text
stringlengths
12
986k
repo_path
stringlengths
6
121
SUBROUTINE SLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B, $ LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO ) * * -- LAPACK auxiliary routine (instrumented to count operations) -- * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., * Courant Institute, Argonne National Lab, and Rice University * September 30, 1994 * * .. Scalar Arguments .. LOGICAL NOINIT, RIGHTV INTEGER INFO, LDB, LDH, N REAL BIGNUM, EPS3, SMLNUM, WI, WR * .. * .. Array Arguments .. REAL B( LDB, * ), H( LDH, * ), VI( * ), VR( * ), $ WORK( * ) * .. * Common block to return operation count. * .. Common blocks .. COMMON / LATIME / OPS, ITCNT * .. * .. Scalars in Common .. REAL ITCNT, OPS * .. * * Purpose * ======= * * SLAEIN uses inverse iteration to find a right or left eigenvector * corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg * matrix H. * * Arguments * ========= * * RIGHTV (input) LOGICAL * = .TRUE. : compute right eigenvector; * = .FALSE.: compute left eigenvector. * * NOINIT (input) LOGICAL * = .TRUE. : no initial vector supplied in (VR,VI). * = .FALSE.: initial vector supplied in (VR,VI). * * N (input) INTEGER * The order of the matrix H. N >= 0. * * H (input) REAL array, dimension (LDH,N) * The upper Hessenberg matrix H. * * LDH (input) INTEGER * The leading dimension of the array H. LDH >= max(1,N). * * WR (input) REAL * WI (input) REAL * The real and imaginary parts of the eigenvalue of H whose * corresponding right or left eigenvector is to be computed. * * VR (input/output) REAL array, dimension (N) * VI (input/output) REAL array, dimension (N) * On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain * a real starting vector for inverse iteration using the real * eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI * must contain the real and imaginary parts of a complex * starting vector for inverse iteration using the complex * eigenvalue (WR,WI); otherwise VR and VI need not be set. * On exit, if WI = 0.0 (real eigenvalue), VR contains the * computed real eigenvector; if WI.ne.0.0 (complex eigenvalue), * VR and VI contain the real and imaginary parts of the * computed complex eigenvector. The eigenvector is normalized * so that the component of largest magnitude has magnitude 1; * here the magnitude of a complex number (x,y) is taken to be * |x| + |y|. * VI is not referenced if WI = 0.0. * * B (workspace) REAL array, dimension (LDB,N) * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= N+1. * * WORK (workspace) REAL array, dimension (N) * * EPS3 (input) REAL * A small machine-dependent value which is used to perturb * close eigenvalues, and to replace zero pivots. * * SMLNUM (input) REAL * A machine-dependent value close to the underflow threshold. * * BIGNUM (input) REAL * A machine-dependent value close to the overflow threshold. * * INFO (output) INTEGER * = 0: successful exit * = 1: inverse iteration did not converge; VR is set to the * last iterate, and so is VI if WI.ne.0.0. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE, TENTH PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TENTH = 1.0E-1 ) * .. * .. Local Scalars .. CHARACTER NORMIN, TRANS INTEGER I, I1, I2, I3, IERR, ITS, J REAL ABSBII, ABSBJJ, EI, EJ, GROWTO, NORM, NRMSML, $ OPST, REC, ROOTN, SCALE, TEMP, VCRIT, VMAX, $ VNORM, W, W1, X, XI, XR, Y * .. * .. External Functions .. INTEGER ISAMAX REAL SASUM, SLAPY2, SNRM2 EXTERNAL ISAMAX, SASUM, SLAPY2, SNRM2 * .. * .. External Subroutines .. EXTERNAL SLADIV, SLATRS, SSCAL * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, REAL, SQRT * .. * .. Executable Statements .. * INFO = 0 *** * Initialize OPST = 0 *** * * GROWTO is the threshold used in the acceptance test for an * eigenvector. * ROOTN = SQRT( REAL( N ) ) GROWTO = TENTH / ROOTN NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM *** * Increment op count for computing ROOTN, GROWTO and NRMSML OPST = OPST + 4 *** * * Form B = H - (WR,WI)*I (except that the subdiagonal elements and * the imaginary parts of the diagonal elements are not stored). * DO 20 J = 1, N DO 10 I = 1, J - 1 B( I, J ) = H( I, J ) 10 CONTINUE B( J, J ) = H( J, J ) - WR 20 CONTINUE *** OPST = OPST + N *** * IF( WI.EQ.ZERO ) THEN * * Real eigenvalue. * IF( NOINIT ) THEN * * Set initial vector. * DO 30 I = 1, N VR( I ) = EPS3 30 CONTINUE ELSE * * Scale supplied initial vector. * VNORM = SNRM2( N, VR, 1 ) CALL SSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), VR, $ 1 ) *** OPST = OPST + ( 3*N+2 ) *** END IF * IF( RIGHTV ) THEN * * LU decomposition with partial pivoting of B, replacing zero * pivots by EPS3. * DO 60 I = 1, N - 1 EI = H( I+1, I ) IF( ABS( B( I, I ) ).LT.ABS( EI ) ) THEN * * Interchange rows and eliminate. * X = B( I, I ) / EI B( I, I ) = EI DO 40 J = I + 1, N TEMP = B( I+1, J ) B( I+1, J ) = B( I, J ) - X*TEMP B( I, J ) = TEMP 40 CONTINUE ELSE * * Eliminate without interchange. * IF( B( I, I ).EQ.ZERO ) $ B( I, I ) = EPS3 X = EI / B( I, I ) IF( X.NE.ZERO ) THEN DO 50 J = I + 1, N B( I+1, J ) = B( I+1, J ) - X*B( I, J ) 50 CONTINUE END IF END IF 60 CONTINUE IF( B( N, N ).EQ.ZERO ) $ B( N, N ) = EPS3 *** * Increment op count for LU decomposition OPS = OPS + ( N-1 )*( N+1 ) *** * TRANS = 'N' * ELSE * * UL decomposition with partial pivoting of B, replacing zero * pivots by EPS3. * DO 90 J = N, 2, -1 EJ = H( J, J-1 ) IF( ABS( B( J, J ) ).LT.ABS( EJ ) ) THEN * * Interchange columns and eliminate. * X = B( J, J ) / EJ B( J, J ) = EJ DO 70 I = 1, J - 1 TEMP = B( I, J-1 ) B( I, J-1 ) = B( I, J ) - X*TEMP B( I, J ) = TEMP 70 CONTINUE ELSE * * Eliminate without interchange. * IF( B( J, J ).EQ.ZERO ) $ B( J, J ) = EPS3 X = EJ / B( J, J ) IF( X.NE.ZERO ) THEN DO 80 I = 1, J - 1 B( I, J-1 ) = B( I, J-1 ) - X*B( I, J ) 80 CONTINUE END IF END IF 90 CONTINUE IF( B( 1, 1 ).EQ.ZERO ) $ B( 1, 1 ) = EPS3 *** * Increment op count for UL decomposition OPS = OPS + ( N-1 )*( N+1 ) *** * TRANS = 'T' * END IF * NORMIN = 'N' DO 110 ITS = 1, N * * Solve U*x = scale*v for a right eigenvector * or U'*x = scale*v for a left eigenvector, * overwriting x on v. * CALL SLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB, $ VR, SCALE, WORK, IERR ) *** * Increment opcount for triangular solver, assuming that * ops SLATRS = ops STRSV, with no scaling in SLATRS. OPS = OPS + N*N *** NORMIN = 'Y' * * Test for sufficient growth in the norm of v. * VNORM = SASUM( N, VR, 1 ) *** OPST = OPST + N *** IF( VNORM.GE.GROWTO*SCALE ) $ GO TO 120 * * Choose new orthogonal starting vector and try again. * TEMP = EPS3 / ( ROOTN+ONE ) VR( 1 ) = EPS3 DO 100 I = 2, N VR( I ) = TEMP 100 CONTINUE VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN *** OPST = OPST + 4 *** 110 CONTINUE * * Failure to find eigenvector in N iterations. * INFO = 1 * 120 CONTINUE * * Normalize eigenvector. * I = ISAMAX( N, VR, 1 ) CALL SSCAL( N, ONE / ABS( VR( I ) ), VR, 1 ) *** OPST = OPST + ( 2*N+1 ) *** ELSE * * Complex eigenvalue. * IF( NOINIT ) THEN * * Set initial vector. * DO 130 I = 1, N VR( I ) = EPS3 VI( I ) = ZERO 130 CONTINUE ELSE * * Scale supplied initial vector. * NORM = SLAPY2( SNRM2( N, VR, 1 ), SNRM2( N, VI, 1 ) ) REC = ( EPS3*ROOTN ) / MAX( NORM, NRMSML ) CALL SSCAL( N, REC, VR, 1 ) CALL SSCAL( N, REC, VI, 1 ) *** OPST = OPST + ( 6*N+5 ) *** END IF * IF( RIGHTV ) THEN * * LU decomposition with partial pivoting of B, replacing zero * pivots by EPS3. * * The imaginary part of the (i,j)-th element of U is stored in * B(j+1,i). * B( 2, 1 ) = -WI DO 140 I = 2, N B( I+1, 1 ) = ZERO 140 CONTINUE * DO 170 I = 1, N - 1 ABSBII = SLAPY2( B( I, I ), B( I+1, I ) ) EI = H( I+1, I ) IF( ABSBII.LT.ABS( EI ) ) THEN * * Interchange rows and eliminate. * XR = B( I, I ) / EI XI = B( I+1, I ) / EI B( I, I ) = EI B( I+1, I ) = ZERO DO 150 J = I + 1, N TEMP = B( I+1, J ) B( I+1, J ) = B( I, J ) - XR*TEMP B( J+1, I+1 ) = B( J+1, I ) - XI*TEMP B( I, J ) = TEMP B( J+1, I ) = ZERO 150 CONTINUE B( I+2, I ) = -WI B( I+1, I+1 ) = B( I+1, I+1 ) - XI*WI B( I+2, I+1 ) = B( I+2, I+1 ) + XR*WI *** OPST = OPST + ( 4*( N-I )+6 ) *** ELSE * * Eliminate without interchanging rows. * IF( ABSBII.EQ.ZERO ) THEN B( I, I ) = EPS3 B( I+1, I ) = ZERO ABSBII = EPS3 END IF EI = ( EI / ABSBII ) / ABSBII XR = B( I, I )*EI XI = -B( I+1, I )*EI DO 160 J = I + 1, N B( I+1, J ) = B( I+1, J ) - XR*B( I, J ) + $ XI*B( J+1, I ) B( J+1, I+1 ) = -XR*B( J+1, I ) - XI*B( I, J ) 160 CONTINUE B( I+2, I+1 ) = B( I+2, I+1 ) - WI *** OPST = OPST + ( 7*( N-I )+4 ) *** END IF * * Compute 1-norm of offdiagonal elements of i-th row. * WORK( I ) = SASUM( N-I, B( I, I+1 ), LDB ) + $ SASUM( N-I, B( I+2, I ), 1 ) *** OPST = OPST + ( 2*( N-I )+4 ) *** 170 CONTINUE IF( B( N, N ).EQ.ZERO .AND. B( N+1, N ).EQ.ZERO ) $ B( N, N ) = EPS3 WORK( N ) = ZERO * I1 = N I2 = 1 I3 = -1 ELSE * * UL decomposition with partial pivoting of conjg(B), * replacing zero pivots by EPS3. * * The imaginary part of the (i,j)-th element of U is stored in * B(j+1,i). * B( N+1, N ) = WI DO 180 J = 1, N - 1 B( N+1, J ) = ZERO 180 CONTINUE * DO 210 J = N, 2, -1 EJ = H( J, J-1 ) ABSBJJ = SLAPY2( B( J, J ), B( J+1, J ) ) IF( ABSBJJ.LT.ABS( EJ ) ) THEN * * Interchange columns and eliminate * XR = B( J, J ) / EJ XI = B( J+1, J ) / EJ B( J, J ) = EJ B( J+1, J ) = ZERO DO 190 I = 1, J - 1 TEMP = B( I, J-1 ) B( I, J-1 ) = B( I, J ) - XR*TEMP B( J, I ) = B( J+1, I ) - XI*TEMP B( I, J ) = TEMP B( J+1, I ) = ZERO 190 CONTINUE B( J+1, J-1 ) = WI B( J-1, J-1 ) = B( J-1, J-1 ) + XI*WI B( J, J-1 ) = B( J, J-1 ) - XR*WI *** OPST = OPST + ( 4*( J-1 )+6 ) *** ELSE * * Eliminate without interchange. * IF( ABSBJJ.EQ.ZERO ) THEN B( J, J ) = EPS3 B( J+1, J ) = ZERO ABSBJJ = EPS3 END IF EJ = ( EJ / ABSBJJ ) / ABSBJJ XR = B( J, J )*EJ XI = -B( J+1, J )*EJ DO 200 I = 1, J - 1 B( I, J-1 ) = B( I, J-1 ) - XR*B( I, J ) + $ XI*B( J+1, I ) B( J, I ) = -XR*B( J+1, I ) - XI*B( I, J ) 200 CONTINUE B( J, J-1 ) = B( J, J-1 ) + WI *** OPST = OPST + ( 7*( J-1 )+4 ) *** END IF * * Compute 1-norm of offdiagonal elements of j-th column. * WORK( J ) = SASUM( J-1, B( 1, J ), 1 ) + $ SASUM( J-1, B( J+1, 1 ), LDB ) *** OPST = OPST + ( 2*( J-1 )+4 ) *** 210 CONTINUE IF( B( 1, 1 ).EQ.ZERO .AND. B( 2, 1 ).EQ.ZERO ) $ B( 1, 1 ) = EPS3 WORK( 1 ) = ZERO * I1 = 1 I2 = N I3 = 1 END IF * DO 270 ITS = 1, N SCALE = ONE VMAX = ONE VCRIT = BIGNUM * * Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector, * or U'*(xr,xi) = scale*(vr,vi) for a left eigenvector, * overwriting (xr,xi) on (vr,vi). * DO 250 I = I1, I2, I3 * IF( WORK( I ).GT.VCRIT ) THEN REC = ONE / VMAX CALL SSCAL( N, REC, VR, 1 ) CALL SSCAL( N, REC, VI, 1 ) SCALE = SCALE*REC VMAX = ONE VCRIT = BIGNUM END IF * XR = VR( I ) XI = VI( I ) IF( RIGHTV ) THEN DO 220 J = I + 1, N XR = XR - B( I, J )*VR( J ) + B( J+1, I )*VI( J ) XI = XI - B( I, J )*VI( J ) - B( J+1, I )*VR( J ) 220 CONTINUE ELSE DO 230 J = 1, I - 1 XR = XR - B( J, I )*VR( J ) + B( I+1, J )*VI( J ) XI = XI - B( J, I )*VI( J ) - B( I+1, J )*VR( J ) 230 CONTINUE END IF * W = ABS( B( I, I ) ) + ABS( B( I+1, I ) ) IF( W.GT.SMLNUM ) THEN IF( W.LT.ONE ) THEN W1 = ABS( XR ) + ABS( XI ) IF( W1.GT.W*BIGNUM ) THEN REC = ONE / W1 CALL SSCAL( N, REC, VR, 1 ) CALL SSCAL( N, REC, VI, 1 ) XR = VR( I ) XI = VI( I ) SCALE = SCALE*REC VMAX = VMAX*REC END IF END IF * * Divide by diagonal element of B. * CALL SLADIV( XR, XI, B( I, I ), B( I+1, I ), VR( I ), $ VI( I ) ) VMAX = MAX( ABS( VR( I ) )+ABS( VI( I ) ), VMAX ) VCRIT = BIGNUM / VMAX *** OPST = OPST + 9 *** ELSE DO 240 J = 1, N VR( J ) = ZERO VI( J ) = ZERO 240 CONTINUE VR( I ) = ONE VI( I ) = ONE SCALE = ZERO VMAX = ONE VCRIT = BIGNUM END IF 250 CONTINUE *** * Increment op count for loop 260, assuming no scaling OPS = OPS + 4*N*( N-1 ) *** * * Test for sufficient growth in the norm of (VR,VI). * VNORM = SASUM( N, VR, 1 ) + SASUM( N, VI, 1 ) *** OPST = OPST + 2*N *** IF( VNORM.GE.GROWTO*SCALE ) $ GO TO 280 * * Choose a new orthogonal starting vector and try again. * Y = EPS3 / ( ROOTN+ONE ) VR( 1 ) = EPS3 VI( 1 ) = ZERO * DO 260 I = 2, N VR( I ) = Y VI( I ) = ZERO 260 CONTINUE VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN *** OPST = OPST + 4 *** 270 CONTINUE * * Failure to find eigenvector in N iterations * INFO = 1 * 280 CONTINUE * * Normalize eigenvector. * VNORM = ZERO DO 290 I = 1, N VNORM = MAX( VNORM, ABS( VR( I ) )+ABS( VI( I ) ) ) 290 CONTINUE CALL SSCAL( N, ONE / VNORM, VR, 1 ) CALL SSCAL( N, ONE / VNORM, VI, 1 ) *** OPST = OPST + ( 4*N+1 ) *** * END IF * *** * Compute final op count OPS = OPS + OPST *** RETURN * * End of SLAEIN * END
old/lapack-test/lapack-timing/EIG/EIGSRC/slaein.f
use sim implicit none type(SeismicAnalysis_) :: seismic type(FEMDomain_),target :: cube,original type(IO_) :: f,response,history_A,history_V,history_U,input_wave type(Math_) :: math real(real64),allocatable :: disp_z(:,:) real(real64) :: wave(200,2),T,Duration,dt integer(int32) :: i,j,cases,stack_id,num_of_cases num_of_cases = 4 ! create Domain call cube%create(meshtype="Cube3D",x_num=4,y_num=4,z_num=20) call cube%resize(x=1.0d0,y=1.0d0,z=5.0d0) call cube%move(z=-5.0d0) ! create Wave T = 0.300d0 Duration = T * 10.0d0 ! sec. dt = Duration/dble(size(wave,1))!/10.0d0 wave(:,:) = 0.0d0 do i=1,size(wave,1) wave(i,1) = dt*dble(i) wave(i,2) = sin(2.0d0*math%pi/T*wave(i,1) ) enddo call input_wave%open("input_wave.txt" ) call input_wave%write(wave ) call input_wave%close() original = cube ! set domain seismic%femdomain => cube ! set wave seismic%wave = wave seismic%dt = dt ! run simulation call seismic%init() !call seismic%fixDisplacement(z_max = -4.99d0,direction="x") call seismic%fixDisplacement(z_max = -4.99d0,direction="y") call seismic%fixDisplacement(z_max = -4.99d0,direction="z") call seismic%fixDisplacement(y_max = 0.0d0,direction="y") call seismic%fixDisplacement(y_min = 1.0d0,direction="y") call seismic%fixDisplacement(direction="z") call seismic%femdomain%vtk("mesh_init" ) call seismic%loadWave(z_max=-4.50d0,direction="x",wavetype=WAVE_ACCEL) seismic%Density(:) = 17000.0d0 !(N/m/m/m) seismic%PoissonRatio(:) = 0.330d0 seismic%YoungModulus(:) = 25372853.0 !(N/m/m) Vs=121 m/s !seismic%alpha = 0.0d0 seismic%a = 0.0d0 seismic%v = 0.0d0 seismic%u = 0.0d0 do i=1,199 !seismic%beta = 0.0d0 call history_A%open("history_A"//str(i)//".txt","w") call history_V%open("history_V"//str(i)//".txt","w") call history_U%open("history_U"//str(i)//".txt","w") call seismic%run(timestep=[i,i+1],AccelLimit=10.0d0**8) do j=1,seismic%femdomain%nn() if(seismic%femdomain%position_x(j)/=0.0d0) cycle if(seismic%femdomain%position_y(j)/=0.0d0) cycle write(history_A%fh,*) real(dble(i)*dt),& seismic%femdomain%position_z(j), real(seismic%A( (j-1)*3 + 1 )) enddo do j=1,seismic%femdomain%nn() if(seismic%femdomain%position_x(j)/=0.0d0) cycle if(seismic%femdomain%position_y(j)/=0.0d0) cycle write(history_V%fh,*) real(dble(i)*dt),& seismic%femdomain%position_z(j), real(seismic%V( (j-1)*3 + 1 )) enddo do j=1,seismic%femdomain%nn() if(seismic%femdomain%position_x(j)/=0.0d0) cycle if(seismic%femdomain%position_y(j)/=0.0d0) cycle write(history_U%fh,*) real(dble(i)*dt),& seismic%femdomain%position_z(j), real(seismic%U( (j-1)*3 + 1 )) enddo call history_A%close() call history_V%close() call history_U%close() enddo !print *, maxval(seismic%U) seismic%femdomain%mesh%nodcoord = seismic%femdomain%mesh%nodcoord + (10.0d0**0)*& reshape(seismic%a, seismic%femdomain%nn(),seismic%femdomain%nd() ) call seismic%femdomain%vtk("result") !call response%open("T_A"//str(cases)//".txt") !call response%write(T,seismic%maxA(1)) !call response%close() end
Tutorial/sim/SeismicAnalysis.f90
! ! common routines for testing ! module test_common implicit none integer, parameter, public :: dp = kind(1.d0) ! Common in the test routines. character(len=*), parameter :: SAMPLE_DIR = '../samples' character(len=*), parameter :: DEF_FNAME_OUT = SAMPLE_DIR//'/test_out.txt' contains ! Print the stats info at the end of each subroutine-level testing subroutine print_teststats(subname, nsuccess, ifailed) character(*), intent(in) :: subname integer, intent(in) :: nsuccess ! Number of succesful trials, i-th failure integer, intent(in), optional :: ifailed ! i-th failure if (present(ifailed)) then write(*, '(" Tests(", a, "): Only succeeded in ", i3, " tests before failed at ", i3, "-th.")') & trim(subname), nsuccess, ifailed else write(*, '(" Tests(", a, "): Succeeded in all ", i3, " tests.")') & trim(subname), nsuccess end if end subroutine print_teststats end module test_common module test_alpin_misc_utils use alpin_unittest use alpin_err_exit use test_common use alpin_misc_utils implicit none contains ! run tests of routines in alpin_misc_utils.f90 ! ! Returns 1 if error is raised (0 otherwise) integer function run_test_alpin_misc_utils() result(ret_status) character(*), parameter :: Subname = 'run_test_alpin_misc_utils' integer, parameter :: TOT_NTESTS = 39 logical, dimension(TOT_NTESTS) :: ress integer :: iloc ret_status = 0 ! normal ends (n.b., returned value) ress = [ & assert_in_delta(180.0d0, rad2deg(PI), 1.0e5, Subname, ' rad2deg(PI)') & , assert_in_delta(PI, deg2rad(180.0d0), 1.0e5, Subname, ' deg2rad(180.0)') & , assert_equal ('00000001', dump_int_binary(1_1), Subname, 'dump_int_binary') & , assert_equal ('01111111', dump_int_binary(127_1), Subname, 'dump_int_binary') & , assert_equal ('11111111', dump_int_binary(-1_1), Subname, 'dump_int_binary') & , assert_equal (3, int4_to_unsigned1(3), Subname, 'for (3(int4=>1))') & , assert_equal(-1, int4_to_unsigned1(255), Subname, 'for (255(int4=>1))') & , assert_equal(255, unsigned1_to_int4(-1_1), Subname, 'for (255(int1=>4))') & , assert_equal ('00000000_00000000_00000000_01111111', dump_int_binary(127_4), Subname, 'dump_int_binary(127)') & , assert_equal ('00000000_00000000_00000001_01111111', dump_int_binary(383_4), Subname, 'dump_int_binary(383)') & , assert_equal ('11111111_11111111_11111111_11111111', dump_int_binary(-1_4), Subname, 'dump_int_binary(-1)') & , assert_equal('c.d', trim(basename('/a/b/c.d')), Subname, 'basename(/a/b/c.d)') & , assert_equal('c.d', trim(basename('c.d')), Subname, 'basename(c.d)') & , assert_equal('abc', trim(basename('/x/abc/')), Subname, 'basename(/x/abc/)') & , assert_equal('abc', trim(basename('/x/abc///')), Subname, 'basename(/x/abc///)') & , assert_equal('/', trim(basename('/')), Subname, 'basename(/)') & , assert_equal('/', trim(basename('//')), Subname, 'basename(//)') & , assert_equal('0', trim(ladjusted_int(0_1)), Subname, 'ladjusted_int(0_1)') & , assert_equal('-123', trim(ladjusted_int(-123_1)), Subname, 'ladjusted_int(-123_1)') & , assert_equal('-123', trim(ladjusted_int(-123_2)), Subname, 'ladjusted_int(-123_2)') & , assert_equal('-123', trim(ladjusted_int(-123_4)), Subname, 'ladjusted_int(-123_4)') & , assert_equal('-123', trim(ladjusted_int(-123_8)), Subname, 'ladjusted_int(-123_8)') & , assert_equal('-12345', trim(ladjusted_int(-12345_2)),Subname, 'ladjusted_int(-12345_2)') & , assert_equal('-123456', trim(ladjusted_int(-123456)), Subname, 'ladjusted_int(-123456)') & , assert_equal('-123456', trim(ladjusted_int(-123456)), Subname, 'ladjusted_int(-123456)') & , assert_equal('''ab'', ''cdef'', ''ghi''', join_ary(['ab ','cdef','ghi ']), Subname, 'join_ary_chars()') & , assert_equal('$ab$, $cdef$, $ghi$', join_ary(['ab ','cdef','ghi '],quote='$'), Subname, 'join_ary_chars()') & , assert_equal('-123, 4, -56', join_ary([-123, 4, -56]), Subname, 'join_ary_int4()') & , assert_equal('-123; 4; -56', join_ary([-123_2, 4_2, -56_2], '; '), Subname, 'join_ary_int2()') & , assert_equal(1, findloc1(['X','Y','X'],'X'), Subname, 