File size: 7,127 Bytes
39efb18
 
 
 
 
 
 
 
 
 
0335fbe
39efb18
 
779f244
e076b37
 
 
 
f5473f7
779f244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbb05ec
779f244
 
 
 
 
 
8a6667a
779f244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5473f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
779f244
 
 
 
 
 
 
 
 
5fb84e1
779f244
 
 
 
e076b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
license: mit
language:
- en
tags:
- Visual Nagivation
- Proxy Map
- Waypoint
- Reinforcement Learning
- Contrastive Learning
- Intuitive Robot Motion Intent Visualization
---

# LAVN Dataset
Accepted to [HRI2025 Short Contributions](https://humanrobotinteraction.org/2025/short-contributions/)

Preprint: [arxiv.org/pdf/2308.16682](arxiv.org/pdf/2308.16682)

### Dataset Organization

After downloading and unzipping the zip files, please reorganize the files in the following tructure:
```
LAVN
   |--src
      |--makeData_virtual.py
      |--makeData_real.py
      ...
   |--Virtual
      |--Gibson
         |--traj_<SCENE_ID>
            |--worker_graph.json
            |--rgb_<FRAME_ID>.jpg
            |--depth_<FRAME_ID>.jpg
         |--traj_Ackermanville
            |--worker_graph.json
            |--rgb_00001.jpg
            |--rgb_00002.jpg
            ...
            |--depth_00001.jpg
            |--depth_00002.jpg
            ...
         ...
      |--Matterport
         |--traj_<SCENE_ID>
            |--worker_graph.json
            |--rgb_<FRAME_ID>.jpg
            |--depth_<FRAME_ID>.jpg
         |--traj_00000-kfPV7w3FaU5
            |--worker_graph.json
            |--rgb_00001.jpg
            |--rgb_00002.jpg
            ...
            |--depth_00001.jpg
            |--depth_00002.jpg
            ...
         ...
   |--Real
      |--Campus
         |--worker_graph.json
         |--traj_480p_<SCENE_ID>
            |--rgb_<FRAME_ID>.jpg
         |--traj_480p_scene00
            |--rgb_00001.jpg
```
where the main landmark annotation scripts ```makeData_virtual.py``` and ```makeData_real.py``` are in folder (1) ```src```. (2) ```Virtual``` and (3) ```Real``` store trajectories collected in the simulation and real world, respectively. Each trajectory's data is collected in the following format:
```
         |--traj_<SCENE_ID>
            |--worker_graph.json
            |--rgb_<FRAME_ID>.jpg
            |--depth_<FRAME_ID>.jpg
```
where ```<SCENE_ID>``` matches exactly the original one in [Gibson](https://github.com/StanfordVL/GibsonEnv/blob/master/gibson/data/README.md) and [Matterport](https://aihabitat.org/datasets/hm3d/) run by the photo-realistic simulator [Habitat](https://github.com/facebookresearch/habitat-sim). Images are saved in either ```.jpg``` or ```.png``` format. Note that ```rgb``` images are the main visual representation while ```depth``` is the auxiliary visual information captured only in the virtual environment. Real-world RGB images are downsampled to a ```640 × 480``` resolution noted by ```480p``` in a trajectory folder name.

```worker_graph.json``` stores the meta data in dictionary in Python saved in ```json``` file with the following format:

