21947, 3419, 198, 9501, 796, 2956, 8873, 13, 8979, 11964, 7, 66, 8, 198, 198, 6738, 2956, 8873, 1330, 10903, 26257, 355, 427, 198, 198, 11748, 28686, 198, 4798, 357, 418, 13, 1136, 66, 16993, 28955, 198, 198, 64, 796, 2034, 7, 66, 8, 198, 2, 16794, 7, 64, 8, 198, 198, 7785, 796, 2956, 8873, 13, 23907, 415, 7, 84, 26488, 11195, 14, 77, 6696, 14, 36881, 14, 9288, 2601, 648, 11537, 198, 4798, 7, 7785, 8, 198, 198, 4798, 7, 9501, 13, 3855, 11297, 35277, 28955, 198, 2, 64, 13, 18392, 48944, 58, 333, 8873, 13, 10100, 26257, 10786, 26198, 36698, 844, 15235, 82, 11537, 60, 796, 1401, 198, 2, 64, 13, 18392, 48944, 14692, 13295, 23901, 8973, 796, 10352, 198, 2, 64, 13, 18392, 48944, 58, 333, 8873, 13, 10100, 26257, 10786, 13295, 23901, 11537, 60, 796, 10352, 198, 198, 64, 13, 18392, 48944, 14692, 27703, 30916, 8973, 796, 5323, 198, 198, 66, 13, 3855, 7004, 10057, 7, 1477, 10786, 20560, 11537, 737, 7248, 39643, 53, 12843, 7, 17821, 8, 198, 198, 12381, 43458, 198, 66, 13, 3855, 7004, 10057, 7, 1477, 10786, 20560, 11537, 737, 7248, 39643, 53, 12843, 7, 17821, 8, 198, 64, 13, 10987, 3419, 198, 198, 2, 538, 796, 257, 13, 18392, 48944, 628, 198 ]
2.604938
243
""" Django settings for tesis project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # -*- coding: utf-8 -*- # A tuple that lists people who get code error notifications. ADMINS = ( ('Abel Gonzlez Mondjar', '[email protected]'), ) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os from django.conf import global_settings BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'a6c$xd0y%_#%&ucf!uzu0cuc)6-+b+t5(63u#a__!^3cnhk)#l' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True # A boolean that turns on/off template debug mode. TEMPLATE_DEBUG = True # A list of strings representing the host/domain names that this Django site can serve. ALLOWED_HOSTS = [] # Application definition # A tuple of strings designating all applications that are enabled in this Django installation INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.humanize', # otras apps 'pure_pagination', 'watson', # Mis Apps 'ajustes', 'persona', 'planEstudio', # importada y modificada 'main', ) PAGINATION_SETTINGS = { 'PAGE_RANGE_DISPLAYED': 10, 'MARGIN_PAGES_DISPLAYED': 1, } # Middleware is a framework of hooks into Djangos request/response processing. MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) # A string representing the full Python import path to your root URLconf. ROOT_URLCONF = 'tesis.urls' # The full Python path of the WSGI application object that Djangos built-in servers (e.g. runserver) will use. WSGI_APPLICATION = 'tesis.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases # A dictionary containing the settings for all databases to be used with Django. DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'OPTIONS': { 'read_default_file': os.path.join(BASE_DIR, 'my.cnf'), 'init_command': 'SET storage_engine=INNODB', }, } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ # Language code for this installation. LANGUAGE_CODE = 'es-CU' # A boolean that specifies whether Djangos translation system should be enabled. # This provides an easy way to turn it off, for performance. If this is set to False, # Django will make some optimizations so as not to load the translation machinery. USE_I18N = True # A boolean that specifies if localized formatting of data will be enabled by default or not. # If this is set to True, e.g. Django will display numbers and dates using the format of the current locale. USE_L10N = True # A boolean that specifies if datetimes will be timezone-aware by default or not. # If this is set to True, Django will use timezone-aware datetimes internally. # Otherwise, Django will use naive datetimes in local time. USE_TZ = True # Number representing the first day of the week. FIRST_DAY_OF_WEEK = 1 from django.utils.translation import ugettext_lazy as _ # A tuple of all available languages. LANGUAGES = ( ('es', _('Espaol')), ('en', _('English')), ) # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ # URL to use when referring to static files located in STATIC_ROOT. # Example: "http://media.lawrence.com/static/" # Esto debe configurarse de manera similar que el media para poder servir archivos estticos # Puede ser algo como esta linea comentada # STATIC_URL = 'http://localhost:90/static/' STATIC_URL = '/static/' # Local time zone for this installation. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/Havana' # List of locations of the template source files searched by django.template.loaders.filesystem.Loader, in search order. # Note that these paths should use Unix-style forward slashes, even on Windows. TEMPLATE_DIRS = ( os.path.join(os.path.dirname(__file__), '..', 'templates').replace('\\', '/'),) # This setting defines the additional locations the staticfiles app will traverse if the FileSystemFinder finder is # enabled, e.g. if you use the collectstatic or findstatic management command or use the static file serving view. STATICFILES_DIRS = ((os.path.join(BASE_DIR, 'assets')), (os.path.join(BASE_DIR, 'media'))) # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = (os.path.join(BASE_DIR, 'static')) # URL prefix for static files. # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" # MEDIA_ROOT = os.path.join(PROJECT_ROOT, 'assets/upload') # COMENTADO PROJECT_PATH = os.path.dirname(os.path.dirname(__file__)) PROJECT_ROOT = os.path.join("../", PROJECT_PATH) MEDIA_ROOT = os.path.join(PROJECT_ROOT, 'media/') # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" # Configurar esta lnea es importante puede quedar algo as: # MEDIA_URL = 'http://localhost:90/media/' # MEDIA_URL = 'http://127.0.0.1:8000/media/' # COMENTADO # estas las import tambin # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } } # The URL where requests are redirected after login when the contrib.auth.login view gets no next parameter. LOGIN_REDIRECT_URL = '/' # The URL where requests are redirected for login, especially when using the login_required() decorator. LOGIN_URL = '/' # LOGIN_URL counterpart. LOGOUT_URL = '/logoutUser' # TEMPLATE_CONTEXT_PROCESSORS = ( # 'django.contrib.auth.context_processors.auth', # 'django.core.context_processors.request', # ) TEMPLATE_CONTEXT_PROCESSORS = global_settings.TEMPLATE_CONTEXT_PROCESSORS + ( "django.core.context_processors.request", )
[ 37811, 198, 35, 73, 14208, 6460, 329, 256, 9339, 1628, 13, 198, 198, 1890, 517, 1321, 319, 428, 2393, 11, 766, 198, 5450, 1378, 31628, 13, 28241, 648, 404, 305, 752, 13, 785, 14, 268, 14, 16, 13, 22, 14, 4852, 873, 14, 33692, 14, 198, 198, 1890, 262, 1336, 1351, 286, 6460, 290, 511, 3815, 11, 766, 198, 5450, 1378, 31628, 13, 28241, 648, 404, 305, 752, 13, 785, 14, 268, 14, 16, 13, 22, 14, 5420, 14, 33692, 14, 198, 37811, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 317, 46545, 326, 8341, 661, 508, 651, 2438, 4049, 19605, 13, 198, 2885, 44, 20913, 796, 357, 198, 220, 220, 220, 19203, 4826, 417, 17109, 36858, 27328, 9491, 3256, 705, 9608, 70, 36858, 4531, 31, 14816, 13, 785, 33809, 198, 8, 198, 198, 2, 10934, 13532, 2641, 262, 1628, 588, 428, 25, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 2644, 8, 198, 11748, 28686, 198, 6738, 42625, 14208, 13, 10414, 1330, 3298, 62, 33692, 198, 198, 33, 11159, 62, 34720, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 628, 198, 2, 10729, 4261, 9050, 39410, 25, 1394, 262, 3200, 1994, 973, 287, 3227, 3200, 0, 198, 23683, 26087, 62, 20373, 796, 705, 64, 21, 66, 3, 24954, 15, 88, 4, 62, 2, 4, 5, 1229, 69, 0, 10277, 84, 15, 66, 1229, 8, 21, 19529, 65, 10, 83, 20, 7, 5066, 84, 2, 64, 834, 0, 61, 18, 31522, 71, 74, 8, 2, 75, 6, 198, 198, 2, 10729, 4261, 9050, 39410, 25, 836, 470, 1057, 351, 14257, 2900, 319, 287, 3227, 0, 198, 30531, 796, 6407, 198, 198, 2, 317, 25131, 326, 4962, 319, 14, 2364, 11055, 14257, 4235, 13, 198, 51, 3620, 6489, 6158, 62, 30531, 796, 6407, 198, 198, 2, 317, 1351, 286, 13042, 10200, 262, 2583, 14, 27830, 3891, 326, 428, 37770, 2524, 460, 4691, 13, 198, 7036, 3913, 1961, 62, 39, 10892, 50, 796, 17635, 628, 198, 2, 15678, 6770, 198, 198, 2, 317, 46545, 286, 13042, 1486, 803, 477, 5479, 326, 389, 9343, 287, 428, 37770, 9988, 198, 38604, 7036, 1961, 62, 2969, 3705, 796, 357, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 28482, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 18439, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 11299, 19199, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 82, 6202, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 37348, 1095, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 12708, 16624, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 10734, 1096, 3256, 628, 220, 220, 220, 1303, 267, 2213, 292, 6725, 198, 220, 220, 220, 705, 37424, 62, 79, 363, 1883, 3256, 198, 220, 220, 220, 705, 86, 13506, 3256, 628, 198, 220, 220, 220, 1303, 14136, 27710, 198, 220, 220, 220, 705, 1228, 436, 274, 3256, 198, 220, 220, 220, 705, 6259, 64, 3256, 198, 220, 220, 220, 705, 11578, 36, 19149, 952, 3256, 628, 220, 220, 220, 1303, 1330, 4763, 331, 953, 811, 4763, 198, 220, 220, 220, 705, 12417, 3256, 198, 8, 198, 4537, 38, 1268, 6234, 62, 28480, 51, 20754, 796, 1391, 198, 220, 220, 220, 705, 4537, 8264, 62, 49, 27746, 62, 26288, 31519, 1961, 10354, 838, 11, 198, 220, 220, 220, 705, 40569, 38, 1268, 62, 4537, 48075, 62, 26288, 31519, 1961, 10354, 352, 11, 198, 92, 198, 2, 6046, 1574, 318, 257, 9355, 286, 26569, 656, 19307, 648, 418, 2581, 14, 26209, 7587, 13, 198, 44, 2389, 35, 2538, 33746, 62, 31631, 1546, 796, 357, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 82, 6202, 13, 27171, 1574, 13, 36044, 34621, 1574, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 27171, 1574, 13, 11321, 13, 17227, 34621, 1574, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 27171, 1574, 13, 6359, 41871, 13, 34, 27891, 69, 7680, 34621, 1574, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 18439, 13, 27171, 1574, 13, 47649, 3299, 34621, 1574, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 18439, 13, 27171, 1574, 13, 36044, 47649, 3299, 34621, 1574, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 3642, 822, 13, 37348, 1095, 13, 27171, 1574, 13, 12837, 34621, 1574, 3256, 198, 220, 220, 220, 705, 28241, 14208, 13, 27171, 1574, 13, 12976, 73, 5430, 13, 55, 19778, 29046, 34621, 1574, 3256, 198, 8, 198, 198, 2, 317, 4731, 10200, 262, 1336, 11361, 1330, 3108, 284, 534, 6808, 10289, 10414, 13, 198, 13252, 2394, 62, 4261, 5639, 1340, 37, 796, 705, 4879, 271, 13, 6371, 82, 6, 198, 198, 2, 383, 1336, 11361, 3108, 286, 262, 25290, 18878, 3586, 2134, 326, 19307, 648, 418, 3170, 12, 259, 9597, 357, 68, 13, 70, 13, 1057, 15388, 8, 481, 779, 13, 198, 19416, 18878, 62, 2969, 31484, 6234, 796, 705, 4879, 271, 13, 18504, 12397, 13, 31438, 6, 628, 198, 2, 24047, 198, 2, 3740, 1378, 31628, 13, 28241, 648, 404, 305, 752, 13, 785, 14, 268, 14, 16, 13, 22, 14, 5420, 14, 33692, 31113, 19608, 18826, 198, 198, 2, 317, 22155, 7268, 262, 6460, 329, 477, 20083, 284, 307, 973, 351, 37770, 13, 198, 35, 1404, 6242, 1921, 1546, 796, 1391, 198, 220, 220, 220, 705, 12286, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 26808, 8881, 10354, 705, 28241, 14208, 13, 9945, 13, 1891, 2412, 13, 28744, 13976, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 705, 3185, 51, 11053, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 961, 62, 12286, 62, 7753, 10354, 28686, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 705, 1820, 13, 31522, 69, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 15003, 62, 21812, 10354, 705, 28480, 6143, 62, 18392, 28, 1268, 45, 3727, 33, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1782, 198, 92, 198, 198, 2, 4037, 1634, 198, 2, 3740, 1378, 31628, 13, 28241, 648, 404, 305, 752, 13, 785, 14, 268, 14, 16, 13, 22, 14, 4852, 873, 14, 72, 1507, 77, 14, 198, 198, 2, 15417, 2438, 329, 428, 9988, 13, 198, 43, 15567, 52, 11879, 62, 34, 16820, 796, 705, 274, 12, 43633, 6, 198, 198, 2, 317, 25131, 326, 26052, 1771, 19307, 648, 418, 11059, 1080, 815, 307, 9343, 13, 198, 2, 770, 3769, 281, 2562, 835, 284, 1210, 340, 572, 11, 329, 2854, 13, 1002, 428, 318, 900, 284, 10352, 11, 198, 2, 37770, 481, 787, 617, 41446, 523, 355, 407, 284, 3440, 262, 11059, 20230, 13, 198, 19108, 62, 40, 1507, 45, 796, 6407, 198, 198, 2, 317, 25131, 326, 26052, 611, 36618, 33313, 286, 1366, 481, 307, 9343, 416, 4277, 393, 407, 13, 198, 2, 1002, 428, 318, 900, 284, 6407, 11, 304, 13, 70, 13, 37770, 481, 3359, 3146, 290, 9667, 1262, 262, 5794, 286, 262, 1459, 36693, 13, 198, 19108, 62, 43, 940, 45, 796, 6407, 198, 198, 2, 317, 25131, 326, 26052, 611, 4818, 46874, 481, 307, 640, 11340, 12, 9685, 416, 4277, 393, 407, 13, 198, 2, 1002, 428, 318, 900, 284, 6407, 11, 37770, 481, 779, 640, 11340, 12, 9685, 4818, 46874, 20947, 13, 198, 2, 15323, 11, 37770, 481, 779, 24354, 4818, 46874, 287, 1957, 640, 13, 198, 19108, 62, 51, 57, 796, 6407, 198, 198, 2, 7913, 10200, 262, 717, 1110, 286, 262, 1285, 13, 198, 39776, 2257, 62, 26442, 62, 19238, 62, 54, 33823, 796, 352, 198, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 198, 2, 317, 46545, 286, 477, 1695, 8950, 13, 198, 43, 15567, 52, 25552, 796, 357, 198, 220, 220, 220, 19203, 274, 3256, 4808, 10786, 36, 2777, 64, 349, 11537, 828, 198, 220, 220, 220, 19203, 268, 3256, 4808, 10786, 15823, 11537, 828, 198, 8, 198, 198, 2, 36125, 3696, 357, 49155, 11, 11933, 11, 5382, 8, 198, 2, 3740, 1378, 31628, 13, 28241, 648, 404, 305, 752, 13, 785, 14, 268, 14, 16, 13, 22, 14, 4919, 1462, 14, 12708, 12, 16624, 14, 198, 198, 2, 10289, 284, 779, 618, 9759, 284, 9037, 3696, 5140, 287, 15486, 2149, 62, 13252, 2394, 13, 198, 2, 17934, 25, 366, 4023, 1378, 11431, 13, 6270, 6784, 13, 785, 14, 12708, 30487, 198, 2, 10062, 78, 390, 1350, 4566, 333, 17208, 390, 582, 8607, 2092, 8358, 1288, 2056, 31215, 279, 12342, 1113, 343, 3934, 452, 418, 1556, 13370, 418, 198, 2, 350, 1739, 68, 1055, 435, 2188, 401, 78, 1556, 64, 1627, 64, 401, 298, 4763, 198, 2, 15486, 2149, 62, 21886, 796, 705, 4023, 1378, 36750, 25, 3829, 14, 12708, 14, 6, 198, 35744, 2149, 62, 21886, 796, 31051, 12708, 14, 6, 198, 198, 2, 10714, 640, 6516, 329, 428, 9988, 13, 198, 2, 1550, 33501, 3341, 11, 257, 1988, 286, 6045, 481, 2728, 37770, 284, 779, 262, 976, 198, 2, 640, 11340, 355, 262, 5361, 1080, 13, 198, 2, 1002, 2491, 287, 257, 3964, 2858, 428, 1276, 307, 900, 284, 262, 976, 355, 534, 198, 2, 1080, 640, 6516, 13, 198, 34694, 62, 57, 11651, 796, 705, 18165, 14, 39, 615, 2271, 6, 198, 198, 2, 7343, 286, 7064, 286, 262, 11055, 2723, 3696, 16499, 416, 42625, 14208, 13, 28243, 13, 2220, 364, 13, 16624, 6781, 13, 17401, 11, 287, 2989, 1502, 13, 198, 2, 5740, 326, 777, 13532, 815, 779, 33501, 12, 7635, 2651, 1017, 7465, 11, 772, 319, 3964, 13, 198, 51, 3620, 6489, 6158, 62, 34720, 50, 796, 357, 198, 220, 220, 220, 28686, 13, 6978, 13, 22179, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 828, 705, 492, 3256, 705, 11498, 17041, 27691, 33491, 10786, 6852, 3256, 31051, 33809, 8, 628, 198, 2, 770, 4634, 15738, 262, 3224, 7064, 262, 9037, 16624, 598, 481, 38138, 611, 262, 9220, 11964, 37, 5540, 1064, 263, 318, 198, 2, 9343, 11, 304, 13, 70, 13, 611, 345, 779, 262, 2824, 12708, 393, 1064, 12708, 4542, 3141, 393, 779, 262, 9037, 2393, 7351, 1570, 13, 198, 35744, 2149, 46700, 1546, 62, 34720, 50, 796, 14808, 418, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 705, 19668, 11537, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 418, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 705, 11431, 6, 22305, 628, 198, 2, 36532, 3108, 284, 262, 8619, 9037, 3696, 815, 307, 7723, 284, 13, 198, 2, 2094, 470, 1234, 1997, 287, 428, 8619, 3511, 26, 3650, 534, 9037, 3696, 198, 2, 287, 6725, 6, 366, 12708, 30487, 850, 12942, 1749, 290, 287, 15486, 2149, 46700, 1546, 62, 34720, 50, 13, 198, 2, 17934, 25, 12813, 11195, 14, 11431, 14, 11431, 13, 6270, 6784, 13, 785, 14, 12708, 30487, 198, 35744, 2149, 62, 13252, 2394, 796, 357, 418, 13, 6978, 13, 22179, 7, 33, 11159, 62, 34720, 11, 705, 12708, 6, 4008, 220, 1303, 10289, 21231, 329, 9037, 3696, 13, 198, 198, 2, 36532, 29905, 3108, 284, 262, 8619, 326, 481, 1745, 2836, 12, 25850, 276, 3696, 13, 198, 2, 17934, 25, 12813, 11195, 14, 11431, 14, 11431, 13, 6270, 6784, 13, 785, 14, 11431, 30487, 198, 2, 26112, 3539, 62, 13252, 2394, 796, 28686, 13, 6978, 13, 22179, 7, 31190, 23680, 62, 13252, 2394, 11, 705, 19668, 14, 25850, 11537, 220, 1303, 9440, 3525, 2885, 46, 198, 31190, 23680, 62, 34219, 796, 28686, 13, 6978, 13, 15908, 3672, 7, 418, 13, 6978, 13, 15908, 3672, 7, 834, 7753, 834, 4008, 198, 31190, 23680, 62, 13252, 2394, 796, 28686, 13, 6978, 13, 22179, 7203, 40720, 1600, 21965, 23680, 62, 34219, 8, 198, 30733, 3539, 62, 13252, 2394, 796, 28686, 13, 6978, 13, 22179, 7, 31190, 23680, 62, 13252, 2394, 11, 705, 11431, 14, 11537, 628, 198, 2, 10289, 326, 17105, 262, 2056, 4983, 422, 26112, 3539, 62, 13252, 2394, 13, 6889, 1654, 284, 779, 257, 198, 2, 25462, 24632, 13, 198, 2, 21066, 25, 366, 4023, 1378, 11431, 13, 6270, 6784, 13, 785, 14, 11431, 14, 1600, 366, 4023, 1378, 20688, 13, 785, 14, 11431, 30487, 198, 2, 17056, 