'findloc1_char') & , assert_equal(3, findloc1(['X','Y','X'],'X',MASK=[.false.,.true.,.true.]), Subname, 'findloc1_char-mask') & , assert_equal(3, findloc1(['X','Y','X'],'X',BACK=.true.), Subname, 'findloc1_char-back') & , assert_equal(1, findloc1(['X','Y','X'],'X',MASK=[.true.,.true.,.false.],BACK=.true.), Subname, 'findloc1_char-ma-ba') & , assert_equal(2, findloc1([9,8,7,6],8), Subname, 'findloc1_int4') & , assert_equal(2, findloc1(int([9,8,7,6],kind=2),8), Subname, 'findloc1_int2_4') & , assert_equal(2, findloc1(real([16,32,0,0,-1],kind=4),32.0), Subname, 'findloc1_real4') & , assert_equal(2, findloc1(real([16,32,0,0,-1],kind=4),32.d0), Subname, 'findloc1_real4-2') & , assert_equal(2, findloc1(real([16,32,0,0,-1],kind=8),32.0), Subname, 'findloc1_real8-1') & , assert_equal(2, findloc1(real([16,32,0,0,-1],kind=8),32.d0), Subname, 'findloc1_real8-2') & ] iloc = findloc1(ress, .false.) ! Similar to the standard way, but scalar: ilocs(:)=findloc(ress, .false.) if (iloc == 0) then ! All passed call print_teststats(Subname, nsuccess=TOT_NTESTS) return end if ! Failed call print_teststats(Subname, nsuccess=iloc-1, ifailed=iloc) ret_status = 1 end function run_test_alpin_misc_utils end module test_alpin_misc_utils module test_alpin_hash use alpin_unittest use alpin_err_exit use test_common use alpin_misc_utils use alpin_hash implicit none contains ! run tests of routines in alpin_misc_utils.f90 ! ! Returns 1 if error is raised (0 otherwise) integer function run_test_alpin_hash() result(ret_status) character(*), parameter :: Subname = 'run_test_alpin_hash' integer, parameter :: TOT_NTESTS = 11 logical, dimension(TOT_NTESTS) :: ress integer :: iloc type(t_alpin_hash_logical), dimension(2) :: arlogi type(t_alpin_hash_char), dimension(2) :: archar type(t_alpin_hash_int4), dimension(2) :: arint4 type(t_alpin_hash_real8), dimension(2) :: arreal8 logical, dimension(2) :: is_undef character(len=LEN_T_ALPIN_HASH), dimension(2) :: valchs ret_status = 0 ! normal ends (n.b., returned value) arlogi = [t_alpin_hash_logical(key='k1', val=.false.), t_alpin_hash_logical(key='k2', val=.true.)] archar = [t_alpin_hash_char( key='k1', val='v1'), t_alpin_hash_char( key='k2', val='v2')] arint4 = [t_alpin_hash_int4( key='k1', val=11), t_alpin_hash_int4( key='k2', val=22)] arreal8= [t_alpin_hash_real8(key='k1', val=16.0), t_alpin_hash_real8(key='k2', val=32.0)] call hashval_status('k2', archar, valchs(1), is_undef(1)) call hashval_status('naiyo', archar, valchs(2), is_undef(2)) ress = [ & assert_not(is_undef(1), Subname, ' hashval_status()-1') & , assert( is_undef(2), Subname, ' hashval_status()-2') & , assert_equal('v2', valchs(1), Subname, ' hashval_status("k2")') & , assert_equal('v2', trim(fetch_hashval('k2', archar)), Subname, ' fetch_hashval("k2")') & ! NOTE: without trim(), this causes either "malloc: *** set a breakpoint in malloc_error_break to debug" or "SIGSEGV: Segmentation fault - invalid memory reference." ! It seems that if a character as a returned value from a function is passed directly (i.e., without trim()) to a different function, it may cause a memory-related error. , assert_equal('@', trim(fetch_hashval('naiyo', archar, undef='@')), Subname, ' fetch_hashval("naiyo","@")') & , assert_equal('', trim(fetch_hashval('naiyo', archar)), Subname, ' fetch_hashval("naiyo")') & , assert_equal(22, fetch_hashval('k2', arint4), Subname, ' fetch_hashval_i4("k2")') & , assert_equal(79, fetch_hashval('naiyo', arint4, undef=79), Subname, ' fetch_hashval_i4("k2",79)') & , assert(fetch_hashval('k2', arlogi), Subname, ' fetch_hashval_logi("k2")') & , assert_in_delta(32.d0, fetch_hashval('k2', arreal8), 1e-8, Subname, ' fetch_hashval_real8("k2")') & , assert_in_delta(79.d0, fetch_hashval('naiyo', arreal8, undef=79.d0), 1e-8, Subname, ' fetch_hashval_real8("k2",79)') & ] iloc = findloc1(ress, .false.) ! Similar to the standard way, but scalar: ilocs(:)=findloc(ress, .false.) if (iloc == 0) then ! All passed call print_teststats(Subname, nsuccess=TOT_NTESTS) return end if ! Failed call print_teststats(Subname, nsuccess=iloc-1, ifailed=iloc) ret_status = 1 end function run_test_alpin_hash end module test_alpin_hash ! ------------------------------------------------------------------- program testalpin use test_alpin_misc_utils use test_alpin_hash implicit none integer :: status = 0 status = status + run_test_alpin_misc_utils() status = status + run_test_alpin_hash() if (status .ne. 0) then call EXIT(status) ! for gfortran, Lahey Fujitsu Fortran 95, etc end if end program testalpin
test/testalpin.f90
subroutine zgefa(a,lda,n,ipvt,info) integer lda,n,ipvt(1),info complex*16 a(lda,1) c c zgefa factors a complex*16 matrix by gaussian elimination. c c zgefa is usually called by zgeco, but it can be called c directly with a saving in time if rcond is not needed. c (time for zgeco) = (1 + 9/n)*(time for zgefa) . c c on entry c c a complex*16(lda, n) c the matrix to be factored. c c lda integer c the leading dimension of the array a . c c n integer c the order of the matrix a . c c on return c c a an upper triangular matrix and the multipliers c which were used to obtain it. c the factorization can be written a = l*u where c l is a product of permutation and unit lower c triangular matrices and u is upper triangular. c c ipvt integer(n) c an integer vector of pivot indices. c c info integer c = 0 normal value. c = k if u(k,k) .eq. 0.0 . this is not an error c condition for this subroutine, but it does c indicate that zgesl or zgedi will divide by zero c if called. use rcond in zgeco for a reliable c indication of singularity. c c linpack. this version dated 08/14/78 . c cleve moler, university of new mexico, argonne national lab. c c subroutines and functions c c blas zaxpy,zscal,izamax c fortran dabs c c internal variables c complex*16 t integer izamax,j,k,kp1,l,nm1 c complex*16 zdum double precision cabs1 double precision dreal,dimag complex*16 zdumr,zdumi dreal(zdumr) = zdumr dimag(zdumi) = (0.0d0,-1.0d0)*zdumi cabs1(zdum) = dabs(dreal(zdum)) + dabs(dimag(zdum)) c c gaussian elimination with partial pivoting c info = 0 nm1 = n - 1 if (nm1 .lt. 1) go to 70 do 60 k = 1, nm1 kp1 = k + 1 c c find l = pivot index c l = izamax(n-k+1,a(k,k),1) + k - 1 ipvt(k) = l c c zero pivot implies this column already triangularized c if (cabs1(a(l,k)) .eq. 0.0d0) go to 40 c c interchange if necessary c if (l .eq. k) go to 10 t = a(l,k) a(l,k) = a(k,k) a(k,k) = t 10 continue c c compute multipliers c t = -(1.0d0,0.0d0)/a(k,k) call zscal(n-k,t,a(k+1,k),1) c c row elimination with column indexing c do 30 j = kp1, n t = a(l,j) if (l .eq. k) go to 20 a(l,j) = a(k,j) a(k,j) = t 20 continue call zaxpy(n-k,t,a(k+1,k),1,a(k+1,j),1) 30 continue go to 50 40 continue info = k 50 continue 60 continue 70 continue ipvt(n) = n if (cabs1(a(n,n)) .eq. 0.0d0) info = n return end
scipy/integrate/linpack_lite/zgefa.f
! This file is part of toml-f. ! ! Copyright (C) 2019-2020 Sebastian Ehlert ! ! Licensed under either of Apache License, Version 2.0 or MIT license ! at your option; you may not use this file except in compliance with ! the License. ! ! Unless required by applicable law or agreed to in writing, software ! distributed under the License is distributed on an "AS IS" BASIS, ! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ! See the License for the specific language governing permissions and ! limitations under the License. !> Version information on TOML-Fortran module tomlf_version implicit none private public :: tomlf_version_string, tomlf_version_compact !> String representation of the TOML-Fortran version character(len=*), parameter :: tomlf_version_string = "0.2.0" !> Major version number of the above TOML-Fortran version integer, parameter :: major = 0 !> Minor version number of the above TOML-Fortran version integer, parameter :: minor = 2 !> Patch version number of the above TOML-Fortran version integer, parameter :: patch = 0 !> Compact numeric representation of the TOML-Fortran version integer, parameter :: tomlf_version_compact = major*10000 + minor*100 + patch end module tomlf_version
src/tomlf/version.f90
SUBROUTINE WIND (ILFN) MLu C CHARACTER CA*1 MLu C DO 20 I=1,30000 MLu READ (ILFN,10,ERR=100,END=100) CA MLu 10 FORMAT (A) MLu 20 CONTINUE MLu C 100 CONTINUE MLu BACKSPACE ILFN M RETURN MLu END MLu
heclib/heclib_f/src/Support/wind.f
! -*- Mode: Fortran; -*- ! ! (C) 2014 by Argonne National Laboratory. ! See COPYRIGHT in top-level directory. ! subroutine MPI_Status_set_elements_f08(status, datatype, count, ierror) use, intrinsic :: iso_c_binding, only : c_loc, c_associated use, intrinsic :: iso_c_binding, only : c_int, c_ptr use :: mpi_f08, only : MPI_Status, MPI_Datatype use :: mpi_f08, only : MPI_STATUS_IGNORE, MPIR_C_MPI_STATUS_IGNORE, assignment(=) use :: mpi_c_interface, only : c_Datatype use :: mpi_c_interface, only : c_Status use :: mpi_c_interface, only : MPIR_Status_set_elements_c implicit none type(MPI_Status), intent(inout), target :: status type(MPI_Datatype), intent(in) :: datatype integer, intent(in) :: count integer, optional, intent(out) :: ierror type(c_Status), target :: status_c integer(c_Datatype) :: datatype_c integer(c_int) :: count_c integer(c_int) :: ierror_c if (c_int == kind(0)) then if (c_associated(c_loc(status), c_loc(MPI_STATUS_IGNORE))) then ierror_c = MPIR_Status_set_elements_c(MPIR_C_MPI_STATUS_IGNORE, datatype%MPI_VAL, count) else ierror_c = MPIR_Status_set_elements_c(c_loc(status), datatype%MPI_VAL, count) end if else datatype_c = datatype%MPI_VAL count_c = count if (c_associated(c_loc(status), c_loc(MPI_STATUS_IGNORE))) then ierror_c = MPIR_Status_set_elements_c(MPIR_C_MPI_STATUS_IGNORE, datatype_c, count_c) else ierror_c = MPIR_Status_set_elements_c(c_loc(status_c), datatype_c, count_c) status = status_c end if end if if (present(ierror)) ierror = ierror_c end subroutine MPI_Status_set_elements_f08