```
{"node<NODE_ID>":
  {"img_path": "./human_click_dataset/traj_<SCENE_ID>/rgb_<FRAME_ID>.jpg",
   "depth_path": "./human_click_dataset/traj_<SCENE_ID>/depth_<FRAME_ID>.png",
   "location": [<LOC_X>, <LOC_Y>, <LOC_Z>],
   "orientation": <ORIENT>,
   "click_point": [<COOR_X>, <COOR_Y>],
   "reason": ""},
  ...
 "node0":
  {"img_path": "./human_click_dataset/traj_00101-n8AnEznQQpv/rgb_00002.jpg",
   "depth_path": "./human_click_dataset/traj_00101-n8AnEznQQpv/depth_00002.jpg",
   "location": [0.7419548034667969, -2.079209327697754, -0.5635206699371338],
   "orientation": 0.2617993967423121,
   "click_point": [270, 214],
   "reason": ""}
 ...
 "edges":...
 "goal_location": null,
 "start_location": [<LOC_X>, <LOC_Y>, <LOC_Z>],
 "landmarks": [[[<COOR_X>, <COOR_Y>], <FRAME_ID>], ...],
 "actions": ["ACTION_NAME", "turn_right", "move_forward", "turn_right", ...]
 "env_name": <SCENE_ID>
}
```
where ```[<LOC_X>, <LOC_Y>, <LOC_Z>]``` is the 3-axis location vector, ```<ORIENT>``` is the orientation only in simulation. ```[<COOR_X>, <COOR_Y>]``` are the image coordinates of landmarks. ```ACTION_NAME``` stores the action of the robot take from the current frame to the next frame.


### Dataset Usage
The visual navigation task can be formulated as various types of problems, including but not limited to:

**1. Supervised Learning** by mapping visual observations (```RGBD```) to waypoints (image coordinates). A developer can
design a vision network whose input (```X```) is ```RGBD``` and output (```Y```) is image coordinate, specified by ```img_path```, ```depth_path```
and click point ```[<COOR_X>, <COOR_Y>]``` in the worker ```graph.json``` file in the dataset. The loss function can
be designed to minimize the discrepancy between the predicted image coordinate (```Y_pred```) and the ground truth (```Y```), e.g.
```loss = ||Y_pred − Y||```. Then ```Y_pred``` can be simply translated to a robot’s moving action, such as ```Y_pred``` in the center or
top region of an image means moving forward while ```left/right``` regions represent turning left or right.


**2. Map Representation Learning** in the latent space of a neural network. One can train this latent space to represent two
observations’ proximity by contrastive learning. The objective is to learn a function ```h()``` that predicts the distance given two
observations (```X1```) and (```X2```): ```dist = h(X1, X2)```. Note that ```dist()``` can be a cosine or distance-based function, depending on
the design choice. The positive samples can be nodes (a node includes information at a timestep such as ```RGBD``` data and image
coordinates) nearby while further nodes can be treated as negative samples. A landmark is a sparse and distinct object or scene
in the dataset that facilitates a more structured and global connection between nodes, which further assists in navigation in
more complex or longer trajectories.



### Long-Term Maintenance Plan
We will conduct a long-term maintenance plan to ensure the accessability and quality for future research:

**Data Standards**: Data formats will be checked regularly with scripts to validate data consistency.

**Data Cleaning**: Data in incorrect formats, missing data or contains invalid values will be removed.

**Scheduled Updates**: We set up montly schedule for data updates.

**Storage Solutions**: HuggingFace, with DOI (doi:10.57967/hf/2386), is provided as a public repository for online storage. A second copy will be stored in a private cloud server while a third copy will be stored in a local drive.

**Data Backup**: Once one of the copies in the aforementioned storage approach is detected inaccessible, it will be restored by one of the other two copies immediately.

**Documentation**: Our documentation will be updated regularly reflecting feedback from users.



### Citation
```
@article{johnson2024landmark,
  title={A Landmark-Aware Visual Navigation Dataset},
  author={Johnson, Faith and Cao, Bryan Bo and Dana, Kristin and Jain, Shubham and Ashok, Ashwin},
  journal={arXiv preprint arXiv:2402.14281},
  year={2024}
}
```
```
@misc{visnavdataset_lavn,
  author       = {visnavdataset},
  title        = {LAVN Dataset},
  year         = 2025,
  doi          = {10.57967/hf/2386},
  url          = {https://huggingface.co/datasets/visnavdataset/lavn},
  note         = {Accessed: 2025-02-07}
}
```
Note: change the accessed date.