333, 283, 1556, 64, 300, 39718, 1658, 1593, 68, 279, 1739, 68, 627, 44226, 435, 2188, 355, 25, 198, 2, 26112, 3539, 62, 21886, 796, 705, 4023, 1378, 36750, 25, 3829, 14, 11431, 14, 6, 198, 2, 26112, 3539, 62, 21886, 796, 705, 4023, 1378, 16799, 13, 15, 13, 15, 13, 16, 25, 33942, 14, 11431, 14, 6, 220, 1303, 9440, 3525, 2885, 46, 198, 198, 2, 1556, 292, 39990, 1330, 256, 4131, 259, 198, 2, 317, 6291, 18931, 8398, 13, 383, 691, 24607, 18931, 198, 2, 6157, 416, 428, 8398, 318, 284, 3758, 281, 3053, 284, 198, 2, 262, 2524, 44563, 319, 790, 14626, 5323, 4049, 618, 16959, 28, 25101, 13, 198, 2, 4091, 2638, 1378, 31628, 13, 28241, 648, 404, 305, 752, 13, 785, 14, 268, 14, 7959, 14, 4852, 873, 14, 6404, 2667, 329, 198, 2, 517, 3307, 319, 703, 284, 24184, 534, 18931, 8398, 13, 198, 25294, 38, 2751, 796, 1391, 198, 220, 220, 220, 705, 9641, 10354, 352, 11, 198, 220, 220, 220, 705, 40223, 62, 25687, 62, 6404, 5355, 10354, 10352, 11, 198, 220, 220, 220, 705, 10379, 1010, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 46115, 62, 24442, 62, 9562, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3419, 10354, 705, 28241, 14208, 13, 26791, 13, 6404, 13, 16844, 557, 27509, 25101, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 4993, 8116, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 4529, 62, 324, 42951, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5715, 10354, 705, 24908, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 10379, 1010, 10354, 37250, 46115, 62, 24442, 62, 9562, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4871, 10354, 705, 28241, 14208, 13, 26791, 13, 6404, 13, 46787, 15333, 25060, 6, 198, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 8964, 198, 220, 220, 220, 705, 6404, 5355, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 705, 28241, 14208, 13, 25927, 10354, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 4993, 8116, 10354, 37250, 4529, 62, 324, 42951, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 5715, 10354, 705, 24908, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 22930, 37861, 10354, 6407, 11, 198, 220, 220, 220, 220, 220, 220, 220, 8964, 198, 220, 220, 220, 1782, 198, 92, 628, 198, 2, 383, 10289, 810, 7007, 389, 45158, 706, 17594, 618, 262, 542, 822, 13, 18439, 13, 38235, 1570, 3011, 645, 1306, 11507, 13, 198, 25294, 1268, 62, 22083, 40, 23988, 62, 21886, 796, 31051, 6, 198, 198, 2, 383, 10289, 810, 7007, 389, 45158, 329, 17594, 11, 2592, 618, 1262, 262, 17594, 62, 35827, 3419, 11705, 1352, 13, 198, 25294, 1268, 62, 21886, 796, 31051, 6, 198, 198, 2, 41605, 1268, 62, 21886, 11283, 13, 198, 25294, 12425, 62, 21886, 796, 31051, 6404, 448, 12982, 6, 198, 198, 2, 309, 3620, 6489, 6158, 62, 10943, 32541, 62, 4805, 4503, 7597, 20673, 796, 357, 198, 2, 705, 28241, 14208, 13, 3642, 822, 13, 18439, 13, 22866, 62, 14681, 669, 13, 18439, 3256, 198, 2, 220, 220, 220, 220, 705, 28241, 14208, 13, 7295, 13, 22866, 62, 14681, 669, 13, 25927, 3256, 198, 2, 1267, 198, 198, 51, 3620, 6489, 6158, 62, 10943, 32541, 62, 4805, 4503, 7597, 20673, 796, 3298, 62, 33692, 13, 51, 3620, 6489, 6158, 62, 10943, 32541, 62, 4805, 4503, 7597, 20673, 1343, 357, 198, 220, 220, 220, 366, 28241, 14208, 13, 7295, 13, 22866, 62, 14681, 669, 13, 25927, 1600, 198, 8 ]
2.821219
2,724
#!/usr/bin/env python # This software code is made available "AS IS" without warranties of any # kind. You may copy, display, modify and redistribute the software # code either by itself or as incorporated into your code; provided that # you do not remove any proprietary notices. Your use of this software # code is at your own risk and you waive any claim against Amazon # Digital Services, Inc. or its affiliates with respect to your use of # this software code. (c) 2006-2007 Amazon Digital Services, Inc. or its # affiliates. import S3 import time import sys AWS_ACCESS_KEY_ID = '<INSERT YOUR AWS ACCESS KEY ID HERE>' AWS_SECRET_ACCESS_KEY = '<INSERT YOUR AWS SECRET ACCESS KEY HERE>' # remove these next two lines when you've updated your credentials. print "update s3-driver.py with your AWS credentials" sys.exit(); # convert the bucket to lowercase for vanity domains # the bucket name must be lowercase since DNS is case-insensitive BUCKET_NAME = AWS_ACCESS_KEY_ID.lower() + '-test-bucket' KEY_NAME = 'test-key' conn = S3.AWSAuthConnection(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) generator = S3.QueryStringAuthGenerator(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) # Check if the bucket exists. The high availability engineering of # Amazon S3 is focused on get, put, list, and delete operations. # Because bucket operations work against a centralized, global # resource space, it is not appropriate to make bucket create or # delete calls on the high availability code path of your application. # It is better to create or delete buckets in a separate initialization # or setup routine that you run less often. if (conn.check_bucket_exists(BUCKET_NAME).status == 200): print '----- bucket already exists! -----' else: print '----- creating bucket -----' print conn.create_located_bucket(BUCKET_NAME, S3.Location.DEFAULT).message # to create an EU bucket #print conn.create_located_bucket(BUCKET_NAME, S3.Location.EU).message print '----- bucket location -----' print conn.get_bucket_location(BUCKET_NAME).location print '----- listing bucket -----' print map(lambda x: x.key, conn.list_bucket(BUCKET_NAME).entries) print '----- putting object (with content type) -----' print conn.put( BUCKET_NAME, KEY_NAME, S3.S3Object('this is a test'), { 'Content-Type': 'text/plain' }).message print '----- listing bucket -----' print map(lambda x: x.key, conn.list_bucket(BUCKET_NAME).entries) print '----- getting object -----' print conn.get(BUCKET_NAME, KEY_NAME).object.data print '----- query string auth example -----' print "\nTry this url out in your browser (it will only be valid for 60 seconds).\n" generator.set_expires_in(60); url = generator.get(BUCKET_NAME, KEY_NAME) print url print '\npress enter> ', sys.stdin.readline() print "\nNow try just the url without the query string arguments. it should fail.\n" print generator.make_bare_url(BUCKET_NAME, KEY_NAME) print '\npress enter> ', sys.stdin.readline() print '----- putting object with metadata and public read acl -----' print conn.put( BUCKET_NAME, KEY_NAME + '-public', S3.S3Object('this is a publicly readable test'), { 'x-amz-acl': 'public-read' , 'Content-Type': 'text/plain' } ).message print '----- anonymous read test ----' print "\nYou should be able to try this in your browser\n" public_key = KEY_NAME + '-public' print generator.make_bare_url(BUCKET_NAME, public_key) print "\npress enter> ", sys.stdin.readline() print "----- getting object's acl -----" print conn.get_acl(BUCKET_NAME, KEY_NAME).object.data print "\n----- path style url example -----"; print "Non-location-constrained buckets can also be specified as part of the url path. (This was the original url style supported by S3.)\n"; print "Try this url out in your browser (it will only be valid for 60 seconds).\n" generator.calling_format = S3.CallingFormat.PATH url = generator.get(BUCKET_NAME, KEY_NAME) print url print "\npress enter> ", sys.stdin.readline() print '----- deleting objects -----' print conn.delete(BUCKET_NAME, KEY_NAME).message print conn.delete(BUCKET_NAME, KEY_NAME + '-public').message print '----- listing bucket -----' print map(lambda x: x.key, conn.list_bucket(BUCKET_NAME).entries) print '----- listing all my buckets -----' print map(lambda x: x.name, conn.list_all_my_buckets().entries) print '----- deleting bucket ------' print conn.delete_bucket(BUCKET_NAME).message
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 198, 2, 220, 770, 3788, 2438, 318, 925, 1695, 366, 1921, 3180, 1, 1231, 50174, 286, 597, 198, 2, 220, 1611, 13, 220, 921, 743, 4866, 11, 3359, 11, 13096, 290, 17678, 4163, 262, 3788, 198, 2, 220, 2438, 2035, 416, 2346, 393, 355, 16560, 656, 534, 2438, 26, 2810, 326, 198, 2, 220, 345, 466, 407, 4781, 597, 20622, 19748, 13, 220, 3406, 779, 286, 428, 3788, 198, 2, 220, 2438, 318, 379, 534, 898, 2526, 290, 345, 40307, 597, 1624, 1028, 6186, 198, 2, 220, 10231, 6168, 11, 3457, 13, 393, 663, 29116, 351, 2461, 284, 534, 779, 286, 198, 2, 220, 428, 3788, 2438, 13, 357, 66, 8, 4793, 12, 12726, 6186, 10231, 6168, 11, 3457, 13, 393, 663, 198, 2, 220, 29116, 13, 198, 198, 11748, 311, 18, 198, 11748, 640, 198, 11748, 25064, 198, 198, 12298, 50, 62, 26861, 7597, 62, 20373, 62, 2389, 796, 705, 27, 20913, 17395, 16592, 30865, 15859, 7597, 35374, 4522, 15698, 29, 6, 198, 12298, 50, 62, 23683, 26087, 62, 26861, 7597, 62, 20373, 796, 705, 27, 20913, 17395, 16592, 30865, 10729, 26087, 15859, 7597, 35374, 15698, 29, 6, 198, 2, 4781, 777, 1306, 734, 3951, 618, 345, 1053, 6153, 534, 18031, 13, 198, 4798, 366, 19119, 264, 18, 12, 26230, 13, 9078, 351, 534, 30865, 18031, 1, 198, 17597, 13, 37023, 9783, 198, 198, 2, 10385, 262, 19236, 284, 2793, 7442, 329, 39609, 18209, 198, 2, 262, 19236, 1438, 1276, 307, 2793, 7442, 1201, 18538, 318, 1339, 12, 1040, 18464, 198, 33, 16696, 2767, 62, 20608, 796, 30865, 62, 26861, 7597, 62, 20373, 62, 2389, 13, 21037, 3419, 1343, 705, 12, 9288, 12, 27041, 316, 6, 198, 20373, 62, 20608, 796, 705, 9288, 12, 2539, 6, 198, 198, 37043, 796, 311, 18, 13, 12298, 4090, 1071, 32048, 7, 12298, 50, 62, 26861, 7597, 62, 20373, 62, 2389, 11, 30865, 62, 23683, 26087, 62, 26861, 7597, 62, 20373, 8, 198, 8612, 1352, 796, 311, 18, 13, 20746, 10100, 30515, 8645, 1352, 7, 12298, 50, 62, 26861, 7597, 62, 20373, 62, 2389, 11, 30865, 62, 23683, 26087, 62, 26861, 7597, 62, 20373, 8, 628, 198, 2, 6822, 611, 262, 19236, 7160, 13, 220, 383, 1029, 11500, 8705, 286, 220, 198, 2, 6186, 311, 18, 318, 5670, 319, 651, 11, 1234, 11, 1351, 11, 290, 12233, 4560, 13, 220, 198, 2, 4362, 19236, 4560, 670, 1028, 257, 29024, 11, 3298, 198, 2, 8271, 2272, 11, 340, 318, 407, 5035, 284, 787, 19236, 2251, 393, 198, 2, 12233, 3848, 319, 262, 1029, 11500, 2438, 3108, 286, 534, 3586, 13, 198, 2, 632, 318, 1365, 284, 2251, 393, 12233, 38674, 287, 257, 4553, 37588, 198, 2, 393, 9058, 8027, 326, 345, 1057, 1342, 1690, 13, 198, 361, 357, 37043, 13, 9122, 62, 27041, 316, 62, 1069, 1023, 7, 33, 16696, 2767, 62, 20608, 737, 13376, 6624, 939, 2599, 198, 220, 3601, 705, 30934, 19236, 1541, 7160, 0, 13498, 19355, 198, 17772, 25, 198, 220, 3601, 705, 30934, 4441, 19236, 13498, 19355, 198, 220, 3601, 48260, 13, 17953, 62, 75, 10533, 62, 27041, 316, 7, 33, 16696, 2767, 62, 20608, 11, 311, 18, 13, 14749, 13, 7206, 38865, 737, 20500, 198, 220, 1303, 284, 2251, 281, 4576, 19236, 198, 220, 1303, 4798, 48260, 13, 17953, 62, 75, 10533, 62, 27041, 316, 7, 33, 16696, 2767, 62, 20608, 11, 311, 18, 13, 14749, 13, 19684, 737, 20500, 198, 198, 4798, 705, 30934, 19236, 4067, 13498, 19355, 198, 4798, 48260, 13, 1136, 62, 27041, 316, 62, 24886, 7, 33, 16696, 2767, 62, 20608, 737, 24886, 198, 198, 4798, 705, 30934, 13487, 19236, 13498, 19355, 198, 4798, 3975, 7, 50033, 2124, 25, 2124, 13, 2539, 11, 48260, 13, 4868, 62, 27041, 316, 7, 33, 16696, 2767, 62, 20608, 737, 298, 1678, 8, 198, 198, 4798, 705, 30934, 5137, 2134, 357, 4480, 2695, 2099, 8, 13498, 19355, 198, 4798, 48260, 13, 1996, 7, 198, 220, 220, 220, 220, 220, 220, 220, 347, 16696, 2767, 62, 20608, 11, 198, 220, 220, 220, 220, 220, 220, 220, 35374, 62, 20608, 11, 198, 220, 220, 220, 220, 220, 220, 220, 311, 18, 13, 50, 18, 10267, 10786, 5661, 318, 257, 1332, 33809, 198, 220, 220, 220, 220, 220, 220, 220, 1391, 705, 19746, 12, 6030, 10354, 705, 5239, 14, 25638, 6, 1782, 737, 20500, 198, 198, 4798, 705, 30934, 13487, 19236, 13498, 19355, 198, 4798, 3975, 7, 50033, 2124, 25, 2124, 13, 2539, 11, 48260, 13, 4868, 62, 27041, 316, 7, 33, 16696, 2767, 62, 20608, 737, 298, 1678, 8, 198, 198, 4798, 705, 30934, 1972, 2134, 13498, 19355, 198, 4798, 48260, 13, 1136, 7, 33, 16696, 2767, 62, 20608, 11, 35374, 62, 20608, 737, 15252, 13, 7890, 198, 198, 4798, 705, 30934, 12405, 4731, 6284, 1672, 13498, 19355, 198, 4798, 37082, 77, 23433, 428, 19016, 503, 287, 534, 6444, 357, 270, 481, 691, 307, 4938, 329, 3126, 4201, 737, 59, 77, 1, 198, 8612, 1352, 13, 2617, 62, 11201, 2387, 62, 259, 7, 1899, 1776, 198, 6371, 796, 17301, 13, 1136, 7, 33, 16696, 2767, 62, 20608, 11, 35374, 62, 20608, 8, 198, 4798, 19016, 198, 4798, 705, 59, 77, 8439, 3802, 29, 46083, 198, 17597, 13, 19282, 259, 13, 961, 1370, 3419, 198, 198, 4798, 37082, 77, 3844, 1949, 655, 262, 19016, 1231, 262, 12405, 4731, 7159, 13, 220, 340, 815, 2038, 13, 59, 77, 1, 198, 4798, 17301, 13, 15883, 62, 49382, 62, 6371, 7, 33, 16696, 2767, 62, 20608, 11, 35374, 62, 20608, 8, 198, 4798, 705, 59, 77, 8439, 3802, 29, 46083, 198, 17597, 13, 19282, 259, 13, 961, 1370, 3419, 628, 198, 4798, 705, 30934, 5137, 2134, 351, 20150, 290, 1171, 1100, 257, 565, 13498, 19355, 198, 4798, 48260, 13, 1996, 7, 198, 220, 220, 220, 347, 16696, 2767, 62, 20608, 11, 198, 220, 220, 220, 35374, 62, 20608, 1343, 705, 12, 11377, 3256, 198, 220, 220, 220, 311, 18, 13, 50, 18, 10267, 10786, 5661, 318, 257, 7271, 31744, 1332, 33809, 198, 220, 220, 220, 1391, 705, 87, 12, 321, 89, 12, 37779, 10354, 705, 11377, 12, 961, 6, 837, 705, 19746, 12, 6030, 10354, 705, 5239, 14, 25638, 6, 1782, 198, 737, 20500, 198, 198, 4798, 705, 30934, 11614, 1100, 1332, 13498, 6, 198, 4798, 37082, 77, 1639, 815, 307, 1498, 284, 1949, 428, 287, 534, 6444, 59, 77, 1, 198, 11377, 62, 2539, 796, 35374, 62, 20608, 1343, 705, 12, 11377, 6, 198, 4798, 17301, 13, 15883, 62, 49382, 62, 6371, 7, 33, 16696, 2767, 62, 20608, 11, 1171, 62, 2539, 8, 198, 4798, 37082, 77, 8439, 3802, 29, 33172, 198, 17597, 13, 19282, 259, 13, 961, 1370, 3419, 198, 198, 4798, 366, 30934, 1972, 2134, 338, 257, 565, 13498, 21215, 198, 4798, 48260, 13, 1136, 62, 37779, 7, 33, 16696, 2767, 62, 20608, 11, 35374, 62, 20608, 737, 15252, 13, 7890, 198, 198, 4798, 37082, 77, 30934, 3108, 3918, 19016, 1672, 37404, 8172, 198, 4798, 366, 15419, 12, 24886, 12, 1102, 2536, 1328, 38674, 460, 635, 307, 7368, 355, 636, 286, 262, 19016, 3108, 13, 220, 357, 1212, 373, 262, 2656, 19016, 3918, 4855, 416, 311, 18, 2014, 59, 77, 8172, 198, 4798, 366, 23433, 428, 19016, 503, 287, 534, 6444, 357, 270, 481, 691, 307, 4938, 329, 3126, 4201, 737, 59, 77, 1, 198, 8612, 1352, 13, 44714, 62, 18982, 796, 311, 18, 13, 48593, 26227, 13, 34219, 198, 6371, 796, 17301, 13, 1136, 7, 33, 16696, 2767, 62, 20608, 11, 35374, 62, 20608, 8, 198, 4798, 19016, 198, 4798, 37082, 77, 8439, 3802, 29, 33172, 198, 17597, 13, 19282, 259, 13, 961, 1370, 3419, 198, 198, 4798, 705, 30934, 34817, 5563, 13498, 19355, 198, 4798, 48260, 13, 33678, 7, 33, 16696, 2767, 62, 20608, 11, 35374, 62, 20608, 737, 20500, 198, 4798, 48260, 13, 33678, 7, 33, 16696, 2767, 62, 20608, 11, 35374, 62, 20608, 1343, 705, 12, 11377, 27691, 20500, 198, 198, 4798, 705, 30934, 13487, 19236, 13498, 19355, 198, 4798, 3975, 7, 50033, 2124, 25, 2124, 13, 2539, 11, 48260, 13, 4868, 62, 27041, 316, 7, 33, 16696, 2767, 62, 20608, 737, 298, 1678, 8, 198, 198, 4798, 705, 30934, 13487, 477, 616, 38674, 13498, 19355, 198, 4798, 3975, 7, 50033, 2124, 25, 2124, 13, 3672, 11, 48260, 13, 4868, 62, 439, 62, 1820, 62, 27041, 1039, 22446, 298, 1678, 8, 198, 198, 4798, 705, 30934, 34817, 19236, 40103, 6, 198, 4798, 48260, 13, 33678, 62, 27041, 316, 7, 33, 16696, 2767, 62, 20608, 737, 20500, 628 ]
3.15696
1,408
from __future__ import absolute_import, division, print_function from models.base_net import BaseNet import losses.all as losses_lib import tensorflow as tf import tensorflow.contrib.slim as slim import numpy as np import pdb import optimizers.train_steps as train_steps import optimizers.ops as optimize from functools import partial import models.fcrn from models.fcrn import ResNet50UpProj
[ 198, 6738, 11593, 37443, 834, 1330, 4112, 62, 11748, 11, 7297, 11, 3601, 62, 8818, 198, 198, 6738, 220, 220, 4981, 13, 8692, 62, 3262, 1330, 7308, 7934, 198, 11748, 9089, 13, 439, 355, 9089, 62, 8019, 198, 11748, 11192, 273, 11125, 355, 48700, 198, 11748, 11192, 273, 11125, 13, 3642, 822, 13, 82, 2475, 355, 18862, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 279, 9945, 198, 11748, 6436, 11341, 13, 27432, 62, 20214, 355, 4512, 62, 20214, 198, 11748, 6436, 11341, 13, 2840, 355, 27183, 198, 6738, 1257, 310, 10141, 1330, 13027, 198, 11748, 4981, 13, 69, 6098, 77, 198, 6738, 4981, 13, 69, 6098, 77, 1330, 1874, 7934, 1120, 4933, 2964, 73, 628, 198 ]
3.410256
117