src/binding/fortran/use_mpi_f08/wrappers_f/status_set_elements_f08ts.f90
program scatter_vector include 'mpif.h' integer ndims,xmax,ymax,nnodes,myid,totelem parameter(ndims=2) parameter(xmax=1000,ymax=1000) parameter(niters=1) parameter (totelem=xmax*ymax) integer comm,ierr integer status(MPI_STATUS_SIZE) double precision,allocatable,dimension(:,:) :: A double precision,allocatable,dimension(:) :: V,dindex1,dindex2,gV integer,allocatable,dimension(:) :: index1,index2 integer,allocatable,dimension(:) :: lindex1,lindex2 !distribute each array into nnodes processors except gV and index1 and index2 ! these last 3 arrays are global arrays. gv will hold the all local V's ! index1 and index2 will hold all the local lindex1's and lindex2's ! respectively integer xb,yb,i,j,nitems,xbv comm=MPI_COMM_WORLD call MPI_init(ierr) call MPI_COMM_RANK(comm,myid,ierr) call MPI_COMM_SIZE(comm,nnodes,ierr) !initialize the input matrixes A and allocate necessary spaces for A,B !partition the matrix a in (block ,*) way xb = xmax/nnodes xbv = totelem/nnodes !allocate necessary arrays allocate(A(xb,ymax)) allocate(V(xbv)) allocate(gV(totelem)) allocate(index1(totelem)) allocate(index2(totelem)) allocate(dindex1(totelem)) allocate(dindex2(totelem)) allocate(lindex1(xbv)) allocate(lindex2(xbv)) !last processor is generating random index vectors index1 and index2 ! and partition them onto processors and send to correspoding processor !also last processor is generating random data vector V for each processor if (myid == nnodes -1) then call random_number(dindex1) call random_number(dindex2) index1 = xmax*dindex1 + 1 index2 = ymax*dindex2 + 1 do np = 0,nnodes-1 call random_number(V) V = 1000000.0*V if (np < nnodes-1) then call MPI_SEND(V,xbv,MPI_DOUBLE_PRECISION,np,0,comm,ierr) call MPI_SEND(index1(xbv*np+1),xbv,MPI_INTEGER,np,0,comm,ierr) call MPI_SEND(index1(xbv*np+1),xbv,MPI_INTEGER,np,0,comm,ierr) endif enddo lindex1 = index1((nnodes-1)*xbv+1:totelem) lindex2 = index2((nnodes-1)*xbv+1:totelem) else call MPI_RECV(V,xbv,MPI_DOUBLE_PRECISION,nnodes-1,0,comm,status,ierr) call MPI_RECV(lindex1,xbv,MPI_INTEGER,nnodes-1,0,comm,status,ierr) call MPI_RECV(lindex1,xbv,MPI_INTEGER,nnodes-1,0,comm,status,ierr) endif !start timer ..... time_begin = MPI_Wtime() do iter = 1,niters !collect all the local V's in gV call MPI_ALLGATHER(V,xbv,MPI_DOUBLE_PRECISION, & gV,xbv,MPI_DOUBLE_PRECISION,comm,ierr) !collect all the local arrays index1's and index2's in index1 and index2 call MPI_ALLGATHER(lindex1,xbv,MPI_INTEGER,index1,& xbv,MPI_INTEGER,comm,ierr) call MPI_ALLGATHER(lindex2,xbv,MPI_INTEGER,index2,& xbv,MPI_INTEGER,comm,ierr) ilb = myid*xbv+1 iub = (myid+1)*xbv do i=1,totelem !If I am holding the vector index 'index1(i)' in my local array !I will get the gV(i) if ((index1(i) .ge. ilb).and.(index1(i).le.iub)) then A(index1(i)-ilb+1,index2(i)) = gV(i) endif enddo enddo ! Stop timer time_end = MPI_Wtime() if (myid == 0) then print *,'Elapsed time ',niters,'iterations for scatter' print *,'For matrix with dimensions',xmax,ymax ,'is' print *,time_end-time_begin ,'seconds' endif deallocate(a) deallocate(v) deallocate(gv) deallocate(index1) deallocate(index2) deallocate(lindex1) deallocate(lindex2) deallocate(dindex1) deallocate(dindex2) call MPI_FINALIZE(ierr) end SUBROUTINE all_to_all_int(myprocid,nnodes,comm,fx,global_fx,xbv,totelem) integer xbv,totelem integer fx(xbv),global_fx(totelem) integer myprocid,nnodes,comm include 'mpif.h' integer dest,source,nproc,dest_id,ierr integer status(MPI_STATUS_SIZE) do j=1,xbv global_fx(xbv*myprocid+1+j) = fx(j) enddo nproc = nnodes kcnt = myprocid dest = mod(myprocid+1,nproc) source = mod(myprocid-1+nproc,nproc) do i=1,nproc-1 if (mod (myprocid,2) .eq. 0) then call MPI_SEND(global_fx(kcnt*xbv+1),xbv,& MPI_INTEGER,dest,0,comm,ierr) else ikcnt = mod(kcnt-1+nproc,nproc) call MPI_RECV(global_fx(ikcnt*xbv+1),xbv, & MPI_INTEGER,source,0,comm,status,ierr) endif if (mod (myprocid,2) .eq. 1) then call MPI_SEND(global_fx(kcnt*xbv+1),xbv,& MPI_INTEGER,dest,0,comm,ierr) else ikcnt = mod(kcnt-1+nproc,nproc) call MPI_RECV(global_fx(ikcnt*xbv+1),xbv, & MPI_INTEGER,source,0,comm,status,ierr) endif kcnt = ikcnt enddo return end SUBROUTINE all_to_all_float(myprocid,nnodes,comm,fx,global_fx,xbv,totelem) integer xbv,totelem double precision fx(xbv),global_fx(totelem) integer myprocid,nnodes,comm include 'mpif.h' integer dest,source,nproc,dest_id,ierr integer status(MPI_STATUS_SIZE) do j=1,xbv global_fx(xbv*myprocid+1+j) = fx(j) enddo nproc = nnodes kcnt = myprocid dest = mod(myprocid+1,nproc) source = mod(myprocid-1+nproc,nproc) do i=1,nproc-1 if (mod (myprocid,2) .eq. 0) then call MPI_SEND(global_fx(kcnt*xbv+1),xbv,& MPI_DOUBLE_PRECISION,dest,0,comm,ierr) else ikcnt = mod(kcnt-1+nproc,nproc) call MPI_RECV(global_fx(ikcnt*xbv+1),xbv, & MPI_DOUBLE_PRECISION,source,0,comm,status,ierr) endif if (mod (myprocid,2) .eq. 1) then call MPI_SEND(global_fx(kcnt*xbv+1),xbv,& MPI_DOUBLE_PRECISION,dest,0,comm,ierr) else ikcnt = mod(kcnt-1+nproc,nproc) call MPI_RECV(global_fx(ikcnt*xbv+1),xbv, & MPI_DOUBLE_PRECISION,source,0,comm,status,ierr) endif kcnt = ikcnt enddo return end
files/mpi/scatter_with_mpi.f
c c ------------------------------------------------------- c subroutine fluxad(xfluxm,xfluxp,yfluxm,yfluxp, 1 svdflx,mptr,mitot,mjtot, 2 nvar,lenbc,lratiox,lratioy,ng,dtf,dx,dy) c implicit double precision (a-h,o-z) include "call.i" c :::::::::::::::::::: FLUXAD :::::::::::::::::::::::::::::::::: c save fine grid fluxes at the border of the grid, for fixing c up the adjacent coarse cells. at each edge of the grid, only c save the plus or minus fluxes, as necessary. For ex., on c left edge of fine grid, it is the minus xfluxes that modify the c coarse cell. c ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: dimension xfluxm(mitot,mjtot,nvar), yfluxm(mitot,mjtot,nvar) dimension xfluxp(mitot,mjtot,nvar), yfluxp(mitot,mjtot,nvar) dimension svdflx(nvar,lenbc) nx = mitot-2*ng ny = mjtot-2*ng nyc = ny/lratioy nxc = nx/lratiox c ::::: left side saved first lind = 0 do 100 j=1,nyc lind = lind + 1 jfine = (j-1)*lratioy + ng do 110 ivar = 1, nvar do 120 l=1,lratioy svdflx(ivar,lind) = svdflx(ivar,lind) + 1 xfluxm(ng+1,jfine+l,ivar)*dtf*dy c write(dbugunit,900)lind,xfluxm(1,jfine+l,ivar), c . xfluxp(1,jfine+l,ivar) 900 format(' lind ', i4,' m & p ',2e15.7,' svd ',e15.7) 120 continue 110 continue 100 continue c ::::: top side c write(dbugunit,*)" saving top side " do 200 i=1,nxc lind = lind + 1 ifine = (i-1)*lratiox + ng do 210 ivar = 1, nvar do 220 l=1,lratiox svdflx(ivar,lind) = svdflx(ivar,lind) + 1 yfluxp(ifine+l,mjtot-ng+1,ivar)*dtf*dx c write(dbugunit,900)lind,yfluxm(ifine+l,mjtot-ng+1, c . ivar),yfluxp(ifine+l,mjtot-ng+1,ivar), c . svdflx(ivar,lind) 220 continue 210 continue 200 continue c ::::: right side do 300 j=1,nyc lind = lind + 1 jfine = (j-1)*lratioy + ng do 310 ivar = 1, nvar do 320 l=1,lratioy svdflx(ivar,lind) = svdflx(ivar,lind) + 1 xfluxp(mitot-ng+1,jfine+l,ivar)*dtf*dy c write(dbugunit,900)lind,xfluxm(mitot-ng+1,jfine+l, c ivar),xfluxp(mitot-ng+1,jfine+l,ivar) 320 continue 310 continue 300 continue c ::::: bottom side c write(dbugunit,*)" saving bottom side " do 400 i=1,nxc lind = lind + 1 ifine = (i-1)*lratiox + ng do 410 ivar = 1, nvar do 420 l=1,lratiox svdflx(ivar,lind) = svdflx(ivar,lind) + 1 yfluxm(ifine+l,ng+1,ivar)*dtf*dx c write(dbugunit,900)lind,yfluxm(ifine+l,ng+1,ivar), c . yfluxp(ifine+l,ng+1,ivar),svdflx(ivar,lind) 420 continue 410 continue 400 continue return end
amrclaw/2d/lib/fluxad.f
SUBROUTINE gather_real(SEND,RECV,SIZE,root) IMPLICIT NONE include 'mpif.h' INTEGER SIZE, ROOT REAL*8 SEND(*), RECV(*) INTEGER IERR CALL MPI_GATHER(send,size,MPI_DOUBLE_PRECISION, & recv,size,MPI_DOUBLE_PRECISION,ROOT,MPI_COMM_WORLD,IERR) RETURN END SUBROUTINE SUBROUTINE gatherv_real( SEND, ssize, RECV, & rsize, rdisp, root ) IMPLICIT NONE include 'mpif.h' INTEGER ssize, ROOT INTEGER rsize(*), rdisp(*) REAL*8 SEND(*), RECV(*) INTEGER IERR CALL MPI_GATHERV( send, ssize, MPI_DOUBLE_PRECISION, & recv, rsize, rdisp, MPI_DOUBLE_PRECISION, ROOT, & MPI_COMM_WORLD, IERR ) RETURN END SUBROUTINE
comm/gather.f
c Wrappers allowing to link MacOSX's Accelerate framework to c gfortran compiled code c Accelerate BLAS is cblas (http://www.netlib.org/blas/blast-forum/cblas.tgz); c these wrappers call the cblas functions via the C-functions defined c in veclib_cabi.c REAL FUNCTION WSDOT( N, SX, INCX, SY, INCY ) INTEGER INCX, INCY, N REAL SX(*), SY(*) REAL RESULT EXTERNAL ACC_SDOT CALL ACC_SDOT( N, SX, INCX, SY, INCY, RESULT ) WSDOT = RESULT END FUNCTION REAL FUNCTION WSDSDOT( N, SB, SX, INCX, SY, INCY ) REAL SB INTEGER INCX, INCY, N REAL SX(*), SY(*) REAL RESULT EXTERNAL ACC_SDSDOT CALL ACC_SDSDOT( N, SB, SX, INCX, SY, INCY, RESULT ) WSDSDOT = RESULT END FUNCTION REAL FUNCTION WSASUM( N, SX, INCX ) INTEGER INCX, N REAL SX(*) REAL RESULT EXTERNAL ACC_SASUM CALL ACC_SASUM( N, SX, INCX, RESULT ) WSASUM = RESULT END FUNCTION REAL FUNCTION WSNRM2( N, SX, INCX ) INTEGER INCX, N REAL SX(*) REAL RESULT EXTERNAL ACC_SNRM2 CALL ACC_SNRM2( N, SX, INCX, RESULT ) WSNRM2 = RESULT END FUNCTION REAL FUNCTION WSCASUM( N, CX, INCX ) INTEGER INCX, N COMPLEX CX(*) REAL RESULT EXTERNAL ACC_SCASUM CALL ACC_SCASUM( N, CX, INCX, RESULT ) WSCASUM = RESULT END FUNCTION REAL FUNCTION WSCNRM2( N, CX, INCX ) INTEGER INCX, N COMPLEX CX(*) REAL RESULT EXTERNAL ACC_SCNRM2 CALL ACC_SCNRM2( N, CX, INCX, RESULT ) WSCNRM2 = RESULT END FUNCTION c The LAPACK in the Accelerate framework is a CLAPACK c (www.netlib.org/clapack) and has hence a different interface than the c modern Fortran LAPACK libraries. These wrappers here help to link c Fortran code to Accelerate. c This wrapper files covers all Lapack functions that are