# trigger build import json import uuid import pytest from mock import MagicMock, patch from src import handler, db from src.models import User, MiniApp, TObject from src.constants import ROLE from werkzeug.exceptions import BadRequest def test_execute_obj_post_no_permission(): with pytest.raises(BadRequest): handler.execute_obj_post(MagicMock(), MagicMock(), ROLE.STANDARD, MagicMock()) def test_execute_obj_delete_no_permission(): obj = MagicMock() oid_list = [] with pytest.raises(BadRequest): handler.execute_obj_delete(obj, ROLE.STANDARD, oid_list) def test_serialize_objs(): obj1 = MagicMock(oid='oid1') obj2 = MagicMock(oid='oid2') obj1.serialize.return_value = 'obj1' obj2.serialize.return_value = 'obj2' objs = [obj1, obj2] user = MagicMock() assert {'oid1': 'obj1', 'oid2': 'obj2'} == handler.serialize_objs(user, objs, ROLE.ADMIN) obj1.serialize.assert_called_once_with(user, ROLE.ADMIN) obj2.serialize.assert_called_once_with(user, ROLE.ADMIN) def test_get_graph_obj_not_exist(): with pytest.raises(BadRequest): handler.get_graph_obj('none existing aid', MiniApp) def test_get_graph_obj_user_not_exist(): uid = str(uuid.uuid4()) u = handler.get_graph_obj(uid, User) assert u.uid == uid db.delete(u) def test_get_graph_obj_exist(): app = MiniApp() aid = str(uuid.uuid4()) app.aid = aid db.push(app) db.pull(app) assert app == handler.get_graph_obj(aid, MiniApp) db.delete(app) def test_handle_obj_patch_root(): with pytest.raises(BadRequest): handler.handle_obj_patch('root', '')
[ 2, 7616, 1382, 198, 11748, 33918, 198, 11748, 334, 27112, 198, 11748, 12972, 9288, 198, 6738, 15290, 1330, 6139, 44, 735, 11, 8529, 198, 6738, 12351, 1330, 21360, 11, 20613, 198, 6738, 12351, 13, 27530, 1330, 11787, 11, 12558, 4677, 11, 5390, 65, 752, 198, 6738, 12351, 13, 9979, 1187, 1330, 15107, 2538, 198, 6738, 266, 9587, 2736, 1018, 13, 1069, 11755, 1330, 7772, 18453, 628, 628, 198, 198, 4299, 1332, 62, 41049, 62, 26801, 62, 7353, 62, 3919, 62, 525, 3411, 33529, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 22069, 18453, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21360, 13, 41049, 62, 26801, 62, 7353, 7, 22975, 44, 735, 22784, 6139, 44, 735, 22784, 15107, 2538, 13, 2257, 6981, 9795, 11, 6139, 44, 735, 28955, 628, 628, 198, 198, 4299, 1332, 62, 41049, 62, 26801, 62, 33678, 62, 3919, 62, 525, 3411, 33529, 198, 220, 220, 220, 26181, 796, 6139, 44, 735, 3419, 198, 220, 220, 220, 267, 312, 62, 4868, 796, 17635, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 22069, 18453, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21360, 13, 41049, 62, 26801, 62, 33678, 7, 26801, 11, 15107, 2538, 13, 2257, 6981, 9795, 11, 267, 312, 62, 4868, 8, 628, 198, 4299, 1332, 62, 46911, 1096, 62, 672, 8457, 33529, 198, 220, 220, 220, 26181, 16, 796, 6139, 44, 735, 7, 1868, 11639, 1868, 16, 11537, 198, 220, 220, 220, 26181, 17, 796, 6139, 44, 735, 7, 1868, 11639, 1868, 17, 11537, 198, 220, 220, 220, 26181, 16, 13, 46911, 1096, 13, 7783, 62, 8367, 796, 705, 26801, 16, 6, 198, 220, 220, 220, 26181, 17, 13, 46911, 1096, 13, 7783, 62, 8367, 796, 705, 26801, 17, 6, 198, 220, 220, 220, 909, 8457, 796, 685, 26801, 16, 11, 26181, 17, 60, 198, 220, 220, 220, 2836, 796, 6139, 44, 735, 3419, 198, 220, 220, 220, 6818, 1391, 6, 1868, 16, 10354, 705, 26801, 16, 3256, 705, 1868, 17, 10354, 705, 26801, 17, 6, 92, 6624, 21360, 13, 46911, 1096, 62, 672, 8457, 7, 7220, 11, 909, 8457, 11, 15107, 2538, 13, 2885, 23678, 8, 198, 220, 220, 220, 26181, 16, 13, 46911, 1096, 13, 30493, 62, 7174, 62, 27078, 62, 4480, 7, 7220, 11, 15107, 2538, 13, 2885, 23678, 8, 198, 220, 220, 220, 26181, 17, 13, 46911, 1096, 13, 30493, 62, 7174, 62, 27078, 62, 4480, 7, 7220, 11, 15107, 2538, 13, 2885, 23678, 8, 628, 628, 628, 628, 198, 4299, 1332, 62, 1136, 62, 34960, 62, 26801, 62, 1662, 62, 38476, 33529, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 22069, 18453, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21360, 13, 1136, 62, 34960, 62, 26801, 10786, 23108, 4683, 6133, 3256, 12558, 4677, 8, 628, 198, 4299, 1332, 62, 1136, 62, 34960, 62, 26801, 62, 7220, 62, 1662, 62, 38476, 33529, 198, 220, 220, 220, 334, 312, 796, 965, 7, 12303, 312, 13, 12303, 312, 19, 28955, 198, 220, 220, 220, 334, 796, 21360, 13, 1136, 62, 34960, 62, 26801, 7, 27112, 11, 11787, 8, 198, 220, 220, 220, 6818, 334, 13, 27112, 6624, 334, 312, 198, 220, 220, 220, 20613, 13, 33678, 7, 84, 8, 628, 198, 4299, 1332, 62, 1136, 62, 34960, 62, 26801, 62, 38476, 33529, 198, 220, 220, 220, 598, 796, 12558, 4677, 3419, 198, 220, 220, 220, 6133, 796, 965, 7, 12303, 312, 13, 12303, 312, 19, 28955, 198, 220, 220, 220, 598, 13, 1698, 796, 6133, 198, 220, 220, 220, 20613, 13, 14689, 7, 1324, 8, 198, 220, 220, 220, 20613, 13, 31216, 7, 1324, 8, 198, 220, 220, 220, 6818, 598, 6624, 21360, 13, 1136, 62, 34960, 62, 26801, 7, 1698, 11, 12558, 4677, 8, 198, 220, 220, 220, 20613, 13, 33678, 7, 1324, 8, 628, 628, 628, 198, 4299, 1332, 62, 28144, 62, 26801, 62, 17147, 62, 15763, 33529, 198, 220, 220, 220, 351, 12972, 9288, 13, 430, 2696, 7, 22069, 18453, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 21360, 13, 28144, 62, 26801, 62, 17147, 10786, 15763, 3256, 10148, 8, 628 ]
2.423358
685
try: import uuid except ModuleNotFoundError as err: uuid = None ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890" PATTERN = [8, 4, 4, 4, 12] SEP = "-"
[ 28311, 25, 198, 220, 220, 220, 1330, 334, 27112, 198, 16341, 19937, 3673, 21077, 12331, 355, 11454, 25, 198, 220, 220, 220, 334, 27112, 796, 6045, 198, 198, 1847, 11909, 6242, 2767, 796, 366, 24694, 32988, 17511, 23852, 42, 31288, 45, 3185, 48, 49, 2257, 52, 30133, 34278, 57, 10163, 2231, 30924, 3829, 1, 198, 47, 1404, 31800, 796, 685, 23, 11, 604, 11, 604, 11, 604, 11, 1105, 60, 198, 5188, 47, 796, 366, 21215, 628 ]
2.090909
77
# Copyright (c) 2019-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import glob import unittest from typing import List, Optional from unittest.mock import MagicMock, patch from .. import BuilderException, FastBuckBuilder, Target, parser from ..build_target import ( BuildTarget, PythonBinary, PythonLibrary, PythonWheel, ThriftLibrary, ) from ..filesystem import Sources from .test_common import base
[ 2, 15069, 357, 66, 8, 13130, 12, 25579, 11, 3203, 11, 3457, 13, 198, 2, 198, 2, 770, 2723, 2438, 318, 11971, 739, 262, 17168, 5964, 1043, 287, 262, 198, 2, 38559, 24290, 2393, 287, 262, 6808, 8619, 286, 428, 2723, 5509, 13, 198, 198, 11748, 15095, 198, 11748, 555, 715, 395, 198, 6738, 19720, 1330, 7343, 11, 32233, 198, 6738, 555, 715, 395, 13, 76, 735, 1330, 6139, 44, 735, 11, 8529, 198, 198, 6738, 11485, 1330, 35869, 16922, 11, 12549, 33, 1347, 32875, 11, 12744, 11, 30751, 198, 6738, 11485, 11249, 62, 16793, 1330, 357, 198, 220, 220, 220, 10934, 21745, 11, 198, 220, 220, 220, 11361, 33, 3219, 11, 198, 220, 220, 220, 11361, 23377, 11, 198, 220, 220, 220, 11361, 45307, 11, 198, 220, 220, 220, 16283, 2135, 23377, 11, 198, 8, 198, 6738, 11485, 16624, 6781, 1330, 26406, 198, 6738, 764, 9288, 62, 11321, 1330, 2779, 628 ]
3.473684
152
from time import time from typing import List from core.security import verify_password from db import users as DBUsers from fastapi import APIRouter, Depends, HTTPException, status from fastapi.responses import JSONResponse from models.user import DBUser from schemas.user import (UserCreate, UserUpdateActivate, UserUpdatePassword, UserUpdateSuperuser, UserView) from sqlalchemy.orm import Session from .deps import get_current_active_superuser, get_current_active_user, get_db router = APIRouter( prefix='/users', tags=['users'] )
[ 6738, 640, 1330, 640, 198, 6738, 19720, 1330, 7343, 198, 198, 6738, 4755, 13, 12961, 1330, 11767, 62, 28712, 198, 6738, 20613, 1330, 2985, 355, 20137, 14490, 198, 6738, 3049, 15042, 1330, 3486, 4663, 39605, 11, 2129, 2412, 11, 14626, 16922, 11, 3722, 198, 6738, 3049, 15042, 13, 16733, 274, 1330, 19449, 31077, 198, 6738, 4981, 13, 7220, 1330, 20137, 12982, 198, 6738, 3897, 5356, 13, 7220, 1330, 357, 12982, 16447, 11, 11787, 10260, 25526, 378, 11, 11787, 10260, 35215, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 11787, 10260, 12442, 7220, 11, 11787, 7680, 8, 198, 6738, 44161, 282, 26599, 13, 579, 1330, 23575, 198, 198, 6738, 764, 10378, 82, 1330, 651, 62, 14421, 62, 5275, 62, 16668, 7220, 11, 651, 62, 14421, 62, 5275, 62, 7220, 11, 651, 62, 9945, 198, 198, 472, 353, 796, 3486, 4663, 39605, 7, 198, 220, 220, 220, 21231, 11639, 14, 18417, 3256, 198, 220, 220, 220, 15940, 28, 17816, 18417, 20520, 198, 8, 628, 628, 628, 628, 628 ]
3.135135
185
## License: Apache 2.0. See LICENSE file in root directory. ## Copyright(c) 2015-2017 Intel Corporation. All Rights Reserved. ############################################### ## Open CV and Numpy integration ## ############################################### import pyrealsense2 as rs import numpy as np import cv2 # Configure depth and color streams pipeline = rs.pipeline() config = rs.config() # Get device product line for setting a supporting resolution pipeline_wrapper = rs.pipeline_wrapper(pipeline) pipeline_profile = config.resolve(pipeline_wrapper) device = pipeline_profile.get_device() device_product_line = str(device.get_info(rs.camera_info.product_line)) config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30) width = 640 height = 480 if device_product_line == 'L500': config.enable_stream(rs.stream.color, 960, 540, rs.format.bgr8, 30) else: config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30) # Start streaming pipeline.start(config) max_lowThreshold = 100 window_name = 'Edge Map' title_trackbar = 'Min Threshold:' ratio = 3 kernel_size = 3 try: while True: # Wait for a coherent pair of frames: depth and color frames = pipeline.wait_for_frames() depth_frame = frames.get_depth_frame() color_frame = frames.get_color_frame() if not depth_frame or not color_frame: continue # Convert images to numpy arrays object_color = np.zeros((height, width, 3), np.uint8) depth_image = np.asanyarray(depth_frame.get_data()) color_image = np.asanyarray(color_frame.get_data()) # depth_image_rgb = cv2.merge((depth_image,depth_image,depth_image)) # Apply colormap on depth image (image must be converted to 8-bit per pixel first) # depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET) # depth_colormap_dim = depth_colormap.shape color_colormap_dim = color_image.shape depth_image = cv2.resize(depth_image, (width, height), interpolation=cv2.INTER_AREA) edges = auto_canny(color_image) #edges = cv2.bitwise_not(edges) edges_rgb = object_color.shape edges_rgb = cv2.merge((edges,edges,edges)) #blank_image[5:10 , 5:10] = (255, 0, 0) # [x.1,x.2 , y.1,y.2] (B, G, R) object_color[0:width, 0:height] = (76, 76, 76) image = cv2.add(edges_rgb,object_color) edges_rgb = cv2.bitwise_not(edges_rgb) image = cv2.multiply(edges_rgb,image,scale = 0.003922) image = image[0:256, 0:256] # Show images cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE) cv2.imshow('RealSense', image) cv2.waitKey(1) finally: # Stop streaming pipeline.stop()
[ 2235, 13789, 25, 24843, 362, 13, 15, 13, 4091, 38559, 24290, 2393, 287, 6808, 8619, 13, 201, 198, 2235, 15069, 7, 66, 8, 1853, 12, 5539, 8180, 10501, 13, 1439, 6923, 33876, 13, 201, 198, 201, 198, 29113, 7804, 4242, 21017, 201, 198, 2235, 220, 220, 220, 220, 220, 4946, 26196, 290, 399, 32152, 11812, 220, 220, 220, 220, 220, 220, 220, 22492, 201, 198, 29113, 7804, 4242, 21017, 201, 198, 201, 198, 11748, 12972, 260, 874, 1072, 17, 355, 44608, 201, 198, 11748, 299, 32152, 355, 45941, 201, 198, 11748, 269, 85, 17, 201, 198, 201, 198, 201, 198, 201, 198, 2, 17056, 495, 6795, 290, 3124, 15190, 201, 198, 79, 541, 4470, 796, 44608, 13, 79, 541, 4470, 3419, 201, 198, 11250, 796, 44608, 13, 11250, 3419, 201, 198, 201, 198, 2, 3497, 3335, 1720, 1627, 329, 4634, 257, 6493, 6323, 201, 198, 79, 541, 4470, 62, 48553, 796, 44608, 13, 79, 541, 4470, 62, 48553, 7, 79, 541, 4470, 8, 201, 198, 79, 541, 4470, 62, 13317, 796, 4566, 13, 411, 6442, 7, 79, 541, 4470, 62, 48553, 8, 201, 198, 25202, 796, 11523, 62, 13317, 13, 1136, 62, 25202, 3419, 201, 198, 25202, 62, 11167, 62, 1370, 796, 965, 7, 25202, 13, 1136, 62, 10951, 7, 3808, 13, 25695, 62, 10951, 13, 11167, 62, 1370, 4008, 201, 198, 201, 198, 11250, 13, 21633, 62, 5532, 7, 3808, 13, 5532, 13, 18053, 11, 33759, 11, 23487, 11, 44608, 13, 18982, 13, 89, 1433, 11, 1542, 8, 201, 198, 201, 198, 10394, 796, 33759, 201, 198, 17015, 796, 23487, 201, 198, 201, 198, 361, 3335, 62, 11167, 62, 1370, 6624, 705, 43, 4059, 10354, 201, 198, 220, 220, 220, 4566, 13, 21633, 62, 5532, 7, 3808, 13, 5532, 13, 8043, 11, 41263, 11, 38190, 11, 44608, 13, 18982, 13, 65, 2164, 23, 11, 1542, 8, 201, 198, 17772, 25, 201, 198, 220, 220, 220, 4566, 13, 21633, 62, 5532, 7, 3808, 13, 5532, 13, 8043, 11, 33759, 11, 23487, 11, 44608, 13, 18982, 13, 65, 2164, 23, 11, 1542, 8, 201, 198, 201, 198, 2, 7253, 11305, 201, 198, 79, 541, 4470, 13, 9688, 7, 11250, 8, 201, 198, 9806, 62, 9319, 817, 10126, 796, 1802, 201, 198, 17497, 62, 3672, 796, 705, 37021, 9347, 6, 201, 198, 7839, 62, 11659, 5657, 796, 705, 9452, 536, 10126, 32105, 201, 198, 10366, 952, 796, 513, 201, 198, 33885, 62, 7857, 796, 513, 201, 198, 201, 198, 28311, 25, 201, 198, 220, 220, 220, 981, 6407, 25, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 16314, 329, 257, 24870, 5166, 286, 13431, 25, 6795, 290, 3124, 201, 198, 220, 220, 220, 220, 220, 220, 220, 13431, 796, 11523, 13, 17077, 62, 1640, 62, 37805, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6795, 62, 14535, 796, 13431, 13, 1136, 62, 18053, 62, 14535, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 14535, 796, 13431, 13, 1136, 62, 8043, 62, 14535, 3419, 201, 198, 220, 220, 220, 220, 220, 220, 220, 611, 407, 6795, 62, 14535, 393, 407, 3124, 62, 14535, 25, 201, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 38240, 4263, 284, 299, 32152, 26515, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2134, 62, 8043, 796, 45941, 13, 9107, 418, 19510, 17015, 11, 9647, 11, 513, 828, 45941, 13, 28611, 23, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6795, 62, 9060, 796, 45941, 13, 292, 1092, 18747, 7, 18053, 62, 14535, 13, 1136, 62, 7890, 28955, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 9060, 796, 45941, 13, 292, 1092, 18747, 7, 8043, 62, 14535, 13, 1136, 62, 7890, 28955, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6795, 62, 9060, 62, 81, 22296, 796, 269, 85, 17, 13, 647, 469, 19510, 18053, 62, 9060, 11, 18053, 62, 9060, 11, 18053, 62, 9060, 4008, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27967, 951, 579, 499, 319, 6795, 2939, 357, 9060, 1276, 307, 11513, 284, 807, 12, 2545, 583, 17465, 717, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6795, 62, 4033, 579, 499, 796, 269, 85, 17, 13, 39014, 10258, 13912, 7, 33967, 17, 13, 1102, 1851, 29990, 24849, 7, 18053, 62, 9060, 11, 17130, 28, 15, 13, 3070, 828, 269, 85, 17, 13, 46786, 33767, 62, 41, 2767, 8, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 6795, 62, 4033, 579, 499, 62, 27740, 796, 6795, 62, 4033, 579, 499, 13, 43358, 201, 198, 220, 220, 220, 220, 220, 220, 220, 3124, 62, 4033, 579, 499, 62, 27740, 796, 3124, 62, 9060, 13, 43358, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 6795, 62, 9060, 796, 269, 85, 17, 13, 411, 1096, 7, 18053, 62, 9060, 11, 357, 10394, 11, 6001, 828, 39555, 341, 28, 33967, 17, 13, 41358, 62, 12203, 32, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 13015, 796, 8295, 62, 66, 7737, 7, 8043, 62, 9060, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 276, 3212, 796, 269, 85, 17, 13, 2545, 3083, 62, 1662, 7, 276, 3212, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 13015, 62, 81, 22296, 796, 2134, 62, 8043, 13, 43358, 201, 198, 220, 220, 220, 220, 220, 220, 220, 13015, 62, 81, 22296, 796, 269, 85, 17, 13, 647, 469, 19510, 276, 3212, 11, 276, 3212, 11, 276, 3212, 4008, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 27190, 62, 9060, 58, 20, 25, 940, 837, 642, 25, 940, 60, 796, 357, 13381, 11, 657, 11, 657, 8, 220, 1303, 685, 87, 13, 16, 11, 87, 13, 17, 837, 331, 13, 16, 11, 88, 13, 17, 60, 357, 33, 11, 402, 11, 371, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2134, 62, 8043, 58, 15, 25, 10394, 11, 657, 25, 17015, 60, 796, 357, 4304, 11, 8684, 11, 8684, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 269, 85, 17, 13, 2860, 7, 276, 3212, 62, 81, 22296, 11, 15252, 62, 8043, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 13015, 62, 81, 22296, 796, 269, 85, 17, 13, 2545, 3083, 62, 1662, 7, 276, 3212, 62, 81, 22296, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 269, 85, 17, 13, 16680, 541, 306, 7, 276, 3212, 62, 81, 22296, 11, 9060, 11, 9888, 796, 657, 13, 405, 2670, 1828, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2939, 58, 15, 25, 11645, 11, 657, 25, 11645, 60, 201, 198, 201, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 5438, 4263, 201, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 13190, 27703, 10786, 15633, 41166, 3256, 269, 85, 17, 13, 28929, 3913, 62, 39371, 2640, 35400, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 320, 12860, 10786, 15633, 41166, 3256, 2939, 8, 201, 198, 220, 220, 220, 220, 220, 220, 220, 269, 85, 17, 13, 17077, 9218, 7, 16, 8, 201, 198, 201, 198, 69, 3289, 25, 201, 198, 201, 198, 220, 220, 220, 1303, 13707, 11305, 201, 198, 220, 220, 220, 11523, 13, 11338, 3419, 201, 198 ]
2.308247
1,249
import logging import os import psycopg2 import time import shlex import subprocess import shutil import threading from urllib.parse import urlparse logger = logging.getLogger(__name__)
[ 11748, 18931, 198, 11748, 28686, 198, 11748, 17331, 22163, 70, 17, 198, 11748, 640, 198, 11748, 427, 2588, 198, 11748, 850, 14681, 198, 11748, 4423, 346, 198, 11748, 4704, 278, 198, 198, 6738, 2956, 297, 571, 13, 29572, 1330, 19016, 29572, 198, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198 ]
3.298246
57
import genetic_algorithm #where the population will be processed and the main loop is contained #initialise population with random candidate solutions print("Enter a function to be solved: \n") fitness_function = [1780, 17, -2] #n = ax + by #function: [n, a, b] ga = genetic_algorithm.genetic_algorithm(fitness_function) #evaluate each candidate #repeat until (termination condition is satifsfied ) DO #select parents; #recombine pairs of parents #mutate the resulting offspring #evaluate new candidates #select individuals for the next generation #OD #END
[ 11748, 8513, 62, 282, 42289, 198, 198, 2, 3003, 262, 3265, 481, 307, 13686, 290, 262, 1388, 9052, 318, 7763, 628, 198, 2, 36733, 786, 3265, 351, 4738, 4540, 8136, 198, 198, 4798, 7203, 17469, 257, 2163, 284, 307, 16019, 25, 3467, 77, 4943, 198, 69, 3659, 62, 8818, 796, 685, 1558, 1795, 11, 1596, 11, 532, 17, 60, 1303, 77, 796, 7877, 1343, 416, 198, 2, 8818, 25, 685, 77, 11, 257, 11, 275, 60, 198, 198, 4908, 796, 8513, 62, 282, 42289, 13, 5235, 5139, 62, 282, 42289, 7, 69, 3659, 62, 8818, 8, 628, 198, 2, 49786, 1123, 4540, 198, 198, 2, 44754, 1566, 357, 41382, 4006, 318, 3332, 361, 28202, 798, 1267, 8410, 198, 198, 2, 19738, 3397, 26, 198, 2, 260, 24011, 500, 14729, 286, 3397, 198, 2, 21973, 378, 262, 7186, 20791, 198, 2, 49786, 649, 5871, 198, 2, 19738, 3925, 329, 262, 1306, 5270, 198, 2, 3727, 198, 2, 10619, 198 ]
3.582278
158
from flask import Flask, render_template app = Flask(__name__) if __name__ == '__main__': print(app.url_map) app.run(debug=True, host="0.0.0.0")
[ 6738, 42903, 1330, 46947, 11, 8543, 62, 28243, 198, 198, 1324, 796, 46947, 7, 834, 3672, 834, 8, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 3601, 7, 1324, 13, 6371, 62, 8899, 8, 198, 220, 220, 220, 598, 13, 5143, 7, 24442, 28, 17821, 11, 2583, 2625, 15, 13, 15, 13, 15, 13, 15, 4943, 198 ]
2.378788
66
# -*- coding: utf-8 -*- # Generated by Django 1.11.15 on 2018-09-26 01:25 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 2, 2980, 515, 416, 37770, 352, 13, 1157, 13, 1314, 319, 2864, 12, 2931, 12, 2075, 5534, 25, 1495, 198, 6738, 11593, 37443, 834, 1330, 28000, 1098, 62, 17201, 874, 198, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 628 ]
2.753623
69
# Generated by Django 2.2.13 on 2021-03-10 21:33 import account.models import datetime from django.conf import settings import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.db.models.deletion import django.utils.timezone
[ 198, 2, 2980, 515, 416, 37770, 362, 13, 17, 13, 1485, 319, 33448, 12, 3070, 12, 940, 2310, 25, 2091, 628, 198, 11748, 1848, 13, 27530, 198, 11748, 4818, 8079, 198, 6738, 42625, 14208, 13, 10414, 1330, 6460, 198, 11748, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 27530, 198, 11748, 42625, 14208, 13, 3642, 822, 13, 18439, 13, 12102, 2024, 198, 6738, 42625, 14208, 13, 9945, 1330, 15720, 602, 11, 4981, 198, 11748, 42625, 14208, 13, 9945, 13, 27530, 13, 2934, 1616, 295, 198, 11748, 42625, 14208, 13, 26791, 13, 2435, 11340, 628 ]
3.180851
94
import tensorflow from PIL import Image from keras.models import Sequential from keras.layers import Conv2D, Conv2DTranspose, ConvLSTM2D from keras.optimizers import SGD import numpy as np import os from keras import backend as K from src.predictionAlgorithms.machineLearning.algorithms.ConvLSTM import ConvLstm from src.predictionAlgorithms.machineLearning.algorithms.ConvolutionalChannelsMovementAlgorithm import \ ConvolutionalChannelsMovementAlgorithm from src.predictionAlgorithms.machineLearning.helpers.callbacks import Callbacks from src.utilities.imageAnalysis.pixelsRainStrengthConverter import PixelsRainStrengthConverter # K: 12x12 -> lr: 0.01 -> E = 50; SpE = 10
[ 11748, 11192, 273, 11125, 198, 6738, 350, 4146, 1330, 7412, 198, 6738, 41927, 292, 13, 27530, 1330, 24604, 1843, 198, 6738, 41927, 292, 13, 75, 6962, 1330, 34872, 17, 35, 11, 34872, 17, 35, 8291, 3455, 11, 34872, 43, 2257, 44, 17, 35, 198, 6738, 41927, 292, 13, 40085, 11341, 1330, 26147, 35, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 28686, 198, 6738, 41927, 292, 1330, 30203, 355, 509, 198, 198, 6738, 12351, 13, 28764, 2867, 2348, 7727, 907, 13, 30243, 41730, 13, 282, 7727, 907, 13, 3103, 85, 43, 2257, 44, 1330, 34872, 43, 301, 76, 198, 6738, 12351, 13, 28764, 2867, 2348, 7727, 907, 13, 30243, 41730, 13, 282, 7727, 907, 13, 3103, 85, 2122, 282, 1925, 8961, 21774, 434, 2348, 42289, 1330, 3467, 198, 220, 220, 220, 34872, 2122, 282, 1925, 8961, 21774, 434, 2348, 42289, 198, 6738, 12351, 13, 28764, 2867, 2348, 7727, 907, 13, 30243, 41730, 13, 16794, 364, 13, 13345, 10146, 1330, 4889, 10146, 198, 6738, 12351, 13, 315, 2410, 13, 9060, 32750, 13, 79, 14810, 31443, 45027, 3103, 332, 353, 1330, 350, 14810, 31443, 45027, 3103, 332, 353, 628, 198, 2, 509, 25, 1105, 87, 1065, 4613, 300, 81, 25, 657, 13, 486, 4613, 412, 796, 2026, 26, 1338, 36, 796, 838 ]
3.247619
210
import bchlib from PIL import Image, ImageOps import numpy as np import glob from tqdm import tqdm import torch import matplotlib.pyplot as plt from model import StegaStampDecoder BCH_POLYNOMIAL = 137 BCH_BITS = 5 if __name__ == "__main__": dirPath = r"E:/dataset/stegastamp_crop" modelPath = r'saved_models/decoder.pth' file_list = glob.glob(dirPath + '/*.png') model = StegaStampDecoder().cuda() model.load_state_dict(torch.load(modelPath)) model.eval() bitstring = get_bits() store = [] with torch.no_grad(): for file in tqdm(file_list): image = Image.open(file).convert("RGB") image = image.crop((50, 50, 350, 350)) image = np.array(ImageOps.fit(image, (400, 400)), dtype=np.float32) image /= 255. result = decode(image, model) store.append(get_acc(bitstring, result)) plt.hist(store) plt.show() print(np.mean(store))
[ 11748, 275, 354, 8019, 198, 6738, 350, 4146, 1330, 7412, 11, 7412, 41472, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 15095, 198, 6738, 256, 80, 36020, 1330, 256, 80, 36020, 198, 11748, 28034, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2746, 1330, 520, 26470, 1273, 696, 10707, 12342, 198, 198, 2749, 39, 62, 45472, 40760, 2662, 12576, 796, 21643, 198, 2749, 39, 62, 26094, 50, 796, 642, 628, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 26672, 15235, 796, 374, 1, 36, 14079, 19608, 292, 316, 14, 301, 1533, 459, 696, 62, 31476, 1, 198, 220, 220, 220, 2746, 15235, 796, 374, 338, 9586, 62, 27530, 14, 12501, 12342, 13, 79, 400, 6, 198, 220, 220, 220, 2393, 62, 4868, 796, 15095, 13, 4743, 672, 7, 15908, 15235, 1343, 705, 15211, 13, 11134, 11537, 628, 220, 220, 220, 2746, 796, 520, 26470, 1273, 696, 10707, 12342, 22446, 66, 15339, 3419, 198, 220, 220, 220, 2746, 13, 2220, 62, 5219, 62, 11600, 7, 13165, 354, 13, 2220, 7, 19849, 15235, 4008, 628, 220, 220, 220, 2746, 13, 18206, 3419, 198, 220, 220, 220, 1643, 8841, 796, 651, 62, 9895, 3419, 628, 220, 220, 220, 3650, 796, 17635, 198, 220, 220, 220, 351, 28034, 13, 3919, 62, 9744, 33529, 198, 220, 220, 220, 220, 220, 220, 220, 329, 2393, 287, 256, 80, 36020, 7, 7753, 62, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 7412, 13, 9654, 7, 7753, 737, 1102, 1851, 7203, 36982, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 2939, 13, 31476, 19510, 1120, 11, 2026, 11, 13803, 11, 13803, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 796, 45941, 13, 18747, 7, 5159, 41472, 13, 11147, 7, 9060, 11, 357, 7029, 11, 7337, 36911, 288, 4906, 28, 37659, 13, 22468, 2624, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2939, 1220, 28, 14280, 13, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1255, 796, 36899, 7, 9060, 11, 2746, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3650, 13, 33295, 7, 1136, 62, 4134, 7, 2545, 8841, 11, 1255, 4008, 628, 220, 220, 220, 458, 83, 13, 10034, 7, 8095, 8, 198, 220, 220, 220, 458, 83, 13, 12860, 3419, 198, 220, 220, 220, 3601, 7, 37659, 13, 32604, 7, 8095, 4008, 198 ]
2.260563
426
import pytest from django.test import TestCase from django.test import override_settings import ozpcenter.api.contact_type.model_access as model_access from ozpcenter.models import ContactType from tests.cases.factories import ContactTypeFactory
[ 11748, 12972, 9288, 198, 6738, 42625, 14208, 13, 9288, 1330, 6208, 20448, 198, 6738, 42625, 14208, 13, 9288, 1330, 20957, 62, 33692, 198, 198, 11748, 15649, 79, 16159, 13, 15042, 13, 32057, 62, 4906, 13, 19849, 62, 15526, 355, 2746, 62, 15526, 198, 6738, 15649, 79, 16159, 13, 27530, 1330, 14039, 6030, 198, 6738, 5254, 13, 33964, 13, 22584, 1749, 1330, 14039, 6030, 22810, 628 ]
3.815385
65
#!/usr/bin/python3 """Simple bot to reply exactly the same what user sent to chat.""" # This program is dedicated to the public domain under the CC0 license. from telegrask import Telegrask bot = Telegrask("BOT_TOKEN") if __name__ == "__main__": bot.run(debug=True)
[ 2, 48443, 14629, 14, 8800, 14, 29412, 18, 198, 37811, 26437, 10214, 284, 10971, 3446, 262, 976, 644, 2836, 1908, 284, 8537, 526, 15931, 198, 2, 770, 1430, 318, 7256, 284, 262, 1171, 7386, 739, 262, 12624, 15, 5964, 13, 198, 198, 6738, 573, 1455, 81, 2093, 1330, 1665, 1455, 81, 2093, 198, 198, 13645, 796, 1665, 1455, 81, 2093, 7203, 33, 2394, 62, 10468, 43959, 4943, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 10214, 13, 5143, 7, 24442, 28, 17821, 8, 198 ]
2.956989
93
from django.db import models from django.utils.translation import ugettext_lazy as _ from emailqueue.models import BaseModel
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 6738, 42625, 14208, 13, 26791, 13, 41519, 1330, 334, 1136, 5239, 62, 75, 12582, 355, 4808, 198, 198, 6738, 3053, 36560, 13, 27530, 1330, 7308, 17633, 628, 198 ]
3.555556
36
#!/usr/bin/env python # -*- coding: utf-8 -*- """This module is used to crawler emoji unicode from http://www.unicode.org/ """ import urllib import json import base64 import os from bs4 import BeautifulSoup __EMOJI_V4_URL = "http://www.unicode.org/emoji/charts/emoji-list.html" __EMOJI_V5_URL = "http://www.unicode.org/emoji/charts-beta/emoji-list.html" __IMG_FOLDER_NAME = "emoji_imgs" emoji_file = file("emoji_inverse.json", "r") emojis = json.loads(emoji_file.read().decode("utf-8-sig")) print "emoji_inverse.json loaded" def decode_base64(data): """Decode base64, padding being optional. :param data: Base64 data as an ASCII byte string :returns: The decoded byte string. """ missing_padding = 4 - len(data) % 4 if missing_padding: data += b'=' * missing_padding return base64.decodestring(data) crawler_emojis('V4') crawler_emojis('V5')
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 198, 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 37811, 1212, 8265, 318, 973, 284, 27784, 1754, 44805, 28000, 1098, 422, 2638, 1378, 2503, 13, 46903, 1098, 13, 2398, 14, 37227, 198, 11748, 2956, 297, 571, 198, 11748, 33918, 198, 11748, 2779, 2414, 198, 11748, 28686, 198, 6738, 275, 82, 19, 1330, 23762, 50, 10486, 198, 198, 834, 3620, 46, 41, 40, 62, 53, 19, 62, 21886, 796, 366, 4023, 1378, 2503, 13, 46903, 1098, 13, 2398, 14, 368, 31370, 14, 354, 5889, 14, 368, 31370, 12, 4868, 13, 6494, 1, 198, 834, 3620, 46, 41, 40, 62, 53, 20, 62, 21886, 796, 366, 4023, 1378, 2503, 13, 46903, 1098, 13, 2398, 14, 368, 31370, 14, 354, 5889, 12, 31361, 14, 368, 31370, 12, 4868, 13, 6494, 1, 198, 834, 3955, 38, 62, 37, 3535, 14418, 62, 20608, 796, 366, 368, 31370, 62, 9600, 82, 1, 198, 198, 368, 31370, 62, 7753, 220, 796, 2393, 7203, 368, 31370, 62, 259, 4399, 13, 17752, 1600, 366, 81, 4943, 198, 368, 13210, 271, 796, 33918, 13, 46030, 7, 368, 31370, 62, 7753, 13, 961, 22446, 12501, 1098, 7203, 40477, 12, 23, 12, 82, 328, 48774, 198, 4798, 366, 368, 31370, 62, 259, 4399, 13, 17752, 9639, 1, 198, 198, 4299, 36899, 62, 8692, 2414, 7, 7890, 2599, 198, 220, 220, 220, 37227, 10707, 1098, 2779, 2414, 11, 24511, 852, 11902, 13, 198, 220, 220, 220, 1058, 17143, 1366, 25, 7308, 2414, 1366, 355, 281, 37101, 18022, 4731, 198, 220, 220, 220, 1058, 7783, 82, 25, 383, 875, 9043, 18022, 4731, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4814, 62, 39231, 796, 604, 532, 18896, 7, 7890, 8, 4064, 604, 198, 220, 220, 220, 611, 4814, 62, 39231, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 15853, 275, 6, 11639, 1635, 4814, 62, 39231, 198, 220, 220, 220, 1441, 2779, 2414, 13, 12501, 375, 395, 1806, 7, 7890, 8, 628, 198, 198, 66, 39464, 62, 368, 13210, 271, 10786, 53, 19, 11537, 198, 66, 39464, 62, 368, 13210, 271, 10786, 53, 20, 11537, 198 ]
2.458333
360
# (C) Copyright 2005-2021 Enthought, Inc., Austin, TX # All rights reserved. # # This software is provided without warranty under the terms of the BSD # license included in LICENSE.txt and may be redistributed only under # the conditions described in the aforementioned license. The license # is also available online at http://www.enthought.com/licenses/BSD.txt # # Thanks for using Enthought open source! import unittest from traits.api import Constant, HasTraits, TraitError
[ 2, 357, 34, 8, 15069, 5075, 12, 1238, 2481, 2039, 28895, 11, 3457, 1539, 9533, 11, 15326, 198, 2, 1439, 2489, 10395, 13, 198, 2, 198, 2, 770, 3788, 318, 2810, 1231, 18215, 739, 262, 2846, 286, 262, 347, 10305, 198, 2, 5964, 3017, 287, 38559, 24290, 13, 14116, 290, 743, 307, 38913, 691, 739, 198, 2, 262, 3403, 3417, 287, 262, 20794, 5964, 13, 383, 5964, 198, 2, 318, 635, 1695, 2691, 379, 2638, 1378, 2503, 13, 7944, 2917, 13, 785, 14, 677, 4541, 14, 21800, 13, 14116, 198, 2, 198, 2, 6930, 329, 1262, 2039, 28895, 1280, 2723, 0, 628, 198, 11748, 555, 715, 395, 198, 198, 6738, 12796, 13, 15042, 1330, 20217, 11, 7875, 15721, 896, 11, 4759, 270, 12331, 628 ]
3.887097
124
import mmap import numpy as np from time import sleep import os
[ 11748, 8085, 499, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 640, 1330, 3993, 198, 198, 11748, 28686, 628 ]
3.35
20
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. from torch.optim import *
[ 2, 15069, 357, 66, 8, 5413, 10501, 13, 1439, 2489, 10395, 13, 198, 2, 49962, 739, 262, 17168, 5964, 13, 198, 6738, 28034, 13, 40085, 1330, 1635 ]
4.407407
27
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from datetime import date from typing import Union,Tuple,Optional,List from ..config_features import CATEGORICAL_FEATURES,NUMERICAL_FEATURES from ..config import DAYS_FORECAST,ALL_STATIONS from ..utils.normalizer import get_normalizer_stats def train_test_split(amur_df: pd.DataFrame, start_test_date: Union[date,str], end_test_date: Union[date,str], fname: Optional[str]=None, numerical_features: Optional[List[str]]=None, categorical_features: Optional[List[str]]=None) -> Tuple[np.array,np.array,np.array,np.array]: ''' , . - 1 , - 10 [n,DAYS_FORECAST,n_features] - n - , DAYS_FORECAST - (10), n_features - :param amur_df: pd.DataFrame :param start_test_date: date,str - :param end_test_date: date,str - :param fname: str, json c mean,std :param numerical_features: List[str] - :param categorical_features: List[str] - :return: tuple: X_train - y_train - X_test - y_test - ''' if numerical_features is None: numerical_features = NUMERICAL_FEATURES if categorical_features is None: categorical_features = CATEGORICAL_FEATURES targets = ['sealevel_max_' + identifier for identifier in ALL_STATIONS] train = amur_df[amur_df['date'] < start_test_date].copy() test = amur_df[(amur_df['date'] >= start_test_date) & (amur_df['date'] < end_test_date)].copy() stats = get_normalizer_stats(fname) for col in numerical_features: _mean = stats[col]['mean'] _std = stats[col]['std'] train[col] = (train[col] - _mean) / _std test[col] = (test[col] - _mean) / _std train.sort_values('date', inplace=True) train_x_array = [] train_y_array = [] step = 0 while True: if step + DAYS_FORECAST + 1 >= len(train): break if train.iloc[step:step + DAYS_FORECAST][targets].count().min() < DAYS_FORECAST: step += 1 continue train_x_array.append(train.iloc[step:step + DAYS_FORECAST][numerical_features + categorical_features].values) train_y_array.append(train.iloc[step:step + DAYS_FORECAST][targets].values) step += 1 X_train = np.transpose(np.dstack(train_x_array), (2, 0, 1)) y_train = np.transpose(np.dstack(train_y_array), (2, 0, 1)) step = 0 test.sort_values('date', inplace=True) test_x_array = [] test_y_array = [] while True: if step >= len(test): break if test.iloc[step:step + DAYS_FORECAST][targets].count().min() < DAYS_FORECAST: step += DAYS_FORECAST continue test_x_array.append(test.iloc[step:step + DAYS_FORECAST][numerical_features + categorical_features].values) test_y_array.append(test.iloc[step:step + DAYS_FORECAST][targets].values) if step + DAYS_FORECAST*2+1 >= len(test): break step += DAYS_FORECAST X_test = np.transpose(np.dstack(test_x_array), (2, 0, 1)) y_test = np.transpose(np.dstack(test_y_array), (2, 0, 1)) return X_train, y_train, X_test, y_test