in all versions c before Lapack 3.2 (Lapack 3.2 adds CLANHF and SLANSF that would be c problematic, but those do not exist in OSX <= 10.6, and are actually not c used in scipy) REAL FUNCTION WCLANGB( NORM, N, KL, KU, AB, LDAB, WORK ) CHARACTER NORM INTEGER KL, KU, LDAB, N REAL WORK( * ) COMPLEX AB( LDAB, * ) EXTERNAL CLANGB DOUBLE PRECISION CLANGB WCLANGB = REAL(CLANGB( NORM, N, KL, KU, AB, LDAB, WORK )) END FUNCTION REAL FUNCTION WCLANGE( NORM, M, N, A, LDA, WORK ) CHARACTER NORM INTEGER LDA, M, N REAL WORK( * ) COMPLEX A( LDA, * ) EXTERNAL CLANGE DOUBLE PRECISION CLANGE WCLANGE = REAL(CLANGE( NORM, M, N, A, LDA, WORK )) END FUNCTION REAL FUNCTION WCLANGT( NORM, N, DL, D, DU ) CHARACTER NORM INTEGER N COMPLEX D( * ), DL( * ), DU( * ) EXTERNAL CLANGT DOUBLE PRECISION CLANGT WCLANGT = REAL(CLANGT( NORM, N, DL, D, DU )) END FUNCTION REAL FUNCTION WCLANHB( NORM, UPLO, N, K, AB, LDAB, WORK ) CHARACTER NORM, UPLO INTEGER K, LDAB, N REAL WORK( * ) COMPLEX AB( LDAB, * ) EXTERNAL CLANHB DOUBLE PRECISION CLANHB WCLANHB = REAL(CLANHB( NORM, UPLO, N, K, AB, LDAB, WORK )) END FUNCTION REAL FUNCTION WCLANHE( NORM, UPLO, N, A, LDA, WORK ) CHARACTER NORM, UPLO INTEGER LDA, N REAL WORK( * ) COMPLEX A( LDA, * ) EXTERNAL CLANHE DOUBLE PRECISION CLANHE WCLANHE = REAL(CLANHE( NORM, UPLO, N, A, LDA, WORK )) END FUNCTION REAL FUNCTION WCLANHP( NORM, UPLO, N, AP, WORK ) CHARACTER NORM, UPLO INTEGER N REAL WORK( * ) COMPLEX AP( * ) EXTERNAL CLANHP DOUBLE PRECISION CLANHP WCLANHP = REAL(CLANHP( NORM, UPLO, N, AP, WORK )) END FUNCTION REAL FUNCTION WCLANHS( NORM, N, A, LDA, WORK ) CHARACTER NORM INTEGER LDA, N REAL WORK( * ) COMPLEX A( LDA, * ) EXTERNAL CLANHS DOUBLE PRECISION CLANHS WCLANHS = REAL(CLANHS( NORM, N, A, LDA, WORK )) END FUNCTION REAL FUNCTION WCLANHT( NORM, N, D, E ) CHARACTER NORM INTEGER N REAL D( * ) COMPLEX E( * ) EXTERNAL CLANHT DOUBLE PRECISION CLANHT WCLANHT = REAL(CLANHT( NORM, N, D, E )) END FUNCTION REAL FUNCTION WCLANSB( NORM, UPLO, N, K, AB, LDAB, WORK ) CHARACTER NORM, UPLO INTEGER K, LDAB, N REAL WORK( * ) COMPLEX AB( LDAB, * ) EXTERNAL CLANSB DOUBLE PRECISION CLANSB WCLANSB = REAL(CLANSB( NORM, UPLO, N, K, AB, LDAB, WORK )) END FUNCTION REAL FUNCTION WCLANSP( NORM, UPLO, N, AP, WORK ) CHARACTER NORM, UPLO INTEGER N REAL WORK( * ) COMPLEX AP( * ) EXTERNAL CLANSP DOUBLE PRECISION CLANSP WCLANSP = REAL(CLANSP( NORM, UPLO, N, AP, WORK )) END FUNCTION REAL FUNCTION WCLANSY( NORM, UPLO, N, A, LDA, WORK ) CHARACTER NORM, UPLO INTEGER LDA, N REAL WORK( * ) COMPLEX A( LDA, * ) EXTERNAL CLANSY DOUBLE PRECISION CLANSY WCLANSY = REAL(CLANSY( NORM, UPLO, N, A, LDA, WORK )) END FUNCTION REAL FUNCTION WCLANTB( NORM, UPLO, DIAG, N, K, AB, LDAB, WORK ) CHARACTER DIAG, NORM, UPLO INTEGER K, LDAB, N REAL WORK( * ) COMPLEX AB( LDAB, * ) EXTERNAL CLANTB DOUBLE PRECISION CLANTB WCLANTB = REAL(CLANTB( NORM, UPLO, DIAG, N, K, AB, LDAB, WORK )) END FUNCTION REAL FUNCTION WCLANTP( NORM, UPLO, DIAG, N, AP, WORK ) CHARACTER DIAG, NORM, UPLO INTEGER N REAL WORK( * ) COMPLEX AP( * ) EXTERNAL CLANTP DOUBLE PRECISION CLANTP WCLANTP = REAL(CLANTP( NORM, UPLO, DIAG, N, AP, WORK )) END FUNCTION REAL FUNCTION WCLANTR( NORM, UPLO, DIAG, M, N, A, LDA, WORK ) CHARACTER DIAG, NORM, UPLO INTEGER LDA, M, N REAL WORK( * ) COMPLEX A( LDA, * ) EXTERNAL CLANTR DOUBLE PRECISION CLANTR WCLANTR = REAL(CLANTR( NORM, UPLO, DIAG, M, N, A, LDA, WORK )) END FUNCTION REAL FUNCTION WSCSUM1( N, CX, INCX ) INTEGER INCX, N COMPLEX CX( * ) EXTERNAL SCSUM1 DOUBLE PRECISION SCSUM1 WSCSUM1 = REAL(SCSUM1( N, CX, INCX )) END FUNCTION REAL FUNCTION WSLANGB( NORM, N, KL, KU, AB, LDAB, WORK ) CHARACTER NORM INTEGER KL, KU, LDAB, N REAL AB( LDAB, * ), WORK( * ) EXTERNAL SLANGB DOUBLE PRECISION SLANGB WSLANGB = REAL(SLANGB( NORM, N, KL, KU, AB, LDAB, WORK )) END FUNCTION REAL FUNCTION WSLANGE( NORM, M, N, A, LDA, WORK ) CHARACTER NORM INTEGER LDA, M, N REAL A( LDA, * ), WORK( * ) EXTERNAL SLANGE DOUBLE PRECISION SLANGE WSLANGE = REAL(SLANGE( NORM, M, N, A, LDA, WORK )) END FUNCTION REAL FUNCTION WSLANGT( NORM, N, DL, D, DU ) CHARACTER NORM INTEGER N REAL D( * ), DL( * ), DU( * ) EXTERNAL SLANGT DOUBLE PRECISION SLANGT WSLANGT = REAL(SLANGT( NORM, N, DL, D, DU )) END FUNCTION REAL FUNCTION WSLANHS( NORM, N, A, LDA, WORK ) CHARACTER NORM INTEGER LDA, N REAL A( LDA, * ), WORK( * ) EXTERNAL SLANHS DOUBLE PRECISION SLANHS WSLANHS = REAL(SLANHS( NORM, N, A, LDA, WORK )) END FUNCTION REAL FUNCTION WSLANSB( NORM, UPLO, N, K, AB, LDAB, WORK ) CHARACTER NORM, UPLO INTEGER K, LDAB, N REAL AB( LDAB, * ), WORK( * ) EXTERNAL SLANSB DOUBLE PRECISION SLANSB WSLANSB = REAL(SLANSB( NORM, UPLO, N, K, AB, LDAB, WORK )) END FUNCTION REAL FUNCTION WSLANSP( NORM, UPLO, N, AP, WORK ) CHARACTER NORM, UPLO INTEGER N REAL AP( * ), WORK( * ) EXTERNAL SLANSP DOUBLE PRECISION SLANSP WSLANSP = REAL(SLANSP( NORM, UPLO, N, AP, WORK )) END FUNCTION REAL FUNCTION WSLANST( NORM, N, D, E ) CHARACTER NORM INTEGER N REAL D( * ), E( * ) EXTERNAL SLANST DOUBLE PRECISION SLANST WSLANST = REAL(SLANST( NORM, N, D, E )) END FUNCTION REAL FUNCTION WSLANSY( NORM, UPLO, N, A, LDA, WORK ) CHARACTER NORM, UPLO INTEGER LDA, N REAL A( LDA, * ), WORK( * ) EXTERNAL SLANSY DOUBLE PRECISION SLANSY WSLANSY = REAL(SLANSY( NORM, UPLO, N, A, LDA, WORK )) END FUNCTION REAL FUNCTION WSLANTB( NORM, UPLO, DIAG, N, K, AB, LDAB, WORK ) CHARACTER DIAG, NORM, UPLO INTEGER K, LDAB, N REAL AB( LDAB, * ), WORK( * ) EXTERNAL SLANTB DOUBLE PRECISION SLANTB WSLANTB = REAL(SLANTB( NORM, UPLO, DIAG, N, K, AB, LDAB, WORK )) END FUNCTION REAL FUNCTION WSLANTP( NORM, UPLO, DIAG, N, AP, WORK ) CHARACTER DIAG, NORM, UPLO INTEGER N REAL AP( * ), WORK( * ) EXTERNAL SLANTP DOUBLE PRECISION SLANTP WSLANTP = REAL(SLANTP( NORM, UPLO, DIAG, N, AP, WORK )) END FUNCTION REAL FUNCTION WSLANTR( NORM, UPLO, DIAG, M, N, A, LDA, WORK ) CHARACTER DIAG, NORM, UPLO INTEGER LDA, M, N REAL A( LDA, * ), WORK( * ) EXTERNAL SLANTR DOUBLE PRECISION SLANTR WSLANTR = REAL(SLANTR( NORM, UPLO, DIAG, M, N, A, LDA, WORK )) END FUNCTION REAL FUNCTION WSLAPY2( X, Y ) REAL X, Y EXTERNAL SLAPY2 DOUBLE PRECISION SLAPY2 WSLAPY2 = REAL(SLAPY2( X, Y )) END FUNCTION REAL FUNCTION WSLAPY3( X, Y, Z ) REAL X, Y, Z EXTERNAL SLAPY3 DOUBLE PRECISION SLAPY3 WSLAPY3 = REAL(SLAPY3( X, Y, Z )) END FUNCTION REAL FUNCTION WSLAMCH( CMACH ) CHARACTER CMACH EXTERNAL SLAMCH DOUBLE PRECISION SLAMCH WSLAMCH = REAL(SLAMCH( CMACH )) END FUNCTION REAL FUNCTION WSLAMC3( A, B ) REAL A, B EXTERNAL SLAMC3 DOUBLE PRECISION SLAMC3 WSLAMC3 = REAL(SLAMC3( A, B )) END FUNCTION
scipy/_build_utils/src/wrap_accelerate_f.f
! Copyright (c) 2021-2022, University of Colorado Denver. All rights reserved. ! ! This file is part of <T>LAPACK. ! <T>LAPACK is free software: you can redistribute it and/or modify it under ! the terms of the BSD 3-Clause license. See the accompanying LICENSE file. subroutine ssymm ( & layout, side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc ) use, intrinsic :: iso_c_binding use constants, & only: wp => sp, & blas_size implicit none character :: layout, side, uplo integer(blas_size) :: m, n, lda, ldb, ldc real(wp) :: alpha, beta real(wp), target :: A, B, C character(c_char) :: c_layout, c_side, c_uplo include "tblas.fi" c_layout = layout c_side = side c_uplo = uplo call ssymm_ ( & c_layout, c_side, c_uplo, m, n, alpha, & c_loc(A), lda, c_loc(B), ldb, beta, c_loc(C), ldc ) end subroutine
src/blas/symm.f90
c read a few eigenvectors, a spectrum, and try to fit z program fitz include 'specarray.h' parameter(NMAXVECTS=12) parameter(NMAXSTEP=2*NLOGWMAX) c scale sky by estimating read and photon noise ? parameter (IFSCALENOISE=1) c plot intermediate steps? parameter (IFPLOTALL=0) c read spectrum names from a file? parameter (IFFILE=1) c overplot the actual z, when known? parameter (IFREALZ=1) c max number of minima to find and zestimates to return parameter (NMAXEST=12) c real evects(NMAXVECTS,NLOGWMAX) integer koffset,nvmax,nwlmax real z common /vectorfit/ koffset,z,nvmax,nwlmax, $ evects(NMAXVECTS,NLOGWMAX) real spec1(NWAVEMAX),espec1(NWAVEMAX) real spec2(NLOGWMAX),espec2(NLOGWMAX) real spec3(NLOGWMAX),espec3(NLOGWMAX) real tmpspec(NLOGWMAX),wavelog(NLOGWMAX),wavelin(NWAVEMAX) integer ifit(NLOGWMAX) real wfit(NLOGWMAX),sfit(NLOGWMAX),efit(NLOGWMAX) real rifit(NLOGWMAX),fitvect(NLOGWMAX) real waverest1(NLOGWMAX) real wrestlin(NWAVEMAX) real zp1log(NMAXSTEP),zarr(NMAXSTEP) real rnparr(NMAXSTEP) integer indkarr(NMAXEST) real diffarr(NMAXEST),zestarr(NMAXEST) c real xpl(2),ypl(2) c real zout(NLOGWMAX),zchisq(NLOGWMAX) character sname*60,esname*60,vname*60 character answ*3,tlabel*60,xlabel*60 character fsname*60,fename*60,fzname*60 integer isize(7) c stuff for svdfit real uu(NLOGWMAX,NMAXVECTS) real vv(NMAXVECTS,NMAXVECTS),ww(NMAXVECTS) real acoeff(NMAXVECTS),evals(NMAXVECTS) real chifit(NMAXSTEP),rchifit(NMAXSTEP) external funcs include 'pcredshift.h' c call pgbeg(0,'?',2,2) call pgbeg(0,'?',1,1) call pgscf(2) call pgsch(1.3) write(*,'("Full continuum fit subtraction [1,y-yes]? ",$)') read(*,'(a1)') answ if (answ(1:1) .eq. '0' .or. answ(1:1) .eq. 'n' .or. $ answ(1:1) .eq. 'N') then ifcontsub = 0 else ifcontsub = 1 end if write(*,'("Do mean subtraction [1,y-yes]? ",$)') read(*,'(a1)') answ if (answ(1:1) .eq. '0' .or. answ(1:1) .eq. 'n' .or. $ answ(1:1) .eq. 