[ 2, 532, 9, 12, 19617, 25, 3384, 69, 12, 23, 532, 9, 12, 198, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 4818, 8079, 1330, 3128, 198, 6738, 19720, 1330, 4479, 11, 51, 29291, 11, 30719, 11, 8053, 198, 198, 6738, 11485, 11250, 62, 40890, 1330, 327, 6158, 38, 1581, 20151, 62, 15112, 47471, 11, 41359, 1137, 20151, 62, 15112, 47471, 198, 6738, 11485, 11250, 1330, 24644, 50, 62, 13775, 2943, 11262, 11, 7036, 62, 2257, 18421, 198, 6738, 11485, 26791, 13, 11265, 7509, 1330, 651, 62, 11265, 7509, 62, 34242, 198, 198, 4299, 4512, 62, 9288, 62, 35312, 7, 321, 333, 62, 7568, 25, 279, 67, 13, 6601, 19778, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 923, 62, 9288, 62, 4475, 25, 4479, 58, 4475, 11, 2536, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 886, 62, 9288, 62, 4475, 25, 4479, 58, 4475, 11, 2536, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 277, 3672, 25, 32233, 58, 2536, 22241, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 29052, 62, 40890, 25, 32233, 58, 8053, 58, 2536, 11907, 28, 14202, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4253, 12409, 62, 40890, 25, 32233, 58, 8053, 58, 2536, 11907, 28, 14202, 8, 4613, 309, 29291, 58, 37659, 13, 18747, 11, 37659, 13, 18747, 11, 37659, 13, 18747, 11, 37659, 13, 18747, 5974, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 837, 220, 220, 764, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 352, 837, 220, 220, 220, 220, 220, 220, 532, 838, 220, 628, 220, 220, 220, 220, 220, 685, 77, 11, 26442, 50, 62, 13775, 2943, 11262, 11, 77, 62, 40890, 60, 532, 299, 532, 220, 837, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 24644, 50, 62, 13775, 2943, 11262, 532, 220, 220, 220, 357, 940, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 299, 62, 40890, 532, 220, 220, 628, 220, 220, 220, 1058, 17143, 716, 333, 62, 7568, 25, 279, 67, 13, 6601, 19778, 198, 220, 220, 220, 1058, 17143, 923, 62, 9288, 62, 4475, 25, 3128, 11, 2536, 532, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17143, 886, 62, 9288, 62, 4475, 25, 3128, 11, 2536, 532, 220, 220, 220, 220, 220, 198, 220, 220, 220, 1058, 17143, 277, 3672, 25, 965, 11, 220, 220, 220, 33918, 269, 220, 1612, 11, 19282, 220, 220, 220, 198, 220, 220, 220, 1058, 17143, 29052, 62, 40890, 25, 7343, 58, 2536, 60, 532, 220, 220, 220, 198, 220, 220, 220, 1058, 17143, 4253, 12409, 62, 40890, 25, 7343, 58, 2536, 60, 532, 220, 220, 220, 198, 220, 220, 220, 1058, 7783, 25, 46545, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 27432, 532, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 27432, 532, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1395, 62, 9288, 532, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 9288, 532, 220, 220, 220, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 611, 29052, 62, 40890, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 29052, 62, 40890, 796, 36871, 1137, 20151, 62, 15112, 47471, 628, 220, 220, 220, 611, 4253, 12409, 62, 40890, 318, 6045, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4253, 12409, 62, 40890, 796, 327, 6158, 38, 1581, 20151, 62, 15112, 47471, 628, 220, 220, 220, 6670, 796, 37250, 325, 1000, 626, 62, 9806, 62, 6, 1343, 27421, 329, 27421, 287, 11096, 62, 2257, 18421, 60, 628, 220, 220, 220, 4512, 796, 716, 333, 62, 7568, 58, 321, 333, 62, 7568, 17816, 4475, 20520, 1279, 923, 62, 9288, 62, 4475, 4083, 30073, 3419, 198, 220, 220, 220, 1332, 796, 716, 333, 62, 7568, 58, 7, 321, 333, 62, 7568, 17816, 4475, 20520, 18189, 923, 62, 9288, 62, 4475, 8, 1222, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 357, 321, 333, 62, 7568, 17816, 4475, 20520, 1279, 886, 62, 9288, 62, 4475, 25295, 30073, 3419, 628, 220, 220, 220, 9756, 796, 651, 62, 11265, 7509, 62, 34242, 7, 69, 3672, 8, 198, 220, 220, 220, 329, 951, 287, 29052, 62, 40890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 32604, 796, 9756, 58, 4033, 7131, 6, 32604, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 4808, 19282, 796, 9756, 58, 4033, 7131, 6, 19282, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 58, 4033, 60, 796, 357, 27432, 58, 4033, 60, 532, 4808, 32604, 8, 1220, 4808, 19282, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 58, 4033, 60, 796, 357, 9288, 58, 4033, 60, 532, 4808, 32604, 8, 1220, 4808, 19282, 628, 220, 220, 220, 4512, 13, 30619, 62, 27160, 10786, 4475, 3256, 287, 5372, 28, 17821, 8, 628, 220, 220, 220, 4512, 62, 87, 62, 18747, 796, 17635, 198, 220, 220, 220, 4512, 62, 88, 62, 18747, 796, 17635, 198, 220, 220, 220, 2239, 796, 657, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2239, 1343, 24644, 50, 62, 13775, 2943, 11262, 1343, 352, 18189, 18896, 7, 27432, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 611, 4512, 13, 346, 420, 58, 9662, 25, 9662, 1343, 24644, 50, 62, 13775, 2943, 11262, 7131, 83, 853, 1039, 4083, 9127, 22446, 1084, 3419, 1279, 24644, 50, 62, 13775, 2943, 11262, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 15853, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 87, 62, 18747, 13, 33295, 7, 27432, 13, 346, 420, 58, 9662, 25, 9662, 1343, 24644, 50, 62, 13775, 2943, 11262, 7131, 77, 6975, 605, 62, 40890, 1343, 4253, 12409, 62, 40890, 4083, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 4512, 62, 88, 62, 18747, 13, 33295, 7, 27432, 13, 346, 420, 58, 9662, 25, 9662, 1343, 24644, 50, 62, 13775, 2943, 11262, 7131, 83, 853, 1039, 4083, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2239, 15853, 352, 198, 220, 220, 220, 1395, 62, 27432, 796, 45941, 13, 7645, 3455, 7, 37659, 13, 67, 25558, 7, 27432, 62, 87, 62, 18747, 828, 357, 17, 11, 657, 11, 352, 4008, 198, 220, 220, 220, 331, 62, 27432, 796, 45941, 13, 7645, 3455, 7, 37659, 13, 67, 25558, 7, 27432, 62, 88, 62, 18747, 828, 357, 17, 11, 657, 11, 352, 4008, 628, 220, 220, 220, 2239, 796, 657, 198, 220, 220, 220, 1332, 13, 30619, 62, 27160, 10786, 4475, 3256, 287, 5372, 28, 17821, 8, 198, 220, 220, 220, 1332, 62, 87, 62, 18747, 796, 17635, 198, 220, 220, 220, 1332, 62, 88, 62, 18747, 796, 17635, 198, 220, 220, 220, 981, 6407, 25, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2239, 18189, 18896, 7, 9288, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 611, 1332, 13, 346, 420, 58, 9662, 25, 9662, 1343, 24644, 50, 62, 13775, 2943, 11262, 7131, 83, 853, 1039, 4083, 9127, 22446, 1084, 3419, 1279, 24644, 50, 62, 13775, 2943, 11262, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2239, 15853, 24644, 50, 62, 13775, 2943, 11262, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 87, 62, 18747, 13, 33295, 7, 9288, 13, 346, 420, 58, 9662, 25, 9662, 1343, 24644, 50, 62, 13775, 2943, 11262, 7131, 77, 6975, 605, 62, 40890, 1343, 4253, 12409, 62, 40890, 4083, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1332, 62, 88, 62, 18747, 13, 33295, 7, 9288, 13, 346, 420, 58, 9662, 25, 9662, 1343, 24644, 50, 62, 13775, 2943, 11262, 7131, 83, 853, 1039, 4083, 27160, 8, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2239, 1343, 24644, 50, 62, 13775, 2943, 11262, 9, 17, 10, 16, 18189, 18896, 7, 9288, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 2239, 15853, 24644, 50, 62, 13775, 2943, 11262, 198, 220, 220, 220, 1395, 62, 9288, 796, 45941, 13, 7645, 3455, 7, 37659, 13, 67, 25558, 7, 9288, 62, 87, 62, 18747, 828, 357, 17, 11, 657, 11, 352, 4008, 198, 220, 220, 220, 331, 62, 9288, 796, 45941, 13, 7645, 3455, 7, 37659, 13, 67, 25558, 7, 9288, 62, 88, 62, 18747, 828, 357, 17, 11, 657, 11, 352, 4008, 628, 220, 220, 220, 1441, 1395, 62, 27432, 11, 331, 62, 27432, 11, 1395, 62, 9288, 11, 331, 62, 9288 ]
2.032448
1,695
from .Preprocessor import Pipeline
[ 6738, 764, 6719, 41341, 1330, 37709, 198 ]
5
7
import os import sys import copy import ctypes import socket import logging import threading import functools import webbrowser logger = logging.getLogger(__name__) import keyboard from PySide2 import QtCore, QtWidgets, QtGui, QtWebEngineWidgets # TODO # Be able to import a text file in the description/title as variables (to have counters and currentsong for example) # Rajouter dans le menu contextuel les variables %CATEGORY% et autres fichiers monitors # Pouvoir ajouter un commandbot avec des commandes customs (!game !currentsong) # Add About and Help menu entries # Automatically switch scenes in OBS depending of the game played # Add an XML/EDL file and add each marker created for import into premiere/resolve/FCP # Change color tray icon to green if update channel with new process or red + toast message if error # Add trayicons for dropped frames and stream/record states # Do a notification if the user has not used a streaming process for X minutes if any service is online (to prevent streaming unnoticed) # Faire un streamdeck customisable qui change automatiquement les touches selon le programme utilis https://interactjs.io/ # Being able to put it in portrait without changing icons layout # Add Multi Actions with pause timers # Create an independant server that scan the foreground process and send it to the receiver, this way multi computer streaming is possible # websocket plugin ( https://github.com/Elektordi/obs-websocket-py ) Show Scene selector, MIC and DEFAULT volume, RECORD and STREAMING status and STATS import common.manager import common.remote import common.tools import common.systray def block_signals(iterable, block): for i in iterable: i.blockSignals(block) def updateStyle(obj, name, value): obj.setProperty(name, value) obj.setStyle(obj.style())
[ 11748, 28686, 198, 11748, 25064, 198, 11748, 4866, 198, 11748, 269, 19199, 198, 11748, 17802, 198, 11748, 18931, 198, 11748, 4704, 278, 198, 11748, 1257, 310, 10141, 198, 11748, 3992, 40259, 198, 6404, 1362, 796, 18931, 13, 1136, 11187, 1362, 7, 834, 3672, 834, 8, 198, 11748, 10586, 198, 6738, 9485, 24819, 17, 1330, 33734, 14055, 11, 33734, 54, 312, 11407, 11, 33734, 8205, 72, 11, 33734, 13908, 13798, 54, 312, 11407, 198, 198, 2, 16926, 46, 198, 2, 1355, 1498, 284, 1330, 257, 2420, 2393, 287, 262, 6764, 14, 7839, 355, 9633, 357, 1462, 423, 21154, 290, 28629, 506, 329, 1672, 8, 198, 2, 13308, 39605, 288, 504, 443, 6859, 4732, 2731, 10287, 9633, 4064, 34, 6158, 38, 15513, 4, 2123, 1960, 411, 277, 488, 3183, 19374, 198, 2, 350, 280, 85, 10840, 257, 73, 39605, 555, 3141, 13645, 257, 35138, 748, 3141, 274, 17112, 22759, 6057, 5145, 14421, 34050, 8, 198, 2, 3060, 7994, 290, 10478, 6859, 12784, 198, 2, 17406, 4142, 5078, 8188, 287, 440, 4462, 6906, 286, 262, 983, 2826, 198, 2, 3060, 281, 23735, 14, 1961, 43, 2393, 290, 751, 1123, 18364, 2727, 329, 1330, 656, 19245, 14, 411, 6442, 14, 4851, 47, 198, 198, 2, 9794, 3124, 26473, 7196, 284, 4077, 611, 4296, 6518, 351, 649, 1429, 393, 2266, 1343, 27805, 3275, 611, 4049, 198, 2, 3060, 26473, 34280, 329, 5710, 13431, 290, 4269, 14, 22105, 2585, 198, 2, 2141, 257, 14483, 611, 262, 2836, 468, 407, 973, 257, 11305, 1429, 329, 1395, 2431, 611, 597, 2139, 318, 2691, 357, 1462, 2948, 11305, 33755, 8, 198, 2, 376, 7626, 555, 4269, 35875, 2183, 43942, 45567, 1487, 3557, 265, 1557, 972, 10287, 18105, 384, 14995, 443, 11383, 7736, 271, 3740, 1378, 3849, 529, 8457, 13, 952, 14, 198, 2, 11204, 1498, 284, 1234, 340, 287, 18560, 1231, 5609, 17149, 12461, 198, 2, 3060, 15237, 24439, 351, 14985, 48085, 198, 2, 13610, 281, 3485, 415, 4382, 326, 9367, 262, 36282, 1429, 290, 3758, 340, 284, 262, 9733, 11, 428, 835, 5021, 3644, 11305, 318, 1744, 198, 2, 2639, 5459, 13877, 357, 3740, 1378, 12567, 13, 785, 14, 28827, 21841, 585, 72, 14, 8158, 12, 732, 1443, 5459, 12, 9078, 1267, 5438, 28315, 31870, 11, 35878, 290, 5550, 38865, 6115, 11, 220, 19644, 12532, 290, 3563, 32235, 2751, 3722, 290, 37889, 628, 198, 198, 11748, 2219, 13, 37153, 198, 11748, 2219, 13, 47960, 198, 11748, 2219, 13, 31391, 198, 11748, 2219, 13, 1837, 301, 2433, 628, 628, 198, 198, 4299, 2512, 62, 12683, 874, 7, 2676, 540, 11, 2512, 2599, 198, 220, 220, 220, 329, 1312, 287, 11629, 540, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1312, 13, 9967, 11712, 874, 7, 9967, 8, 628, 628, 628, 628, 628, 628, 628, 628, 628, 198, 198, 4299, 4296, 21466, 7, 26801, 11, 1438, 11, 1988, 2599, 198, 220, 220, 220, 26181, 13, 2617, 21746, 7, 3672, 11, 1988, 8, 198, 220, 220, 220, 26181, 13, 2617, 21466, 7, 26801, 13, 7635, 28955, 198 ]
3.706237
497
""" Contains unit tests to ensure single database items are created correctly in a Pascal VOC compatible format. """ import os from xml.etree.ElementTree import Element, SubElement import numpy as np from breakdb.io.export.voc import create_annotation from tests.helpers.dataset import create_random_string from tests.helpers.xml import match
[ 37811, 198, 4264, 1299, 4326, 5254, 284, 4155, 2060, 6831, 3709, 389, 2727, 9380, 287, 257, 198, 47, 27747, 569, 4503, 11670, 5794, 13, 198, 37811, 198, 11748, 28686, 198, 6738, 35555, 13, 316, 631, 13, 20180, 27660, 1330, 11703, 11, 3834, 20180, 198, 198, 11748, 299, 32152, 355, 45941, 198, 198, 6738, 2270, 9945, 13, 952, 13, 39344, 13, 18893, 1330, 2251, 62, 1236, 14221, 198, 6738, 5254, 13, 16794, 364, 13, 19608, 292, 316, 1330, 2251, 62, 25120, 62, 8841, 198, 6738, 5254, 13, 16794, 364, 13, 19875, 1330, 2872, 628 ]
3.72043
93
import os import os.path as osp import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Circle, Polygon, Rectangle from config import PARAMS def plot_globe(self, angle=0): ''' Plots the globe and its shade as viewed from 'angle'. ''' angle = self.normalize_angle(angle) self.globe = Circle( xy=(0, 0), radius=1, color=self.params['globe']['water_colour'], zorder=self.params['zorder']['water'], lw=0, ) self.ax.add_patch(self.globe) for shape in self.shapes: for turn in [-1, 0, 1]: # to cover for the boundary problems points, unseen = zip(*[self.project(point, angle, turn) for point in shape]) if not all(unseen): # the border of the land self.ax.add_patch(Polygon( xy=points, color=self.params['globe']['border_colour'], zorder=self.params['zorder']['land_border'], lw=self.params['globe']['border'], clip_path=self.globe, joinstyle='round', )) # the main land self.ax.add_patch(Polygon( xy=points, color=self.params['globe']['land_colour'], zorder=self.params['zorder']['land'], lw=0, clip_path=self.globe, )) # plotting the shade self.plot_shade(angle) def plot_shade(self, angle=0): ''' Plots the shaded version of the globe. ''' angle = self.normalize_angle(angle + self.params['shade']['angle']) # general transformation applied on the shade transform = self.ax.transData.get_affine() x_shift = transform.get_matrix()[0,2] y_shift = transform.get_matrix()[1,2] x_scale = transform.get_matrix()[0,0] y_scale = transform.get_matrix()[1,1] transform.set_matrix(np.diag(np.diag(transform.get_matrix()))) # only keep the diagonal transform.scale( self.params['shade']['ratio']*self.params['shade']['scale'], self.params['shade']['scale'] ) transform.rotate_deg(self.params['shade']['rotation']) transform.translate( x_shift + x_scale*self.params['shade']['x_pos'], y_shift - y_scale + y_scale*self.params['shade']['y_pos'] ) # plotting the shaded world sphere self.ax.add_patch(Circle( xy=(0, 0), radius=1, color=self.params['shade']['water_colour'], zorder=self.params['zorder']['shade_water'], alpha=self.params['shade']['alpha'], transform=transform, lw=0, )) for shape in self.shapes: for turn in [-1, 0, 1]: # to cover for the boundary problems points, unseen = zip(*[self.project(point, angle, turn, flip=True, away=1) for point in shape]) if not all(unseen): self.ax.add_patch(Polygon( xy=points, color=self.params['shade']['land_colour'], zorder=self.params['zorder']['shade_land'], alpha=self.params['shade']['alpha'], transform=transform, lw=0, )) def savefig(self, name='map', folder='.', title=''): ''' Saves the current state of the figure. ''' assert hasattr(self, 'fig') if not osp.exists(folder): os.makedirs(folder) # adds a title when available if title: bbox = { 'boxstyle' : 'round', 'edgecolor' : self.params['text']['colour'], 'facecolor' : self.params['text']['background'], 'linewidth' : self.params['text']['border'], } self.ax.text( - 1 - self.params['figure']['extra_space'] + self.params['text']['x'], - 1 - self.params['figure']['extra_space'] + self.params['text']['y'], title, fontsize=self.params['text']['fontsize'], color=self.params['text']['colour'], #fontweight='demibold', bbox=bbox, ) self.fig.savefig(osp.join(folder, name + '.png'), transparent=True) def plot(self, name='map', folder='.', title='', angle=0): ''' Plots the world globe. ''' self.set_figure() self.plot_globe(angle) self.savefig(name, folder, title)