'N') then ifmeansub = 0 else ifmeansub = 1 end if 100 write(*, $ '("Diameter for median smoothing, pixels [0,1=none]: ",$)') read(*,'(a3)') answ if (answ(1:3) .eq. ' ') then ndiamed = 0 else read(answ,*,err=100) ndiamed end if c write(*, c $ '("Restwave spectrum region to use in PCA, min, max: ",$)') c read(*,*) pcawmin,pcawmax c pwminlog = log10(pcawmin) c pwmaxlog = log10(pcawmax) nvmax=NMAXVECTS nwlmax=NLOGWMAX c open file and read eigenvectors. nvects is returned as c the # of vectors to use, nw is the actual # of wavelength pixels call readevects(evects,nvmax,nwlmax,waverest1,nv,nw) nwlog = nw c figure out w0 and dw for the eigenvectors. This is in log w c There is no check yet to make sure it's evenly spaced. dwrlog = (waverest1(nw) - waverest1(1)) / (nwlog-1.) w0rlog = waverest1(1) - dwrlog do i=1,nwlog wrestlin(i) = 10**waverest1(i) end do c write(*,*) "w0rlog, dwrlog = ", w0rlog,dwrlog c plot the eigenvectors call pgsubp(2,2) do i=1,nv do j=1,nwlog tmpspec(j) = evects(i,j) end do call showspec(nwlog,waverest1,tmpspec) write(tlabel,'(a,1x,i3)') "eigenvector",i-1 call pglabel("log wavelength"," ",tlabel) end do c call pgsubp(1,1) call pgsubp(2,2) 200 continue if (IFFILE .eq. 1) then write(*,'("File with spectrum names: ",$)') read(*,'(a)') fsname open(10,file=fsname,status='old',err=200) write(*,'("File with sky/rms names: ",$)') read(*,'(a)') fename open(11,file=fename,status='old',err=200) if (IFREALZ .eq. 1) then write(*,'("File with actual zs for plot [none]: ",$)') read(*,'(a)') fzname if (fzname(1:3) .ne. ' ') then open(12,file=fzname,status='old',err=202) ifzfile=1 else c no actual z file ifzfile=0 end if 202 continue end if end if open(2,file='fitz.out',status='unknown') open(3,file='fitz.out1',status='unknown') open(4,file='fitz.out2',status='unknown') 220 continue c open files and read spec and error, with wavelength calib. if (IFFILE .eq. 1) then read(10,'(a)',err=666,end=666) sname read(11,'(a)',err=666,end=666) esname zreal=1.0e6 if (IFREALZ .eq. 1 .and. ifzfile .eq. 1) then read(12,*,err=222,end=222) zreal end if 222 continue else write(*,'("fits file with spectrum [quit]: ",$)') read(*,'(a)') sname if (sname(1:3) .eq. ' ') go to 666 write(*,'("fits file with sky/rms [quit]: ",$)') read(*,'(a)') esname if (esname(1:3) .eq. ' ') go to 666 if (IFREALZ .eq. 1) then write(*,'("actual z for plotting [none]: ",$)') read(*,'(a)') fzname zreal=1.0e6 if (fzname(1:3) .ne. ' ') then read(fzname,*,err=232) zreal end if 232 continue end if end if call imopen(sname,1,imgs,ier) if (ier .ne. 0) go to 220 call imgsiz(imgs,isize,idim,itype,ier) c trim a buffer at end to get rid of the region where Marc encoded c the slit number ibuff2 = 25 nwspec = isize(1) - ibuff2 call imopen(esname,1,imge,ier) c call imgsiz(imge,isize,idim,itype,ier) if (ier .ne. 0) go to 220 call imgl1r(imgs,spec1,ier) call imgl1r(imge,espec1,ier) c find wavelength of pixel 0, and dw/dpix call imgkwr(imgs,'CRPIX1',refpix,ier) c if (ier .ne. 0) refpix = badset if (ier .ne. 0) then ier=0 refpix = 0. end if call imgkwr(imgs,'CRVAL1',refw,ier) if (ier .ne. 0) refw = badset call imgkwr(imgs,'CDELT1',dwsp,ier) if (ier .ne. 0 .or. abs(dwsp) .lt. 1.e-3) then ier=0 call imgkwr(imgs,'CD1_1',dwsp,ier) if (ier .ne. 0) dwsp = badset end if if (refpix .gt. bad .and. refw .gt. bad .and. dwsp .gt. bad) $ then w0sp = refw - refpix*dwsp c dws = dwsp else c we should really do something here c w0s = badset c dws = badset write(*, $ '("Couldnt get w0 and dw for ",a," enter w0,dw: ",$)') sname read(*,*) w0sp,dwsp end if write(*,*) "w0sp, dwsp = ", w0sp,dwsp call imclos(imgs,ier) call imclos(imge,ier) c zero out anything beyond the actual spectrum do i=nwspec+1,nw spec1(i) = 0.0 espec1(i) = 0.0 end do c try to clean out bad values badmax = 5000. do i=1,nw if(spec1(i) .lt. bad .or. spec1(i) .gt. badmax) $ spec1(i) = badset if(espec1(i) .lt. bad .or. espec1(i) .gt. badmax) $ espec1(i) = badset end do c Figure out the ref wavelength for the log rebinning so that c it falls on the wl scale of the eigenvectors. tmp = log10(w0sp) itmp = int( (tmp-w0rlog)/dwrlog ) w0log = w0rlog + dwrlog*itmp c k0offset is the offset in integer index of log wavelength c from the beginning of the eigenvectors to the spectrum to be fit. k0offset = itmp dwlog = dwrlog c write(*,*) "w0log, dwlog = ", w0log,dwlog c convert sky spectrum into std.dev spectrum. This might be better c done after smoothing and log rebinning? c Placeholder assumptions: 2x30 min exposures, 5 pixel diam c extraction window. if (IFSCALENOISE .eq. 1) then nexp = 2 exptime = 30.*60. c dpix = 5. dpix = 1. call scalenoise(espec1,nwspec,nexp,exptime,dpix,espec2) else c or if the sky spectrum is actually a rms/per pixel spectrum c we could do nothing, or scale down by a factor of c sqrt(#pixels). #pixels is most likely 7. do i=1,nwspec espec2(i) = espec1(i) / sqrt(7.0) end do end if do i=1,nw wavelin(i) = w0sp+i*dwsp wavelog(i) = log10(wavelin(i)) end do if (IFPLOTALL .ne. 0) then call showspec(nwspec,wavelin,spec1) call pgqci(indexc) call pgsci(3) call pgline(nwspec,wavelin,espec2) call pgsci(indexc) call pglabel("wavelength","counts","spectrum and error") end if c blank out? blankoutsky is supposed to run on a 2-d array call blankoutsky(spec1,1,1,nwspec,wavelin) cc find region of good data c call findends(nwspec,spec1,imin,imax) c imingood = imin c nwspecgood = imax-imin+1 c median smooth if (ndiamed .gt. 1) then call medsmooth(nwspec,spec1,ndiamed,spec2) c call medsmooth(nwspecgood,spec1(imingood),ndiamed, c $ spec2(imingood)) c attempt to compensate the errors. I divided ndiamed by 2 as c a hack since adjacent pixels are not independent (assume the # C of indep measurements is about pixels/2 if well sampled) tmp = sqrt(max(ndiamed/2.,1.)) do i=1,nwspec espec2(i) = espec2(i) / tmp end do else do i=1,nwspec spec2(i) = spec1(i) espec2(i) = espec2(i) end do end if if (IFPLOTALL .ne. 0) then call showspec(nwspec,wavelin,spec2) call pglabel("wavelength","counts","median smoothed") call pgqci(indexc) call pgsci(3) call pgline(nwspec,wavelin,espec2) call pgsci(indexc) end if c log rebin both. log rebinning the std dev the same way is a c total hack, thus it is better done on the variance call logrebin(spec2,nwspec,w0sp,dwsp,nwlog,w0log,dwlog,spec3) c call logrebin(spec2(imingood),nwspecgood,w0sp,dwsp, c $ nwlog,w0log,dwlog,spec3) c convert std dev to variance do i=1,nwlog espec3(i) = espec2(i)**2 end do call logrebin(espec3,nwspec,w0sp,dwsp,nwlog,w0log,dwlog,espec2) c call logrebin(espec3(imingood),nwspecgood,w0sp,dwsp, c $ nwlog,w0log,dwlog,espec2) c convert back do i=1,nwlog espec3(i) = sqrt(max(espec2(i),1.e-2)) end do if (IFPLOTALL .ne. 0) then call showspec(nwlog,wavelog,spec3) call pglabel("log wavelength","counts","log rebinned") call pgqci(indexc) call pgsci(3) call pgline(nwlog,wavelog,espec3) call pgsci(indexc) end if c find&clean ends call findends(nwlog,spec3,imin,imax) call cleanends(nwlog,spec3,imin,imax) write(*,*) "imin, imax = ", imin,imax c continuum subtract if (ifcontsub .ne. 0) then contwrad = 100.*dwlog call contsubmed(spec3,nwlog,dwlog,contwrad) else call contsubconst(spec3,nwlog) end if if (IFPLOTALL .ne. 0) then call showspec(nwlog,wavelog,spec3) call pgqci(indexc) call pgsci(3) call pgline(nwlog,wavelog,espec3) call pgsci(indexc) call pglabel("log wavelength","counts","continuum subtracted") end if c copy wave and spec to temp array, cleaning out bad points npfit=0 do i=1,nwlog if(spec3(i) .gt. bad .and. espec3(i) .gt. bad) then npfit=npfit+1 ifit(npfit) = i rifit(npfit) = real(i) wfit(npfit) = w0log + i*dwlog sfit(npfit) = spec3(i) efit(npfit) = espec3(i) end if end do write (*,*) npfit, " points to fit" c if (IFPLOTALL .ne. 0) then call showspec(npfit,wfit,sfit) call pgqci(indexc) call pgsci(3) call pgline(npfit,wfit,efit) call pgsci(indexc) call pglabel("log wavelength","counts", $ "spectrum and error to fit, "//sname) c end if c What are the good data regions? The spectrum was c good from imin to imax (before cleanends). Eigenvector 1 c (actually the mean) is good from jmin to jmax. do j=1,nwlog spec2(j) = evects(1,j) end do call findends(nwlog,spec2,jmin,jmax) c write(*,*) 'imin,imax,jmin,jmax, k0off: ',imin,imax,jmin,jmax, c $ k0offset c loop over steps in log w. the spectrum, indexed by i, c is offset to the red of the eigenvectors, indexed by j, c by k steps: j+k = i, k = i-j c and note that the two scales are offset by k0offset, so when c z=0, i=j-k0offset. Typically the spectrum starts redder c than the eigenv. so k0offset>0. If we started at c z=0, k would start at -koffset. c log w = log wrest + log(1+z), so k*dwlog = log(1+z) c Start with an offset of z=-0.01 kmin = int(log10(1-0.01)/dwlog) - k0offset c For pos. redshift, i+k0offset>j (i is position in spectrum, j in evect) c Go to the point where only 10 pts overlap, which doesn't c depend on k0offset. kmax = imax-10-jmin nk=kmax-kmin+1 c write(*,*) "kmin, kmax: ",kmin,kmax tmp1 = (kmin+k0offset)*dwlog tmp2 = (kmax+k0offset)*dwlog c write(*,*) "log(1+z): ",tmp1,tmp2," z: ", c $ 10**tmp1-1.0,10**tmp2-1.0 c open(2,file='fitz.out1',status='unknown') do k=kmin,kmax c kindex is 1 when k=kmin kindex = k-kmin+1 c for passing k to the funcs subroutine koffset=k zp1log(kindex) = (k+k0offset)*dwlog zarr(kindex) = 10**zp1log(kindex) - 1.0 z = zarr(kindex) c we should only use the data that overlaps the eigenvectors, c the eigenvectors extend from jmin to jmax, and i=j+k. c But, since we cleaned out bad points, the spectrum to fit c is no longer evenly spaced in dwlog, so ifitmax is not c trivial to calculate. Bummer! c that is, what I've been calling "i" is the index of spec3(i), c and the contents of ifit() and rifit(), but it is not the c index of ifit iminorig = jmin+k imaxorig = jmax+k c now find the corresponding index of ifit - i.e. c we want iminfit where ifit(iminfit) >= iminorig. Confused yet? call findindex(npfit,ifit,iminorig,imaxorig,iminfit,imaxfit) npfittmp = imaxfit-iminfit+1 rnparr(kindex) = real(npfittmp) c write(*,*) "iminfit,imaxfit: ",iminfit,imaxfit,npfittmp c now we gotta only use the matching points in the eigenvectors, c which is a PITA. Actually we've solved this through the way c that funcs() works. c do fit using svdfit or something like it. c Each of the functions will be an eigenvector c call bigsvdfit(wfit,sfit,efit,npfit,acoeff,nv,uu,vv,ww, c $ nwlmax,nvmax,chisq1,funcs) c call bigsvdfit(rifit,sfit,efit,npfit,acoeff,nv,uu,vv,ww, c $ nwlmax,nvmax,chisq1,funcs) call bigsvdfit(rifit(iminfit),sfit(iminfit),efit(iminfit), $ npfittmp,acoeff,nv,uu,vv,ww,nwlmax,nvmax,chisq1,funcs) chifit(kindex) = chisq1 c to get rid of division by zero when there were no points c to fit. rchifit(kindex) = chisq1/max(real(npfittmp),1.e-4) c write(2,*) k,kindex,npfittmp,zp1log(kindex),zarr(kindex), c $ chifit(kindex),rchifit(kindex) end do c close(2) c find the absolute minimum in chi-squared. there are probably c better ways to do this in the long run c call findabsmin(nk,chifit,indkmin,chimin) c call findabsmin(nk,rchifit,indkrmin,rchimin) c try finding the point with the biggest drop below "continuum" c i.e. deepest local minimum call findlocmin(nk,chifit,indkmin,chimin,chiminavg) call findlocmin(nk,rchifit,indkrmin,rchimin,rchiminavg) c find the n deepest local minima in chi squared nfind=5 call findmultmin(nk,chifit,nfind,indkarr,diffarr) zmin=zarr(indkmin) zrmin=zarr(indkrmin) do i=1,nfind zestarr(i) = zarr(indkarr(i)) end do write(*,*) "chisq min at ",indkmin,zmin,chimin,chiminavg write(*,*) "reduced chisq min at ",indkrmin,zrmin,rchimin, $ rchiminavg c write stuff to output files. c 2 - fitz.out gets # of z-estimates, z-estimates, spec name c 3 - fitz.out1 gets specname(truncated), z(deepest chisq min) , c z(deepest rchisq min), chi-min, chi-"continuum", c rchi-min, rchi-"continuum" c 4 - fitz.out2 gets for each z-est: k-index, z-est, depth in chisq c write(3,'(a,f7.4,3x,f7.4)') sname,zmin,zrmin write(3,'(a25,2(3x,f7.4),3x,4(1x,1pe10.3))') $ sname,zmin,zrmin,chimin,chiminavg,rchimin,rchiminavg write(2,'(i2,$)') nfind do i=1,nfind write(2,'(2x,f7.4$)') zestarr(i) write(4,'(i5,2x,f7.4,2x,f9.1,$)') indkarr(i),zestarr(i), $ diffarr(i) end do write(2,'(2x,a25)') sname write(4,'(2x,a25)') sname c plot c call showspec(nk,zp1log,chifit) c call plotz(log10(1.+zreal),log10(1.+zmin),log10(1+zrmin)) c write(xlabel,1010) "log(1+z)",zreal,zmin,zrmin c call pglabel(xlabel,"chi-squared",sname) call showspec(nk,zarr,chifit) call plotz(zreal,zmin,zrmin) write(xlabel,1010) "z",zreal,zmin,zrmin call pglabel(xlabel,"chi-squared",sname) call showspec(nk,zarr,rchifit) call plotz(zreal,zmin,zrmin) write(xlabel,1010) "z",zreal,zmin,zrmin call pglabel(xlabel,"reduced chi-squared",sname) 1010 format(a,", z=",f7.4," zest1=",f7.4," zest2=",f7.4) c call showspec(nk,zarr,rnparr) c call pglabel("z","number of points in fit",sname) c calculate the fit at chimin. Redo the fit to get the coeffs c for the best-fit spectrum koffset=indkmin+kmin-1 call findindex(npfit,ifit,jmin+koffset,jmax+koffset, $ iminfit,imaxfit) npfittmp=imaxfit-iminfit+1 c write(*,*) "iminfit,imaxfit: ",iminfit,imaxfit,npfittmp c call bigsvdfit(rifit,sfit,efit,npfit,acoeff,nv,uu,vv,ww, c $ nwlmax,nvmax,chisq1,funcs) call bigsvdfit(rifit(iminfit),sfit(iminfit),efit(iminfit), $ npfittmp,acoeff,nv,uu,vv,ww,nwlmax,nvmax,chisq1,funcs) write(*,*) "coeffs ",(acoeff(i),i=1,nv) do i=1,npfit call funcs(rifit(i),evals,nv) fitvect(i) = 0.0 do j=1,nv fitvect(i) = fitvect(i) + acoeff(j)*evals(j) end do end do call showspec(npfit,wfit,sfit) call pglabel("log wavelength","counts"," ") call pgmtxt('T',2.5,0.0,0.0,sname) call pgmtxt('T',1.5,0.0,0.0,"spectrum and best fits") call pgqci(indexc) call pgsci(3) call pgline(npfit,wfit,fitvect) write(tlabel,'(a,f7.4)') "chi-sq, z=",zmin call pgmtxt('T',2.5,1.0,1.0,tlabel) call pgsci(indexc) c calculate the fit at rchimin koffset=indkrmin+kmin-1 call findindex(npfit,ifit,jmin+koffset,jmax+koffset, $ iminfit,imaxfit) npfittmp=imaxfit-iminfit+1 c call bigsvdfit(rifit,sfit,efit,npfit,acoeff,nv,uu,vv,ww, c $ nwlmax,nvmax,chisq1,funcs) call bigsvdfit(rifit(iminfit),sfit(iminfit),efit(iminfit), $ npfittmp,acoeff,nv,uu,vv,ww,nwlmax,nvmax,chisq1,funcs) c write(*,*) "coeffs ",(acoeff(i),i=1,nv) do i=1,npfit call funcs(rifit(i),evals,nv) fitvect(i) = 0.0 do j=1,nv fitvect(i) = fitvect(i) + acoeff(j)*evals(j) end do end do call pgqci(indexc) call pgsci(2) call pgline(npfit,wfit,fitvect) write(tlabel,'(a,f7.4)') "red.chisq, z=",zrmin call pgmtxt('T',1.5,1.0,1.0,tlabel) call pgsci(indexc) go to 220 666 continue close(2) close(3) close(4) close(10) close(11) if (ifzfile .ne. 0) close(12) call pgend() end cccccccccccccccccccc c funcs returns the values of the nv eigenvectors c evaluated at position xfit, in the array evals c if svdfit is called with argument wfit, xfit is the c log wavelength. c if svdfit is called with argument rifit, xfit is the c index in the log wavelength array, as a real. c subroutine funcs(xfit,evals,nv) include 'specarray.h' c having NMAXVECTS in here as well as fitz is a bad kludge parameter(NMAXVECTS=12) real evals(nv) common /vectorfit/ koffset,z,nvmax,nwlmax, $ evects(NMAXVECTS,NLOGWMAX) c find the index corresponding to the position xfit c and retrieve the eigenvector values c this is for use with rifit ispec = nint(xfit) jvect = ispec-koffset if(jvect .ge. 1 .and. jvect .le. nwlmax) then do i=1,nv evals(i) = evects(i,jvect) end do else do i=1,nv evals(i) = 0.0 end do end if return end cccccccccccccccccccccccccccccccccccccccc c Draw vertical lines for the actual z and z-estimates c on the chi-squared plots. subroutine plotz(zreal,zest1,zest2) real xpl(2),ypl(2) integer indexc,indexls ypl(1) = -100. ypl(2) = 1.0e10 call pgqci(indexc) call pgqls(indexls) c call pgsls(1) xpl(1) = zreal xpl(2) = zreal call pgsci(4) call pgsls(5) call pgline(2,xpl,ypl) xpl(1) = zest1 xpl(2) = zest1 call pgsci(3) call pgsls(4) call pgline(2,xpl,ypl) xpl(1) = zest2 xpl(2) = zest2 call pgsci(2) call pgsls(3) call pgline(2,xpl,ypl) call pgsci(indexc) call pgsls(indexls) return end
fitz.f
! ! Copyright 2018 SALMON developers ! ! Licensed under the Apache License, Version 2.0 (the "License"); ! you may not use this file except in compliance with the License. ! You may obtain a copy of the License at ! ! http://www.apache.org/licenses/LICENSE-2.0 ! ! Unless required by applicable law or agreed to in writing, software ! distributed under the License is distributed on an "AS IS" BASIS, ! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ! See the License for the specific language governing permissions and ! limitations under the License. ! !----------------------------------------------------------------------------------------- subroutine eh_finalize(grid,tmp) use inputoutput, only: utime_from_au,ulength_from_au,uenergy_from_au,unit_system,iperiodic,& ae_shape1,ae_shape2,e_impulse,sysname,nt_em,nenergy,de, & directory,iobs_num_em,iobs_samp_em use salmon_parallel, only: nproc_id_global use salmon_communication, only: comm_is_root use salmon_maxwell, only:fdtd_grid,fdtd_tmp implicit none type(fdtd_grid) :: grid type(fdtd_tmp) :: tmp integer :: ii real(8),parameter :: pi=3.141592653589793d0 character(128) :: save_name !output linear response(matter dipole pm and current jm are outputted: pm = -dip and jm = -curr) if(ae_shape1=='impulse'.or.ae_shape2=='impulse') then if(iperiodic==0) then !output time-dependent dipole data if(comm_is_root(nproc_id_global)) then save_name=trim(adjustl(directory))//'/'//trim(adjustl(sysname))//'_p.data' open(tmp%ifn,file=save_name) select case(unit_system) case('au','a.u.') write(tmp%ifn,'(A)') "# time[a.u.], dipoleMoment(x,y,z)[a.u.]" case('A_eV_fs') write(tmp%ifn,'(A)') "# time[fs], dipoleMoment(x,y,z)[Ang.]" end select do ii=1,nt_em write(tmp%ifn, '(E13.5)',advance="no") tmp%time_lr(ii)*utime_from_au write(tmp%ifn, '(3E16.6e3)',advance="yes") -tmp%dip_lr(ii,:)*ulength_from_au end do close(tmp%ifn) end if !output lr data call eh_fourier(nt_em,nenergy,grid%dt,de,tmp%time_lr,tmp%dip_lr(:,1),tmp%fr_lr(:,1),tmp%fi_lr(:,1)) call eh_fourier(nt_em,nenergy,grid%dt,de,tmp%time_lr,tmp%dip_lr(:,2),tmp%fr_lr(:,2),tmp%fi_lr(:,2)) call eh_fourier(nt_em,nenergy,grid%dt,de,tmp%time_lr,tmp%dip_lr(:,3),tmp%fr_lr(:,3),tmp%fi_lr(:,3)) if(comm_is_root(nproc_id_global)) then save_name=trim(adjustl(directory))//'/'//trim(adjustl(sysname))//'_lr.data' open(tmp%ifn,file=save_name) select case(unit_system) case('au','a.u.') write(tmp%ifn,'(A)') "# energy[a.u.], Re[alpha](x,y,z)[a.u.], Im[alpha](x,y,z)[a.u.], df/dE(x,y,z)[a.u.]" case('A_eV_fs') write(tmp%ifn,'(A)') "# energy[eV], Re[alpha](x,y,z)[Ang.**3], Im[alpha](x,y,z)[Ang.**3], df/dE(x,y,z)[1/eV]" end select do ii=0,nenergy write(tmp%ifn, '(E13.5)',advance="no") dble(ii)*de*uenergy_from_au write(tmp%ifn, '(3E16.6e3)',advance="no") tmp%fr_lr(ii,:)/(-e_impulse)*(ulength_from_au**3.0d0) write(tmp%ifn, '(3E16.6e3)',advance="no") tmp%fi_lr(ii,:)/(-e_impulse)*(ulength_from_au**3.0d0) write(tmp%ifn, '(3E16.6e3)',advance="yes") 2.0d0*dble(ii)*de/pi*tmp%fi_lr(ii,:)/(-e_impulse)/uenergy_from_au end do close(tmp%ifn) end if elseif(iperiodic==3) then !output time-dependent dipole data if(comm_is_root(nproc_id_global)) then save_name=trim(adjustl(directory))//'/'//trim(adjustl(sysname))//'_current.data' open(tmp%ifn,file=save_name) select case(unit_system) case('au','a.u.') write(tmp%ifn,'(A)') "# time[a.u.], current(x,y,z)[a.u.]" case('A_eV_fs') write(tmp%ifn,'(A)') "# time[fs], current(x,y,z)[A/Ang.