[ 11748, 28686, 198, 11748, 28686, 13, 6978, 355, 267, 2777, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 2603, 29487, 8019, 13, 9078, 29487, 355, 458, 83, 198, 6738, 2603, 29487, 8019, 13, 8071, 2052, 1330, 16291, 11, 12280, 14520, 11, 48599, 9248, 198, 198, 6738, 4566, 1330, 29463, 40834, 628, 198, 220, 220, 220, 825, 7110, 62, 4743, 5910, 7, 944, 11, 9848, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1345, 1747, 262, 13342, 290, 663, 17979, 355, 9569, 422, 705, 9248, 4458, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 9848, 796, 2116, 13, 11265, 1096, 62, 9248, 7, 9248, 8, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 4743, 5910, 796, 16291, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 16193, 15, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16874, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 944, 13, 37266, 17816, 4743, 5910, 6, 7131, 6, 7050, 62, 49903, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 2875, 28, 944, 13, 37266, 17816, 89, 2875, 6, 7131, 6, 7050, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 86, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 897, 13, 2860, 62, 17147, 7, 944, 13, 4743, 5910, 8, 628, 220, 220, 220, 220, 220, 220, 220, 329, 5485, 287, 2116, 13, 1477, 7916, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1210, 287, 25915, 16, 11, 657, 11, 352, 5974, 1303, 284, 3002, 329, 262, 18645, 2761, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 11, 29587, 796, 19974, 46491, 58, 944, 13, 16302, 7, 4122, 11, 9848, 11, 1210, 8, 329, 966, 287, 5485, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 477, 7, 403, 15898, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 4865, 286, 262, 1956, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 897, 13, 2860, 62, 17147, 7, 34220, 14520, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 28, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 944, 13, 37266, 17816, 4743, 5910, 6, 7131, 6, 20192, 62, 49903, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 2875, 28, 944, 13, 37266, 17816, 89, 2875, 6, 7131, 6, 1044, 62, 20192, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 86, 28, 944, 13, 37266, 17816, 4743, 5910, 6, 7131, 6, 20192, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10651, 62, 6978, 28, 944, 13, 4743, 5910, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4654, 7635, 11639, 744, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 262, 1388, 1956, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 897, 13, 2860, 62, 17147, 7, 34220, 14520, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 28, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 944, 13, 37266, 17816, 4743, 5910, 6, 7131, 6, 1044, 62, 49903, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 2875, 28, 944, 13, 37266, 17816, 89, 2875, 6, 7131, 6, 1044, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 86, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10651, 62, 6978, 28, 944, 13, 4743, 5910, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29353, 262, 17979, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29487, 62, 1477, 671, 7, 9248, 8, 628, 220, 220, 220, 825, 7110, 62, 1477, 671, 7, 944, 11, 9848, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1345, 1747, 262, 427, 5286, 2196, 286, 262, 13342, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 9848, 796, 2116, 13, 11265, 1096, 62, 9248, 7, 9248, 1343, 2116, 13, 37266, 17816, 1477, 671, 6, 7131, 6, 9248, 6, 12962, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 2276, 13389, 5625, 319, 262, 17979, 198, 220, 220, 220, 220, 220, 220, 220, 6121, 796, 2116, 13, 897, 13, 7645, 6601, 13, 1136, 62, 2001, 500, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 30846, 796, 6121, 13, 1136, 62, 6759, 8609, 3419, 58, 15, 11, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 30846, 796, 6121, 13, 1136, 62, 6759, 8609, 3419, 58, 16, 11, 17, 60, 198, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 9888, 796, 6121, 13, 1136, 62, 6759, 8609, 3419, 58, 15, 11, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 331, 62, 9888, 796, 6121, 13, 1136, 62, 6759, 8609, 3419, 58, 16, 11, 16, 60, 628, 220, 220, 220, 220, 220, 220, 220, 6121, 13, 2617, 62, 6759, 8609, 7, 37659, 13, 10989, 363, 7, 37659, 13, 10989, 363, 7, 35636, 13, 1136, 62, 6759, 8609, 3419, 22305, 1303, 691, 1394, 262, 40039, 198, 220, 220, 220, 220, 220, 220, 220, 6121, 13, 9888, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37266, 17816, 1477, 671, 6, 7131, 6, 10366, 952, 20520, 9, 944, 13, 37266, 17816, 1477, 671, 6, 7131, 6, 9888, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 37266, 17816, 1477, 671, 6, 7131, 6, 9888, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 6121, 13, 10599, 378, 62, 13500, 7, 944, 13, 37266, 17816, 1477, 671, 6, 7131, 6, 10599, 341, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 6121, 13, 7645, 17660, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 62, 30846, 1343, 2124, 62, 9888, 9, 944, 13, 37266, 17816, 1477, 671, 6, 7131, 6, 87, 62, 1930, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 331, 62, 30846, 532, 331, 62, 9888, 1343, 331, 62, 9888, 9, 944, 13, 37266, 17816, 1477, 671, 6, 7131, 6, 88, 62, 1930, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 29353, 262, 427, 5286, 995, 16558, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 897, 13, 2860, 62, 17147, 7, 31560, 293, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 16193, 15, 11, 657, 828, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 16874, 28, 16, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 944, 13, 37266, 17816, 1477, 671, 6, 7131, 6, 7050, 62, 49903, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 2875, 28, 944, 13, 37266, 17816, 89, 2875, 6, 7131, 6, 1477, 671, 62, 7050, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 944, 13, 37266, 17816, 1477, 671, 6, 7131, 6, 26591, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 86, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 15306, 198, 220, 220, 220, 220, 220, 220, 220, 329, 5485, 287, 2116, 13, 1477, 7916, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 329, 1210, 287, 25915, 16, 11, 657, 11, 352, 5974, 1303, 284, 3002, 329, 262, 18645, 2761, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2173, 11, 29587, 796, 19974, 46491, 58, 944, 13, 16302, 7, 4122, 11, 9848, 11, 1210, 11, 14283, 28, 17821, 11, 1497, 28, 16, 8, 329, 966, 287, 5485, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 407, 477, 7, 403, 15898, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 897, 13, 2860, 62, 17147, 7, 34220, 14520, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2124, 88, 28, 13033, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 944, 13, 37266, 17816, 1477, 671, 6, 7131, 6, 1044, 62, 49903, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1976, 2875, 28, 944, 13, 37266, 17816, 89, 2875, 6, 7131, 6, 1477, 671, 62, 1044, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 17130, 28, 944, 13, 37266, 17816, 1477, 671, 6, 7131, 6, 26591, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 6121, 28, 35636, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 300, 86, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15306, 628, 220, 220, 220, 825, 3613, 5647, 7, 944, 11, 1438, 11639, 8899, 3256, 9483, 11639, 2637, 11, 3670, 28, 7061, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 311, 3080, 262, 1459, 1181, 286, 262, 3785, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 6818, 468, 35226, 7, 944, 11, 705, 5647, 11537, 628, 220, 220, 220, 220, 220, 220, 220, 611, 407, 267, 2777, 13, 1069, 1023, 7, 43551, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28686, 13, 76, 4335, 17062, 7, 43551, 8, 628, 220, 220, 220, 220, 220, 220, 220, 1303, 6673, 257, 3670, 618, 1695, 198, 220, 220, 220, 220, 220, 220, 220, 611, 3670, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 796, 1391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 3524, 7635, 6, 1058, 705, 744, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 14907, 8043, 6, 1058, 2116, 13, 37266, 17816, 5239, 6, 7131, 6, 49903, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2550, 8043, 6, 1058, 2116, 13, 37266, 17816, 5239, 6, 7131, 6, 25249, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 2815, 413, 5649, 6, 1058, 2116, 13, 37266, 17816, 5239, 6, 7131, 6, 20192, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1782, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 897, 13, 5239, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 352, 532, 2116, 13, 37266, 17816, 26875, 6, 7131, 6, 26086, 62, 13200, 20520, 1343, 2116, 13, 37266, 17816, 5239, 6, 7131, 6, 87, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 532, 352, 532, 2116, 13, 37266, 17816, 26875, 6, 7131, 6, 26086, 62, 13200, 20520, 1343, 2116, 13, 37266, 17816, 5239, 6, 7131, 6, 88, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3670, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 10369, 7857, 28, 944, 13, 37266, 17816, 5239, 6, 7131, 6, 10331, 7857, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3124, 28, 944, 13, 37266, 17816, 5239, 6, 7131, 6, 49903, 6, 4357, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 10331, 6551, 11639, 9536, 571, 727, 3256, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 275, 3524, 28, 65, 3524, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 628, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 5647, 13, 21928, 5647, 7, 2117, 13, 22179, 7, 43551, 11, 1438, 1343, 45302, 11134, 33809, 13245, 28, 17821, 8, 628, 220, 220, 220, 825, 7110, 7, 944, 11, 1438, 11639, 8899, 3256, 9483, 11639, 2637, 11, 3670, 11639, 3256, 9848, 28, 15, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 1345, 1747, 262, 995, 13342, 13, 198, 220, 220, 220, 220, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 2617, 62, 26875, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 29487, 62, 4743, 5910, 7, 9248, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2116, 13, 21928, 5647, 7, 3672, 11, 9483, 11, 3670, 8 ]
1.836866
2,642
from django.db import models from .base import BaseModel
[ 6738, 42625, 14208, 13, 9945, 1330, 4981, 198, 198, 6738, 764, 8692, 1330, 7308, 17633, 628 ]
3.6875
16
import random import numpy as np import cPickle as pkl Train_handle = open("./data/weixin_data/weixin_train.txt",'w') Test_handle = open("./data/weixin_data/weixin_test.txt",'w') Feature_handle = open("./data/weixin_data/weixin_feature.pkl",'w') max_len = 50 if __name__ == "__main__": train_sample_list, test_sample_list = generate_sample_list() produce_neg_item_hist_with_cate(train_sample_list, test_sample_list)
[ 11748, 4738, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 269, 31686, 293, 355, 279, 41582, 628, 198, 44077, 62, 28144, 796, 1280, 7, 1911, 14, 7890, 14, 732, 844, 259, 62, 7890, 14, 732, 844, 259, 62, 27432, 13, 14116, 1600, 6, 86, 11537, 198, 14402, 62, 28144, 796, 1280, 7, 1911, 14, 7890, 14, 732, 844, 259, 62, 7890, 14, 732, 844, 259, 62, 9288, 13, 14116, 1600, 6, 86, 11537, 198, 38816, 62, 28144, 796, 1280, 7, 1911, 14, 7890, 14, 732, 844, 259, 62, 7890, 14, 732, 844, 259, 62, 30053, 13, 79, 41582, 1600, 6, 86, 11537, 198, 9806, 62, 11925, 796, 2026, 628, 628, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 628, 220, 220, 220, 4512, 62, 39873, 62, 4868, 11, 1332, 62, 39873, 62, 4868, 796, 7716, 62, 39873, 62, 4868, 3419, 198, 220, 220, 220, 4439, 62, 12480, 62, 9186, 62, 10034, 62, 4480, 62, 66, 378, 7, 27432, 62, 39873, 62, 4868, 11, 1332, 62, 39873, 62, 4868, 8, 628 ]
2.49711
173
import sys import sqlite3 import csv from random import randint from faker import Faker fake = Faker() if __name__ == "__main__": main()
[ 11748, 25064, 198, 11748, 44161, 578, 18, 198, 11748, 269, 21370, 198, 6738, 4738, 1330, 43720, 600, 198, 198, 6738, 277, 3110, 1330, 376, 3110, 198, 30706, 796, 376, 3110, 3419, 628, 628, 198, 198, 361, 11593, 3672, 834, 6624, 366, 834, 12417, 834, 1298, 198, 220, 220, 220, 1388, 3419, 198 ]
2.826923
52
from __future__ import annotations from amulet.world_interface.chunk.interfaces.leveldb.leveldb_12.leveldb_12_interface import ( LevelDB12Interface, ) INTERFACE_CLASS = LevelDB13Interface
[ 6738, 11593, 37443, 834, 1330, 37647, 198, 198, 6738, 38335, 13, 6894, 62, 39994, 13, 354, 2954, 13, 3849, 32186, 13, 293, 303, 335, 65, 13, 293, 303, 335, 65, 62, 1065, 13, 293, 303, 335, 65, 62, 1065, 62, 39994, 1330, 357, 198, 220, 220, 220, 5684, 11012, 1065, 39317, 11, 198, 8, 628, 198, 198, 41358, 49836, 62, 31631, 796, 5684, 11012, 1485, 39317, 198 ]
2.925373
67
from oarepo_model_builder.builders.json import JSONBuilder from oarepo_model_builder.output import JsonSchemaOutput
[ 6738, 267, 533, 7501, 62, 19849, 62, 38272, 13, 50034, 13, 17752, 1330, 19449, 32875, 198, 6738, 267, 533, 7501, 62, 19849, 62, 38272, 13, 22915, 1330, 449, 1559, 27054, 2611, 26410, 628 ]
3.545455
33
import numpy as np def square(x): """Square a number""" return x ** 2 def volume_converter(volume, unit): """Convert certain SI volumes to mLs""" conversions = {'mL': 1E-3, 'uL': 1E-6, 'nL': 1E-9, 'kL': 1E3} return round(volume * conversions[unit], 10) def squared_sum(in_list): """Finds the sum of squares of a list of numbers.""" return np.sum(np.array(in_list)**2)
[ 11748, 299, 32152, 355, 45941, 198, 198, 4299, 6616, 7, 87, 2599, 198, 220, 220, 220, 37227, 48011, 257, 1271, 37811, 198, 220, 220, 220, 1441, 2124, 12429, 362, 198, 198, 4299, 6115, 62, 1102, 332, 353, 7, 29048, 11, 4326, 2599, 198, 220, 220, 220, 37227, 3103, 1851, 1728, 25861, 15343, 284, 36226, 82, 37811, 198, 220, 220, 220, 32626, 796, 1391, 6, 32087, 10354, 352, 36, 12, 18, 11, 705, 84, 43, 10354, 352, 36, 12, 21, 11, 705, 77, 43, 10354, 352, 36, 12, 24, 11, 705, 74, 43, 10354, 352, 36, 18, 92, 198, 220, 220, 220, 1441, 2835, 7, 29048, 1635, 32626, 58, 20850, 4357, 838, 8, 198, 198, 4299, 44345, 62, 16345, 7, 259, 62, 4868, 2599, 198, 220, 220, 220, 37227, 16742, 82, 262, 2160, 286, 24438, 286, 257, 1351, 286, 3146, 526, 15931, 198, 220, 220, 220, 1441, 45941, 13, 16345, 7, 37659, 13, 18747, 7, 259, 62, 4868, 8, 1174, 17, 8, 198 ]
2.462963
162
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import psycopg2 import time import statistics from selenium.webdriver.support.select import Select import json # except (Exception, psycopg2.Error) as e: # print(e) # # # finally: # # closing database connection. # if (connection): # cursor.close() # connection.close() if __name__ == '__main__': exec_path = "" # INSERT HERE THE PATH TO THE DRIVER driver = webdriver.Chrome(executable_path=exec_path) data = [] timer = 0 try: c = 0 log_in = login(driver) if log_in: while c < 40: time.sleep(2) print(str(c)) # connection = psycopg2.connect(dbname="groundtruthdb", user="ims", password="grace.period", host="localhost", # port="5444") # # cursor = connection.cursor() # cursor.execute('SELECT COUNT(*) FROM associate where username = %s;',['selenium_test']) # ans = cursor.fetchone()[0] # if(ans == 100): # cursor.execute('DELETE FROM associate where username = %s;',['selenium_test']) # connection.commit() # # cursor.execute('SELECT COUNT(*) FROM ground_truth_log_file where username = %s AND gt_type = %s;',['selenium_test','labels']) # ans = cursor.fetchone()[0] # if(ans == 100): # cursor.execute('DELETE FROM ground_truth_log_file where username = %s and gt_type = %s;',['selenium_test','labels']) # connection.commit() if c > 0: driver.refresh() ele1 = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.XPATH, '//button[text()="Labels"]')) ) ele1.click() timer_1 = exatag_lab_test(driver) data.append(timer_1) print(str(timer_1)) if(type(timer_1) == 'str'): break else: timer = timer + timer_1 c = c+1 except (Exception, psycopg2.Error) as e: print(e) finally: # closing database connection. # if (connection): # cursor.close() # connection.close() print(timer) std = statistics.stdev(data) print(str(std))
[ 6738, 384, 11925, 1505, 1330, 3992, 26230, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11321, 13, 1525, 1330, 2750, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 13, 9019, 1330, 5313, 32103, 21321, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 1330, 2938, 62, 17561, 1756, 355, 13182, 198, 11748, 17331, 22163, 70, 17, 198, 11748, 640, 198, 11748, 7869, 198, 6738, 384, 11925, 1505, 13, 12384, 26230, 13, 11284, 13, 19738, 1330, 9683, 198, 198, 11748, 33918, 628, 628, 628, 220, 220, 220, 1303, 2845, 357, 16922, 11, 17331, 22163, 70, 17, 13, 12331, 8, 355, 304, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 3601, 7, 68, 8, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 198, 220, 220, 220, 1303, 3443, 25, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 1303, 9605, 6831, 4637, 13, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 611, 357, 38659, 2599, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 23493, 13, 19836, 3419, 198, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 4637, 13, 19836, 3419, 628, 198, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 220, 220, 220, 220, 2452, 62, 6978, 796, 13538, 1303, 29194, 17395, 15698, 3336, 46490, 5390, 3336, 10560, 38757, 198, 220, 220, 220, 220, 220, 220, 220, 4639, 796, 3992, 26230, 13, 1925, 5998, 7, 18558, 18187, 62, 6978, 28, 18558, 62, 6978, 8, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 796, 17635, 198, 220, 220, 220, 220, 220, 220, 220, 19781, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 796, 657, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2604, 62, 259, 796, 17594, 7, 26230, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 2604, 62, 259, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 981, 269, 1279, 2319, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 640, 13, 42832, 7, 17, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2536, 7, 66, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 4637, 796, 17331, 22163, 70, 17, 13, 8443, 7, 9945, 3672, 2625, 2833, 35310, 9945, 1600, 2836, 2625, 12078, 1600, 9206, 2625, 2164, 558, 13, 41007, 1600, 2583, 2625, 36750, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2493, 2625, 20, 30272, 4943, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23493, 796, 4637, 13, 66, 21471, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23493, 13, 41049, 10786, 46506, 327, 28270, 7, 28104, 16034, 11602, 810, 20579, 796, 4064, 82, 26, 3256, 17816, 741, 47477, 62, 9288, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9093, 796, 23493, 13, 69, 7569, 505, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 7, 504, 6624, 1802, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 23493, 13, 41049, 10786, 7206, 2538, 9328, 16034, 11602, 810, 20579, 796, 4064, 82, 26, 3256, 17816, 741, 47477, 62, 9288, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 4637, 13, 41509, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 23493, 13, 41049, 10786, 46506, 327, 28270, 7, 28104, 16034, 2323, 62, 35310, 62, 6404, 62, 7753, 810, 20579, 796, 4064, 82, 5357, 308, 83, 62, 4906, 796, 4064, 82, 26, 3256, 17816, 741, 47477, 62, 9288, 41707, 23912, 1424, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9093, 796, 23493, 13, 69, 7569, 505, 3419, 58, 15, 60, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 7, 504, 6624, 1802, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 23493, 13, 41049, 10786, 7206, 2538, 9328, 16034, 2323, 62, 35310, 62, 6404, 62, 7753, 810, 20579, 796, 4064, 82, 290, 308, 83, 62, 4906, 796, 4064, 82, 26, 3256, 17816, 741, 47477, 62, 9288, 41707, 23912, 1424, 6, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 4637, 13, 41509, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 269, 1875, 657, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4639, 13, 5420, 3447, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 16, 796, 5313, 32103, 21321, 7, 26230, 11, 838, 737, 28446, 7, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 13182, 13, 18302, 594, 62, 1659, 62, 30854, 62, 75, 10533, 19510, 3886, 13, 27481, 12599, 11, 705, 1003, 16539, 58, 5239, 3419, 2625, 17822, 1424, 8973, 6, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1267, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 9766, 16, 13, 12976, 3419, 628, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19781, 62, 16, 796, 409, 265, 363, 62, 23912, 62, 9288, 7, 26230, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1366, 13, 33295, 7, 45016, 62, 16, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2536, 7, 45016, 62, 16, 4008, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 611, 7, 4906, 7, 45016, 62, 16, 8, 6624, 705, 2536, 6, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2270, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19781, 796, 19781, 1343, 19781, 62, 16, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 269, 796, 269, 10, 16, 628, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 357, 16922, 11, 17331, 22163, 70, 17, 13, 12331, 8, 355, 304, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 68, 8, 628, 198, 220, 220, 220, 220, 220, 220, 220, 3443, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 9605, 6831, 4637, 13, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 611, 357, 38659, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 23493, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1303, 220, 220, 220, 220, 4637, 13, 19836, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 45016, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 14367, 796, 7869, 13, 301, 7959, 7, 7890, 8, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 3601, 7, 2536, 7, 19282, 4008, 628 ]
1.817618
1,612
# # $Header: /home/inqwell/cvsroot/dev/scripts/python/FotechUtils/dbUtils.py,v 1.1 2009/05/22 22:16:32 sanderst Exp $ # import KBC.fotech from Util import db from dbConfig import configurationProvider def getConnection( confile, system, level, access = "read", site = None, user = None, pwdfile = None ): """ Partial replacement for the db.py mess in cbtech/python2.5. You should use /prod/fotech/bin/generateDatabaseXml.py to generate an xml file containing your system/level config from the old db.py. Then replace any call to db.getConnection with dbUtils.getConnection and you should get back the same object that you would have got in the old strategy. """ config = configurationProvider( confile, pwdfile ) vendor, server, user, password, schema, host, port = config.getConnectionDetails( system, level, access, site, user ) return db._getConnection( vendor.upper(), server, schema, user, password )
[ 2, 198, 2, 720, 39681, 25, 1220, 11195, 14, 259, 80, 4053, 14, 66, 14259, 15763, 14, 7959, 14, 46521, 14, 29412, 14, 37, 32469, 18274, 4487, 14, 9945, 18274, 4487, 13, 9078, 11, 85, 352, 13, 16, 3717, 14, 2713, 14, 1828, 2534, 25, 1433, 25, 2624, 264, 4066, 301, 5518, 720, 198, 2, 198, 11748, 509, 2749, 13, 69, 32469, 198, 198, 6738, 7273, 346, 1330, 20613, 198, 198, 6738, 20613, 16934, 1330, 8398, 29495, 198, 198, 4299, 651, 32048, 7, 1013, 576, 11, 1080, 11, 1241, 11, 1895, 796, 366, 961, 1600, 2524, 796, 6045, 11, 2836, 796, 6045, 11, 279, 86, 7568, 576, 796, 6045, 15179, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 220, 220, 220, 220, 43689, 9014, 329, 262, 20613, 13, 9078, 2085, 287, 269, 65, 13670, 14, 29412, 17, 13, 20, 13, 921, 815, 779, 1220, 1676, 67, 14, 69, 32469, 14, 8800, 14, 8612, 378, 38105, 55, 4029, 13, 9078, 198, 220, 220, 220, 220, 220, 220, 220, 284, 7716, 281, 35555, 2393, 7268, 534, 1080, 14, 5715, 4566, 422, 262, 1468, 20613, 13, 9078, 13, 3244, 6330, 597, 869, 284, 20613, 13, 1136, 32048, 198, 220, 220, 220, 220, 220, 220, 220, 351, 20613, 18274, 4487, 13, 1136, 32048, 290, 345, 815, 651, 736, 262, 976, 2134, 326, 345, 561, 423, 1392, 287, 262, 1468, 4811, 13, 198, 220, 220, 220, 37227, 198, 220, 220, 220, 4566, 796, 8398, 29495, 7, 1013, 576, 11, 279, 86, 7568, 576, 1267, 198, 220, 220, 220, 220, 198, 220, 220, 220, 18371, 11, 4382, 11, 2836, 11, 9206, 11, 32815, 11, 2583, 11, 2493, 796, 4566, 13, 1136, 32048, 24259, 7, 1080, 11, 1241, 11, 1895, 11, 2524, 11, 2836, 1267, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 20613, 13557, 1136, 32048, 7, 18371, 13, 45828, 22784, 4382, 11, 32815, 11, 2836, 11, 9206, 1267, 198 ]
3.037855
317
#!/usr/bin/env python3 import random import argparse import sys parser = argparse.ArgumentParser() parser.add_argument("number", help="Generate a random numbers until they are equal to this.", type=int) parser.add_argument("-s", "--start", type=int, default=0, help="The range in which the random numbers are in starts with this number. (default 0)") parser.add_argument("-e", "--end", type=int, default=32767, help="The range in which the random numbers are in ends with this number. (default 32767)") parser.add_argument("-c", "--count", help="Counts the amount of tries it takes to get to the number.", action="store_true") parser.add_argument("-n", "--newline", help="Adds a newline between random numbers.", action="store_true") args = parser.parse_args() if args.start > args.end: error("error: start is greater than end") if args.number > args.end or args.number < args.start: error("error: number is either greater than end or less than start") end = "\n" if args.newline else "\r" rand_num = '' tries = 0 args.end += 1 while rand_num != args.number: width = len(str(rand_num)) rand_num = random.randrange(args.start, args.end) print("{rand_num: <{width}}".format(rand_num=rand_num, width=width), end=end) tries += 1 if args.count: print("{} tries to get to {}".format(tries, args.number)) elif end == "\r": print()
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 11748, 4738, 198, 11748, 1822, 29572, 198, 11748, 25064, 628, 198, 198, 48610, 796, 1822, 29572, 13, 28100, 1713, 46677, 3419, 198, 48610, 13, 2860, 62, 49140, 7203, 17618, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 8645, 378, 257, 4738, 3146, 1566, 484, 389, 4961, 284, 428, 33283, 2099, 28, 600, 8, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 82, 1600, 366, 438, 9688, 1600, 2099, 28, 600, 11, 4277, 28, 15, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 464, 2837, 287, 543, 262, 4738, 3146, 389, 287, 4940, 351, 428, 1271, 13, 357, 12286, 657, 8, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 68, 1600, 366, 438, 437, 1600, 2099, 28, 600, 11, 4277, 28, 34159, 3134, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 464, 2837, 287, 543, 262, 4738, 3146, 389, 287, 5645, 351, 428, 1271, 13, 357, 12286, 36203, 3134, 8, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 66, 1600, 366, 438, 9127, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 12332, 82, 262, 2033, 286, 8404, 340, 2753, 284, 651, 284, 262, 1271, 33283, 2223, 2625, 8095, 62, 7942, 4943, 198, 48610, 13, 2860, 62, 49140, 7203, 12, 77, 1600, 366, 438, 3605, 1370, 1600, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1037, 2625, 46245, 257, 649, 1370, 1022, 4738, 3146, 33283, 2223, 2625, 8095, 62, 7942, 4943, 198, 198, 22046, 796, 30751, 13, 29572, 62, 22046, 3419, 198, 361, 26498, 13, 9688, 1875, 26498, 13, 437, 25, 198, 220, 220, 220, 4049, 7203, 18224, 25, 923, 318, 3744, 621, 886, 4943, 198, 361, 26498, 13, 17618, 1875, 26498, 13, 437, 393, 26498, 13, 17618, 1279, 26498, 13, 9688, 25, 198, 220, 220, 220, 4049, 7203, 18224, 25, 1271, 318, 2035, 3744, 621, 886, 393, 1342, 621, 923, 4943, 198, 437, 796, 37082, 77, 1, 611, 26498, 13, 3605, 1370, 2073, 37082, 81, 1, 198, 25192, 62, 22510, 796, 10148, 198, 83, 1678, 796, 657, 198, 22046, 13, 437, 15853, 352, 198, 4514, 43720, 62, 22510, 14512, 26498, 13, 17618, 25, 198, 220, 220, 220, 9647, 796, 18896, 7, 2536, 7, 25192, 62, 22510, 4008, 198, 220, 220, 220, 43720, 62, 22510, 796, 4738, 13, 25192, 9521, 7, 22046, 13, 9688, 11, 26498, 13, 437, 8, 198, 220, 220, 220, 3601, 7203, 90, 25192, 62, 22510, 25, 1279, 90, 10394, 11709, 1911, 18982, 7, 25192, 62, 22510, 28, 25192, 62, 22510, 11, 9647, 28, 10394, 828, 886, 28, 437, 8, 198, 220, 220, 220, 8404, 15853, 352, 198, 361, 26498, 13, 9127, 25, 198, 220, 220, 220, 3601, 7203, 90, 92, 8404, 284, 651, 284, 23884, 1911, 18982, 7, 83, 1678, 11, 26498, 13, 17618, 4008, 198, 417, 361, 886, 6624, 37082, 81, 1298, 198, 220, 220, 220, 3601, 3419, 628 ]
2.675824
546
""" Clase para representar a los diferentes modelos y su comportamiento atributos(de momento) df=dataframe de entrenamiento proviniente del conjunto de datos de entrenamiento del usuario x_train,x_test,y_train,y_test, particiones de df para entrenar el modelo El resto de mtodos son autoexplicativos """ from numpy import array from pandas.core.frame import DataFrame import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn import metrics
[ 37811, 198, 2601, 589, 31215, 2380, 283, 257, 22346, 288, 361, 9100, 274, 2746, 418, 331, 424, 552, 419, 321, 1153, 78, 198, 198, 265, 2455, 418, 7, 2934, 2589, 78, 8, 198, 7568, 28, 7890, 14535, 390, 920, 918, 321, 1153, 78, 899, 259, 1153, 68, 1619, 11644, 403, 1462, 390, 4818, 418, 390, 920, 918, 321, 1153, 78, 1619, 514, 84, 4982, 198, 87, 62, 27432, 11, 87, 62, 9288, 11, 88, 62, 27432, 11, 88, 62, 9288, 11, 1344, 295, 274, 390, 47764, 31215, 920, 918, 283, 1288, 2746, 78, 198, 198, 9527, 1334, 78, 390, 45079, 375, 418, 3367, 8295, 20676, 291, 265, 452, 418, 198, 37811, 628, 198, 6738, 299, 32152, 1330, 7177, 198, 6738, 19798, 292, 13, 7295, 13, 14535, 1330, 6060, 19778, 198, 11748, 19798, 292, 355, 279, 67, 198, 6738, 1341, 35720, 13, 19849, 62, 49283, 1330, 4512, 62, 9288, 62, 35312, 198, 6738, 1341, 35720, 13, 29127, 62, 19849, 1330, 5972, 2569, 8081, 2234, 198, 6738, 1341, 35720, 1330, 20731, 198 ]
3.088235
170
#!/usr/bin/env python3 import numpy as np import sys import struct # from math import fabs from enum import IntEnum from scipy import spatial from math import * from collections import OrderedDict
[ 2, 48443, 14629, 14, 8800, 14, 24330, 21015, 18, 198, 198, 11748, 299, 32152, 355, 45941, 198, 11748, 25064, 198, 11748, 2878, 198, 2, 422, 10688, 1330, 7843, 82, 198, 6738, 33829, 1330, 2558, 4834, 388, 198, 6738, 629, 541, 88, 1330, 21739, 198, 6738, 10688, 1330, 1635, 198, 6738, 17268, 1330, 14230, 1068, 35, 713, 628 ]
3.491228
57
from src.eda import make_counter import pandas as pd import numpy as np from src.heroes import heroes, name_id, id_name def id_list_from_history(data): ''' Takes raw data returnd by api_calls.get_match_history() and returns a list of just the match ID's Input: data(list): list of match objects Output: List of integers each representing a unique match id ''' return [int(i['match_id']) for i in data] def clean_match_details(match): ''' Takes raw data from api_calls.get_match_details() and returns a dictionary with the pertinent details Input: match(dict): Return of the api.steampowers api Dict with one key-Val pair result is a dictionary with the match information Output: out(dict): Dictionary of pertinent data: radiant_win(bool): Team that won match_date(timestamp): When the match was played radiant_hero_ids(list of ints): List of hero Ids for the radiant team dire_hero_ids(list of ints): List of hero Ids for the dire team ''' data = match['result'] out = {} out['_id'] = data['match_id'] out['radiant_win'] = int(data['radiant_win']) out['match_date'] = data['start_time'] out['radiant_hero_ids'] = [] out['dire_hero_ids'] = [] for player in data['players']: if player['player_slot'] < 128: out['radiant_hero_ids'] += [player['hero_id']] else: out['dire_hero_ids'] += [player['hero_id']] return out def make_csv(counter, counter_data): ''' Takes in a premade coutner using make_counter from eda.py and the data used to amke the counter and produces a CSV. Input: counter(Counter): Counter from all the DB data - used to generate unique columns counter_data(mongo cursor list): return of .find() on the raw collection Output: None: Creates a csv file in the same directory as run ''' #remove count column so keys includes only hero ids del counter['count'] uids = sorted(counter.keys()) uid_cols = [] #add a column for each hero fro each team for i in uids: uid_cols += [(str(i)+'R')] uid_cols += [(str(i)+'D')] #add the initial 3 columns and combine with hero id columns columns = ['match_id', 'match_date', 'radiant_win'] columns += uid_cols #create a template for each row row_template = {col: 0 for col in columns} rows_list = [] #for each match format a row and add to list for match in counter_data: temp_row = row_template.copy() temp_row['match_id'] = match['_id'] temp_row['match_date'] = match['match_date'] temp_row['radiant_win'] = match['radiant_win'] for indx, hid in enumerate(match['radiant_hero_ids']): temp_row[(str(hid)+'R')] = 1 temp_row[(str(match['dire_hero_ids'][indx])+'D')] = 1 rows_list += [temp_row] #use rows to create dataframe and print to csv df = pd.DataFrame(rows_list) df.to_csv('test.csv') def make_pred_row(df, rad, dire): ''' Makes a row for predicitons to be made on Input: df(dataframe): Read this is from test.csv - used to generate columns rad(list): List of hero names recived from the front end for readiant team dire(list): List of hero names recived from the front end for dire team Output: pred_row(pandas dataframe): Converts heros names to IDs then adds ones to the DF in the appropriate slotfor their team ''' #drop unnessacary columns drop_cols = ['Unnamed: 0', 'match_id', 'match_date', 'Unnamed: 1', 'radiant_win'] for i in drop_cols: try: df.pop(i) except: continue #make blank row pred_row = pd.DataFrame([np.zeros(len(df.columns))], columns=df.columns) #fill in row for indx, hero in enumerate(rad): #get radiant hero id - insert to pred row with R rhid = name_id(hero) pred_row[str(rhid)+'R'] = 1.0 #get radiant hero id - insert to pred row with D dhid = name_id(dire[indx]) pred_row[str(dhid)+'D'] = 1.0 return pred_row
[ 6738, 12351, 13, 18082, 1330, 787, 62, 24588, 198, 11748, 19798, 292, 355, 279, 67, 198, 11748, 299, 32152, 355, 45941, 198, 6738, 12351, 13, 11718, 274, 1330, 10281, 11, 1438, 62, 312, 11, 4686, 62, 3672, 198, 198, 4299, 4686, 62, 4868, 62, 6738, 62, 23569, 7, 7890, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 33687, 8246, 1366, 1005, 333, 358, 416, 40391, 62, 66, 5691, 13, 1136, 62, 15699, 62, 23569, 3419, 290, 5860, 257, 1351, 286, 655, 262, 2872, 4522, 338, 198, 220, 220, 220, 220, 198, 220, 220, 220, 23412, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 1366, 7, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1351, 286, 2872, 5563, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 25235, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 37014, 1123, 10200, 257, 3748, 2872, 4686, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 220, 198, 220, 220, 220, 1441, 685, 600, 7, 72, 17816, 15699, 62, 312, 6, 12962, 329, 1312, 287, 1366, 60, 198, 198, 4299, 3424, 62, 15699, 62, 36604, 7, 15699, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 33687, 8246, 1366, 422, 40391, 62, 66, 5691, 13, 1136, 62, 15699, 62, 36604, 3419, 290, 5860, 257, 22155, 351, 262, 35268, 3307, 198, 220, 220, 220, 220, 198, 220, 220, 220, 23412, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2872, 7, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 8229, 286, 262, 40391, 13, 4169, 696, 3618, 40391, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 360, 713, 351, 530, 1994, 12, 7762, 5166, 1255, 318, 257, 22155, 351, 262, 2872, 1321, 198, 220, 220, 220, 220, 198, 220, 220, 220, 25235, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 503, 7, 11600, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 28261, 286, 35268, 1366, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43888, 62, 5404, 7, 30388, 2599, 4816, 326, 1839, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2872, 62, 4475, 7, 16514, 27823, 2599, 1649, 262, 2872, 373, 2826, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 43888, 62, 11718, 62, 2340, 7, 4868, 286, 493, 82, 2599, 7343, 286, 4293, 5121, 82, 329, 262, 43888, 1074, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 19958, 62, 11718, 62, 2340, 7, 4868, 286, 493, 82, 2599, 7343, 286, 4293, 5121, 82, 329, 262, 19958, 1074, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1366, 796, 2872, 17816, 20274, 20520, 198, 220, 220, 220, 503, 796, 23884, 198, 220, 220, 220, 503, 17816, 62, 312, 20520, 796, 1366, 17816, 15699, 62, 312, 20520, 198, 220, 220, 220, 503, 17816, 6335, 3014, 62, 5404, 20520, 796, 493, 7, 7890, 17816, 6335, 3014, 62, 5404, 6, 12962, 198, 220, 220, 220, 503, 17816, 15699, 62, 4475, 20520, 796, 1366, 17816, 9688, 62, 2435, 20520, 198, 220, 220, 220, 503, 17816, 6335, 3014, 62, 11718, 62, 2340, 20520, 796, 17635, 198, 220, 220, 220, 503, 17816, 67, 557, 62, 11718, 62, 2340, 20520, 796, 17635, 198, 220, 220, 220, 329, 2137, 287, 1366, 17816, 32399, 6, 5974, 198, 220, 220, 220, 220, 220, 220, 220, 611, 2137, 17816, 7829, 62, 43384, 20520, 1279, 13108, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 17816, 6335, 3014, 62, 11718, 62, 2340, 20520, 15853, 685, 7829, 17816, 11718, 62, 312, 6, 11907, 198, 220, 220, 220, 220, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 503, 17816, 67, 557, 62, 11718, 62, 2340, 20520, 15853, 685, 7829, 17816, 11718, 62, 312, 6, 11907, 198, 220, 220, 220, 1441, 503, 198, 198, 4299, 787, 62, 40664, 7, 24588, 11, 3753, 62, 7890, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 33687, 287, 257, 4199, 671, 42304, 1008, 1262, 787, 62, 24588, 422, 1225, 64, 13, 9078, 290, 262, 1366, 973, 284, 716, 365, 262, 3753, 290, 11073, 257, 44189, 13, 198, 220, 220, 220, 220, 198, 220, 220, 220, 23412, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3753, 7, 31694, 2599, 220, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 15034, 422, 477, 262, 20137, 1366, 532, 973, 284, 7716, 3748, 15180, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 3753, 62, 7890, 7, 76, 25162, 23493, 1351, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1441, 286, 764, 19796, 3419, 319, 262, 8246, 4947, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 25235, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 6045, 25, 7921, 274, 257, 269, 21370, 2393, 287, 262, 976, 8619, 355, 1057, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 28956, 954, 5721, 523, 8251, 3407, 691, 4293, 220, 2340, 198, 220, 220, 220, 1619, 3753, 17816, 9127, 20520, 198, 220, 220, 220, 334, 2340, 796, 23243, 7, 24588, 13, 13083, 28955, 198, 220, 220, 220, 334, 312, 62, 4033, 82, 796, 220, 17635, 198, 220, 220, 220, 1303, 2860, 257, 5721, 329, 1123, 4293, 8400, 1123, 1074, 198, 220, 220, 220, 329, 1312, 287, 334, 2340, 25, 198, 220, 220, 220, 220, 220, 220, 220, 334, 312, 62, 4033, 82, 15853, 47527, 2536, 7, 72, 47762, 6, 49, 11537, 60, 198, 220, 220, 220, 220, 220, 220, 220, 334, 312, 62, 4033, 82, 15853, 47527, 2536, 7, 72, 47762, 6, 35, 11537, 60, 198, 220, 220, 220, 1303, 2860, 262, 4238, 513, 15180, 290, 12082, 351, 4293, 4686, 15180, 198, 220, 220, 220, 15180, 796, 37250, 15699, 62, 312, 3256, 705, 15699, 62, 4475, 3256, 705, 6335, 3014, 62, 5404, 20520, 198, 220, 220, 220, 15180, 15853, 334, 312, 62, 4033, 82, 198, 220, 220, 220, 1303, 17953, 257, 11055, 329, 1123, 5752, 198, 220, 220, 220, 5752, 62, 28243, 796, 1391, 4033, 25, 657, 329, 951, 287, 15180, 92, 198, 220, 220, 220, 15274, 62, 4868, 796, 17635, 198, 220, 220, 220, 1303, 1640, 1123, 2872, 5794, 257, 5752, 290, 751, 284, 1351, 198, 220, 220, 220, 329, 2872, 287, 3753, 62, 7890, 25, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 808, 796, 5752, 62, 28243, 13, 30073, 3419, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 808, 17816, 15699, 62, 312, 20520, 796, 2872, 17816, 62, 312, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 808, 17816, 15699, 62, 4475, 20520, 796, 2872, 17816, 15699, 62, 4475, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 808, 17816, 6335, 3014, 62, 5404, 20520, 796, 2872, 17816, 6335, 3014, 62, 5404, 20520, 198, 220, 220, 220, 220, 220, 220, 220, 329, 773, 87, 11, 24519, 287, 27056, 378, 7, 15699, 17816, 6335, 3014, 62, 11718, 62, 2340, 20520, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 808, 58, 7, 2536, 7, 49675, 47762, 6, 49, 11537, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 20218, 62, 808, 58, 7, 2536, 7, 15699, 17816, 67, 557, 62, 11718, 62, 2340, 6, 7131, 521, 87, 12962, 10, 6, 35, 11537, 60, 796, 352, 198, 220, 220, 220, 220, 220, 220, 220, 15274, 62, 4868, 15853, 685, 29510, 62, 808, 60, 198, 220, 220, 220, 1303, 1904, 15274, 284, 2251, 1366, 14535, 290, 3601, 284, 269, 21370, 198, 220, 220, 220, 47764, 796, 279, 67, 13, 6601, 19778, 7, 8516, 62, 4868, 8, 198, 220, 220, 220, 47764, 13, 1462, 62, 40664, 10786, 9288, 13, 40664, 11537, 198, 220, 220, 220, 220, 198, 4299, 787, 62, 28764, 62, 808, 7, 7568, 11, 2511, 11, 19958, 2599, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 27433, 257, 5752, 329, 2747, 3628, 684, 284, 307, 925, 319, 198, 220, 220, 220, 220, 198, 220, 220, 220, 23412, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 47764, 7, 7890, 14535, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 4149, 428, 318, 422, 1332, 13, 40664, 532, 973, 284, 7716, 15180, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2511, 7, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 4293, 3891, 664, 1572, 422, 262, 2166, 886, 329, 1100, 3014, 1074, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 19958, 7, 4868, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 7343, 286, 4293, 3891, 664, 1572, 422, 262, 2166, 886, 329, 19958, 1074, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 25235, 25, 198, 220, 220, 220, 220, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 808, 7, 79, 392, 292, 1366, 14535, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 1482, 24040, 4293, 82, 3891, 284, 32373, 788, 6673, 3392, 284, 262, 36323, 287, 262, 5035, 10852, 1640, 511, 1074, 220, 198, 220, 220, 220, 705, 7061, 198, 220, 220, 220, 1303, 14781, 555, 1108, 330, 560, 15180, 198, 220, 220, 220, 4268, 62, 4033, 82, 796, 37250, 3118, 13190, 25, 657, 3256, 705, 15699, 62, 312, 3256, 705, 15699, 62, 4475, 3256, 705, 3118, 13190, 25, 352, 3256, 705, 6335, 3014, 62, 5404, 20520, 198, 220, 220, 220, 329, 1312, 287, 4268, 62, 4033, 82, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1949, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 47764, 13, 12924, 7, 72, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2845, 25, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2555, 198, 220, 220, 220, 1303, 15883, 9178, 5752, 220, 220, 220, 220, 220, 220, 220, 220, 198, 220, 220, 220, 2747, 62, 808, 796, 279, 67, 13, 6601, 19778, 26933, 37659, 13, 9107, 418, 7, 11925, 7, 7568, 13, 28665, 82, 4008, 4357, 15180, 28, 7568, 13, 28665, 82, 8, 198, 220, 220, 220, 1303, 20797, 287, 5752, 198, 220, 220, 220, 329, 773, 87, 11, 4293, 287, 27056, 378, 7, 6335, 2599, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1136, 43888, 4293, 4686, 532, 7550, 284, 2747, 5752, 351, 371, 198, 220, 220, 220, 220, 220, 220, 220, 9529, 312, 796, 1438, 62, 312, 7, 11718, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 808, 58, 2536, 7, 17179, 312, 47762, 6, 49, 20520, 796, 352, 13, 15, 198, 220, 220, 220, 220, 220, 220, 220, 1303, 1136, 43888, 4293, 4686, 532, 7550, 284, 2747, 5752, 351, 360, 198, 220, 220, 220, 220, 220, 220, 220, 34590, 312, 796, 1438, 62, 312, 7, 67, 557, 58, 521, 87, 12962, 198, 220, 220, 220, 220, 220, 220, 220, 2747, 62, 808, 58, 2536, 7, 34985, 312, 47762, 6, 35, 20520, 796, 352, 13, 15, 220, 220, 220, 198, 220, 220, 220, 1441, 2747, 62, 808 ]
2.22069
2,030
from django.shortcuts import render from .models import *
[ 6738, 42625, 14208, 13, 19509, 23779, 1330, 8543, 198, 6738, 764, 27530, 1330, 1635, 628 ]
3.933333
15
from rest_framework import serializers from rest_framework.validators import UniqueValidator from core.models import User
[ 6738, 1334, 62, 30604, 1330, 11389, 11341, 198, 6738, 1334, 62, 30604, 13, 12102, 2024, 1330, 30015, 47139, 1352, 198, 6738, 4755, 13, 27530, 1330, 11787, 628 ]
4.555556
27
from . import experts, gating_networks, gps, mixture_of_experts, training
[ 6738, 764, 1330, 6154, 11, 308, 803, 62, 3262, 5225, 11, 308, 862, 11, 11710, 62, 1659, 62, 23100, 912, 11, 3047, 198 ]
3.217391
23
from pynfldata.coaches_data import coaches_parser
[ 6738, 279, 2047, 69, 335, 1045, 13, 1073, 3694, 62, 7890, 1330, 11070, 62, 48610 ]
3.266667
15
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, optimizers # BatchNorm # 2 images with 4x4 size, 3 channels # we explicitly enforce the mean and stddev to N(1, 0.5) x = tf.random.normal([2, 4, 4, 3], mean=1.0, stddev=0.5) net = layers.BatchNormalization(axis=-1, center=True, scale=True, trainable=True) # layers.LayerNormalization out = net(x) print("forward in test mode:", net.variables) out = net(x, training=True) print("forward in train mode(1 step):", net.variables) for i in range(100): out = net(x, training=True) print("forward in train mode(100 steps):", net.variables) optimizer = optimizers.SGD(lr=1e-2) for i in range(10): with tf.GradientTape() as tape: out = net(x, training=True) loss = tf.reduce_mean(tf.pow(out, 2)) - 1 grads = tape.gradient(loss, net.trainable_variables) optimizer.apply_gradients(zip(grads, net.trainable_variables)) print("backward(10 steps):", net.variables)
[ 11748, 11192, 273, 11125, 355, 48700, 198, 198, 6738, 11192, 273, 11125, 1330, 41927, 292, 198, 6738, 11192, 273, 11125, 13, 6122, 292, 1330, 11685, 11, 6436, 11341, 198, 198, 2, 347, 963, 35393, 220, 198, 2, 362, 4263, 351, 604, 87, 19, 2546, 11, 513, 9619, 198, 2, 356, 11777, 4605, 262, 1612, 290, 336, 1860, 1990, 284, 399, 7, 16, 11, 657, 13, 20, 8, 198, 87, 796, 48700, 13, 25120, 13, 11265, 26933, 17, 11, 604, 11, 604, 11, 513, 4357, 1612, 28, 16, 13, 15, 11, 336, 1860, 1990, 28, 15, 13, 20, 8, 198, 198, 3262, 796, 11685, 13, 33, 963, 26447, 1634, 7, 22704, 10779, 16, 11, 3641, 28, 17821, 11, 5046, 28, 17821, 11, 4512, 540, 28, 17821, 8, 198, 2, 11685, 13, 49925, 26447, 1634, 198, 198, 448, 796, 2010, 7, 87, 8, 198, 4798, 7203, 11813, 287, 1332, 4235, 25, 1600, 2010, 13, 25641, 2977, 8, 198, 198, 448, 796, 2010, 7, 87, 11, 3047, 28, 17821, 8, 198, 4798, 7203, 11813, 287, 4512, 4235, 7, 16, 2239, 2599, 1600, 2010, 13, 25641, 2977, 8, 198, 198, 1640, 1312, 287, 2837, 7, 3064, 2599, 198, 220, 220, 220, 503, 796, 2010, 7, 87, 11, 3047, 28, 17821, 8, 198, 4798, 7203, 11813, 287, 4512, 4235, 7, 3064, 4831, 2599, 1600, 2010, 13, 25641, 2977, 8, 198, 198, 40085, 7509, 796, 6436, 11341, 13, 38475, 35, 7, 14050, 28, 16, 68, 12, 17, 8, 198, 1640, 1312, 287, 2837, 7, 940, 2599, 198, 220, 220, 220, 351, 48700, 13, 42731, 1153, 51, 1758, 3419, 355, 9154, 25, 198, 220, 220, 220, 220, 220, 220, 220, 503, 796, 2010, 7, 87, 11, 3047, 28, 17821, 8, 198, 220, 220, 220, 220, 220, 220, 220, 2994, 796, 48700, 13, 445, 7234, 62, 32604, 7, 27110, 13, 79, 322, 7, 448, 11, 362, 4008, 532, 352, 628, 220, 220, 220, 3915, 82, 796, 9154, 13, 49607, 7, 22462, 11, 2010, 13, 27432, 540, 62, 25641, 2977, 8, 198, 220, 220, 220, 6436, 7509, 13, 39014, 62, 9744, 2334, 7, 13344, 7, 2164, 5643, 11, 2010, 13, 27432, 540, 62, 25641, 2977, 4008, 198, 4798, 7203, 1891, 904, 7, 940, 4831, 2599, 1600, 2010, 13, 25641, 2977, 8, 198 ]
2.632708
373
"""Application entry point.""" import argparse import logging from pytocl.protocol import Client def main(): """Main entry point of application.""" parser = argparse.ArgumentParser(description='Client for TORCS racing car simulation with SCRC ' 'network server.') parser.add_argument('--hostname', help='Racing server host name.', default='localhost') parser.add_argument('--port', help='Port to connect, 3001 - 3010 for clients 1 - 10.', type=int, default=3001) parser.add_argument('-v', help='Debug log level.', action='store_true') args = parser.parse_args() # switch log level: if args.v: level = logging.DEBUG else: level = logging.INFO del args.v logging.basicConfig(level=level, format="%(asctime)s %(levelname)7s %(name)s %(message)s") # start client loop: client = Client(**args.__dict__) client.run() if __name__ == '__main__': main()
[ 37811, 23416, 5726, 966, 526, 15931, 198, 11748, 1822, 29572, 198, 11748, 18931, 198, 198, 6738, 12972, 83, 38679, 13, 11235, 4668, 1330, 20985, 628, 198, 4299, 1388, 33529, 198, 220, 220, 220, 37227, 13383, 5726, 966, 286, 3586, 526, 15931, 198, 220, 220, 220, 30751, 796, 1822, 29572, 13, 28100, 1713, 46677, 7, 11213, 11639, 11792, 329, 40691, 7902, 11717, 1097, 18640, 351, 6374, 7397, 705, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 705, 27349, 4382, 2637, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 4774, 3672, 3256, 1037, 11639, 49, 4092, 4382, 2583, 1438, 2637, 11, 4277, 11639, 36750, 11537, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 438, 634, 3256, 1037, 11639, 13924, 284, 2018, 11, 5867, 16, 532, 513, 20943, 329, 7534, 352, 532, 838, 2637, 11, 198, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 220, 2099, 28, 600, 11, 4277, 28, 6200, 16, 8, 198, 220, 220, 220, 30751, 13, 2860, 62, 49140, 10786, 12, 85, 3256, 1037, 11639, 27509, 2604, 1241, 2637, 11, 2223, 11639, 8095, 62, 7942, 11537, 198, 220, 220, 220, 26498, 796, 30751, 13, 29572, 62, 22046, 3419, 628, 220, 220, 220, 1303, 5078, 2604, 1241, 25, 198, 220, 220, 220, 611, 26498, 13, 85, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1241, 796, 18931, 13, 30531, 198, 220, 220, 220, 2073, 25, 198, 220, 220, 220, 220, 220, 220, 220, 1241, 796, 18931, 13, 10778, 198, 220, 220, 220, 1619, 26498, 13, 85, 198, 220, 220, 220, 18931, 13, 35487, 16934, 7, 5715, 28, 5715, 11, 5794, 2625, 4, 7, 292, 310, 524, 8, 82, 4064, 7, 5715, 3672, 8, 22, 82, 4064, 7, 3672, 8, 82, 4064, 7, 20500, 8, 82, 4943, 628, 220, 220, 220, 1303, 923, 5456, 9052, 25, 198, 220, 220, 220, 5456, 796, 20985, 7, 1174, 22046, 13, 834, 11600, 834, 8, 198, 220, 220, 220, 5456, 13, 5143, 3419, 628, 198, 361, 11593, 3672, 834, 6624, 705, 834, 12417, 834, 10354, 198, 220, 220, 220, 1388, 3419, 198 ]
2.508772
399
import sublime import sublime_plugin import re import os rexLastTabs = re.compile(r'(\t+|\s+)$', re.MULTILINE) rexEmptyLines = re.compile('^[ \t]*$\r?\n', re.MULTILINE) rexCont = re.compile(r'[^\t\s].*[^\t\s]') rexFormatted = re.compile(r"((?<=\s)'|(?<=\t)')|('*\s[\+|\\|])") #https://github.com/jdc0589/JsFormat line 47 def is_js_buffer(view): fName = view.file_name() vSettings = view.settings() syntaxPath = vSettings.get('syntax') syntax = "" ext = "" if (fName != None): # file exists, pull syntax type from extension ext = os.path.splitext(fName)[1][1:] if(syntaxPath != None): syntax = os.path.splitext(syntaxPath)[0].split('/')[-1].lower() return ext in ['js', 'json'] or "javascript" in syntax or "json" in syntax
[ 11748, 41674, 198, 11748, 41674, 62, 33803, 198, 11748, 302, 198, 11748, 28686, 628, 198, 21510, 5956, 51, 8937, 796, 302, 13, 5589, 576, 7, 81, 6, 38016, 83, 10, 91, 59, 82, 28988, 3, 3256, 302, 13, 44, 16724, 4146, 8881, 8, 198, 21510, 40613, 43, 1127, 796, 302, 13, 5589, 576, 10786, 61, 58, 3467, 83, 60, 9, 3, 59, 81, 30, 59, 77, 3256, 302, 13, 44, 16724, 4146, 8881, 8, 198, 21510, 4264, 796, 302, 13, 5589, 576, 7, 81, 6, 58, 61, 59, 83, 59, 82, 4083, 9, 58, 61, 59, 83, 59, 82, 60, 11537, 198, 21510, 8479, 16898, 796, 302, 13, 5589, 576, 7, 81, 18109, 7, 30, 27, 28, 59, 82, 33047, 91, 7, 30, 27, 28, 59, 83, 8, 11537, 91, 10786, 9, 59, 82, 58, 59, 10, 91, 6852, 91, 12962, 4943, 628, 198, 2, 5450, 1378, 12567, 13, 785, 14, 73, 17896, 2713, 4531, 14, 49044, 26227, 1627, 6298, 198, 4299, 318, 62, 8457, 62, 22252, 7, 1177, 2599, 198, 197, 69, 5376, 796, 1570, 13, 7753, 62, 3672, 3419, 198, 197, 85, 26232, 796, 1570, 13, 33692, 3419, 198, 197, 1837, 41641, 15235, 796, 410, 26232, 13, 1136, 10786, 1837, 41641, 11537, 198, 197, 1837, 41641, 796, 13538, 198, 197, 2302, 796, 13538, 628, 197, 361, 357, 69, 5376, 14512, 6045, 2599, 1303, 2393, 7160, 11, 2834, 15582, 2099, 422, 7552, 198, 197, 197, 2302, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 69, 5376, 38381, 16, 7131, 16, 47715, 198, 197, 361, 7, 1837, 41641, 15235, 14512, 6045, 2599, 198, 197, 197, 1837, 41641, 796, 28686, 13, 6978, 13, 22018, 578, 742, 7, 1837, 41641, 15235, 38381, 15, 4083, 35312, 10786, 14, 11537, 58, 12, 16, 4083, 21037, 3419, 628, 197, 7783, 1070, 287, 37250, 8457, 3256, 705, 17752, 20520, 393, 366, 37495, 1, 287, 15582, 393, 366, 17752, 1, 287, 15582 ]
2.341772
316