^2]" end select do ii=1,nt_em write(tmp%ifn, '(E13.5)',advance="no") tmp%time_lr(ii)*utime_from_au write(tmp%ifn, '(3E16.6e3)',advance="yes") -tmp%curr_lr(ii,:)*tmp%uAperm_from_au/ulength_from_au end do close(tmp%ifn) end if !output lr data call eh_fourier(nt_em,nenergy,grid%dt,de,tmp%time_lr,tmp%curr_lr(:,1),tmp%fr_lr(:,1),tmp%fi_lr(:,1)) call eh_fourier(nt_em,nenergy,grid%dt,de,tmp%time_lr,tmp%curr_lr(:,2),tmp%fr_lr(:,2),tmp%fi_lr(:,2)) call eh_fourier(nt_em,nenergy,grid%dt,de,tmp%time_lr,tmp%curr_lr(:,3),tmp%fr_lr(:,3),tmp%fi_lr(:,3)) if(comm_is_root(nproc_id_global)) then save_name=trim(adjustl(directory))//'/'//trim(adjustl(sysname))//'_lr.data' open(tmp%ifn,file=save_name) select case(unit_system) case('au','a.u.') write(tmp%ifn,'(A)') "# energy[a.u.], Re[epsilon](x,y,z), Im[epsilon](x,y,z)" case('A_eV_fs') write(tmp%ifn,'(A)') "# energy[eV], Re[epsilon](x,y,z), Im[epsilon](x,y,z)" end select do ii=1,nenergy write(tmp%ifn, '(E13.5)',advance="no") dble(ii)*de*uenergy_from_au write(tmp%ifn, '(3E16.6e3)',advance="no") 1.0d0-4.0d0*pi*tmp%fi_lr(ii,:)/(-e_impulse)/(dble(ii)*de) write(tmp%ifn, '(3E16.6e3)',advance="yes") 4.0d0*pi*tmp%fr_lr(ii,:)/(-e_impulse)/(dble(ii)*de) end do end if end if end if !observation if(iobs_num_em>0) then if(comm_is_root(nproc_id_global)) then !make information file open(tmp%ifn,file=trim(directory)//"/obs0_info.data") write(tmp%ifn,'(A,A14)') 'unit_system =',trim(unit_system) write(tmp%ifn,'(A,I14)') 'iperiodic =',iperiodic write(tmp%ifn,'(A,ES14.5)') 'dt_em =',grid%dt*utime_from_au write(tmp%ifn,'(A,I14)') 'nt_em =',(tmp%iter_end-tmp%iter_sta+1) write(tmp%ifn,'(A,ES14.5,A,ES14.5,A,ES14.5)') 'al_em =',& grid%rlsize(1)*ulength_from_au,', ',& grid%rlsize(2)*ulength_from_au,', ',& grid%rlsize(3)*ulength_from_au write(tmp%ifn,'(A,ES14.5,A,ES14.5,A,ES14.5)') 'dl_em =',& grid%hgs(1)*ulength_from_au,', ',& grid%hgs(2)*ulength_from_au,', ',& grid%hgs(3)*ulength_from_au write(tmp%ifn,'(A,I14,A,I14,A,I14)') 'lg_sta =',& grid%lg_sta(1),', ',grid%lg_sta(2),', ',grid%lg_sta(3) write(tmp%ifn,'(A,I14,A,I14,A,I14)') 'lg_end =',& grid%lg_end(1),', ',grid%lg_end(2),', ',grid%lg_end(3) write(tmp%ifn,'(A,I14)') 'iobs_num_em =',iobs_num_em write(tmp%ifn,'(A,I14)') 'iobs_samp_em =',iobs_samp_em write(tmp%ifn,'(A,ES14.5)') 'e_max =',tmp%e_max write(tmp%ifn,'(A,ES14.5)') 'h_max =',tmp%h_max close(tmp%ifn) end if end if !deallocate deallocate(tmp%ex_y,tmp%c1_ex_y,tmp%c2_ex_y,tmp%ex_z,tmp%c1_ex_z,tmp%c2_ex_z,& tmp%ey_z,tmp%c1_ey_z,tmp%c2_ey_z,tmp%ey_x,tmp%c1_ey_x,tmp%c2_ey_x,& tmp%ez_x,tmp%c1_ez_x,tmp%c2_ez_x,tmp%ez_y,tmp%c1_ez_y,tmp%c2_ez_y,& tmp%hx_y,tmp%c1_hx_y,tmp%c2_hx_y,tmp%hx_z,tmp%c1_hx_z,tmp%c2_hx_z,& tmp%hy_z,tmp%c1_hy_z,tmp%c2_hy_z,tmp%hy_x,tmp%c1_hy_x,tmp%c2_hy_x,& tmp%hz_x,tmp%c1_hz_x,tmp%c2_hz_x,tmp%hz_y,tmp%c1_hz_y,tmp%c2_hz_y) !write end if(comm_is_root(nproc_id_global)) then write(*,*) "-------------------------------------------------------" write(*,*) "**************************" write(*,*) "FDTD end" write(*,*) "**************************" end if end subroutine eh_finalize !========================================================================================= != Fourier transformation in eh ========================================================== subroutine eh_fourier(nt,ne,dt,de,ti,ft,fr,fi) use inputoutput, only: wf_em implicit none integer,intent(in) :: nt,ne real(8),intent(in) :: dt,de real(8),intent(in) :: ti(nt),ft(nt) real(8),intent(out) :: fr(0:ne),fi(0:ne) integer :: ie,it real(8) :: ft_wf(nt) real(8) :: hw complex(8),parameter :: zi=(0.d0,1.d0) complex(8) :: zf !apply window function if(wf_em=='y') then do it=1,nt ft_wf(it)=ft(it)*( 1.0d0 -3.0d0*(ti(it)/maxval(ti(:)))**2.0d0 +2.0d0*(ti(it)/maxval(ti(:)))**3.0d0 ) end do else ft_wf(:)=ft(:) end if !Fourier transformation do ie=0,ne hw=dble(ie)*de; zf=(0.0d0,0.0d0); !$omp parallel !$omp do private(it) reduction( + : zf ) do it=1,nt zf=zf+exp(zi*hw*ti(it))*ft_wf(it) end do !$omp end do !$omp end parallel zf=zf*dt; fr(ie)=real(zf,8); fi(ie)=aimag(zf) end do end subroutine eh_fourier
src/maxwell/eh_finalize.f90
subroutine ed_gf_cluster_scalar(zeta,gf) complex(8) :: zeta complex(8),dimension(Nlat,Nlat,Nspin,Nspin,Norb,Norb),intent(inout) :: gf complex(8) :: green integer :: ispin integer :: ilat,jlat integer :: iorb,jorb integer :: iexc,Nexc integer :: ichan,Nchannel,istate,Nstates integer :: i,is,js complex(8) :: weight,de real(8) :: chan4 ! if(.not.allocated(impGmatrix))stop "ed_gf_cluster ERROR: impGmatrix not allocated!" ! if(ed_gf_symmetric)then chan4=0.d0 else chan4=1.d0 endif gf = zero ! do ilat=1,Nlat do jlat=1,Nlat do iorb=1,Norb do jorb=1,Norb do ispin=1,Nspin ! green = zero Nstates = size(impGmatrix(ilat,jlat,ispin,ispin,iorb,jorb)%state) do istate=1,Nstates Nchannel = size(impGmatrix(ilat,jlat,ispin,ispin,iorb,jorb)%state(istate)%channel) do ichan=1,Nchannel Nexc = size(impGmatrix(ilat,jlat,ispin,ispin,iorb,jorb)%state(istate)%channel(ichan)%poles) if(Nexc .ne. 0)then do iexc=1,Nexc weight = impGmatrix(ilat,jlat,ispin,ispin,iorb,jorb)%state(istate)%channel(ichan)%weight(iexc) de = impGmatrix(ilat,jlat,ispin,ispin,iorb,jorb)%state(istate)%channel(ichan)%poles(iexc) green = green + weight/(zeta-de) enddo endif enddo enddo gf(ilat,jlat,ispin,ispin,iorb,jorb) = green enddo enddo enddo enddo enddo do ispin=1,Nspin do iorb=1,Norb do jorb=1,Norb do ilat=1,Nlat do jlat=1,Nlat if(ilat==jlat .and. iorb==jorb)cycle gf(ilat,jlat,ispin,ispin,iorb,jorb) = 0.5d0*(gf(ilat,jlat,ispin,ispin,iorb,jorb) & - (one-chan4*xi)*gf(ilat,ilat,ispin,ispin,iorb,iorb) - (one-chan4*xi)*gf(jlat,jlat,ispin,ispin,jorb,jorb)) enddo enddo enddo enddo enddo ! end subroutine ed_gf_cluster_scalar subroutine ed_gf_cluster_array(zeta,gf) complex(8),dimension(:) :: zeta complex(8),dimension(Nlat,Nlat,Nspin,Nspin,Norb,Norb,size(zeta)),intent(inout) :: gf complex(8),dimension(Nlat,Nlat,Nspin,Nspin,Norb,Norb) :: green integer :: ispin integer :: ilat,jlat integer :: iorb,jorb integer :: iexc,Nexc integer :: ichan,Nchannel,istate,Nstates integer :: i,is,js real(8) :: weight,de ! if(.not.allocated(impGmatrix))stop "ed_gf_cluster ERROR: impGmatrix not allocated!" ! gf = zero do i=1,size(zeta) call ed_gf_cluster_scalar(zeta(i),green) gf(:,:,:,:,:,:,i) = green enddo ! end subroutine ed_gf_cluster_array
ED_IO/gf_cluster.f90
module model_initialiser contains ! remesher: ! Function based on the origianl REMESH function ! Input (in COMMON blocks): ! H(,) - array of independent variables (in unnamed COMMON) ! DH(,) - list of changes in independent variables (in unnamed COMMON) ! KH - current number of meshpoints in H(,) ! Input options: ! KH2 - new number of meshpoints for this model ! JCH - switch to determine whether to construct new mesh spacing function ! and initialise composition or not. ! BMS - Total mass in the binary (EV) ! TM - New mass of the star ! P1 - New rotational period of the star (solid body) ! ECC - New eccentricity of the binary ! OA - New orbital angular momentum ! JSTAR - Labels which if the stars to initislise variables for ! JF - Switch to decide which variables to recompute ! TODO: this could be split up into different subroutines for each of the ! individual tasks. subroutine remesher( kh2, jch, bms, tm, p1, ecc, oa, jstar, jf ) use real_kind use constants use mesh use init_dat use settings use control use atomic_data use test_variables use eostate_types use structure_functions use current_model_properties use structure_variables use accretion_abundances use indices implicit none integer, intent(in) :: kh2, jch, jstar, jf real(double), intent(in) :: bms, tm, p1, ecc, oa integer :: nm_current, nm_next, nm_target integer :: ik, ikk, ih, i integer :: jo integer :: ksv, kt5 type(init_dat_settings) :: initdat real(double) :: nh(nvar,nm), ndh(nvar,nm), nndh(nvar,nm) real(double) :: q1, q2, dk, dty, vd, dtb, ageb, pcrit, wcrit, w1 real(double) :: si, vma, hpc logical :: equilibrium logical :: newmesh real(double) :: var(nvar), dvar(nvar), fn1(nfunc) real(double) :: qa(NM) type(eostate) :: eos real(double) :: xh0, xhe0, xc0, xn0, xo0, xne0, xmg0, xsi0, xfe0 real(double) :: che real(double) :: xh, xhe, xc, xn, xo, xne, xmg, xsi, xfe real(double) :: r real(double) :: qq ! Determines mesh-point metric: mesh-point interval real(double) :: qm ! Determines mesh-point metric: derivative of mesh spacing function wrt mass real(double) :: phim ! Derivative of gravitational potential with respect to m**(2/3) real(double) :: gmr ! Effective gravity at the surface(?) real(double) :: m3 ! m^(1/3), m is the mass coordinate ! Backup current settings so we can restore them when we're done dtb = dt ageb = age call push_init_dat(initdat, kh2, ksv, kt5, jch) ! Change settings to a reasonable set of defaults call load_basic_init_dat(ik, ksv, kt5, ik) kop = initdat%kop kx = 0; ky = 0; kz = 0; kth = 0 cmi = 0.0 crd = 0.0d0 kt1 = 100 kt2 = 0 kt3 = 0 kt4 = 100 kt5 = 100 ksv = 100 joc = 1 jter = 0 ! Set initial composition. ! The composition variables are NOT the actual mass fractions if we ! use non-integer atomic masses, so we have to compute what they are ! The composition variables used in the code are baryon number fractions ! We calculate this even if we don't want to do a ZAMS run because we need to ! know the baryon number densities of Fe, Si and Mg. ! Note that the actual abundances of Si and Fe are forced to by non-zero. ! This is because the EoS becomes poorly defined if there are not enough free ! electrons. It has no impact on the opacity and only a small impact on the ! mean molecular weight and the mass loss rate. che = 1.0d0 - ch - czs cn = 1.0d0 - cc - co - cne - cmg - csi - cfe xh0 = ch*cbn(1)/can(1) xhe0 = che*cbn(2)/can(2) xc0 = cc*czs*cbn(3)/can(3) xn0 = cn*czs*cbn(4)/can(4) xo0 = co*czs*cbn(5)/can(5) xne0 = cne*czs*cbn(6)/can(6) xmg0 = cmg*czs*cbn(7)/can(7) xsi0 = csi*czs*cbn(8)/can(8) xfe0 = cfe*czs*cbn(9)/can(9) xh = xh0 xhe = xhe0 xc = xc0 xn = xn0 xo = xo0 xne = xne0 xmg = xmg0 xsi = max(xsi0, csi*1.0d-4) xfe = max(xfe0, cfe*1.0d-4) vma = xh + xhe + xc + xn + xo + xne + xmg + xsi + xfe xh = xh / vma xhe = xhe / vma xc = xc / vma xn = xn / vma xo = xo / vma xne = xne / vma xfe = xfe / vma xsi = xsi / vma xmg = xmg / vma ! Initialise composition variables h(VAR_MG24, 1:kh) = xmg h(VAR_SI28, 1:kh) = xsi h(VAR_FE56, 1:kh) = xfe if ( jch >= 4 ) then h(VAR_H1,1:kh) = xh h(VAR_O16,1:kh) = xo h(VAR_HE4,1:kh) = xhe h(VAR_C12,1:kh) = xc h(VAR_NE20,1:kh) = xne h(VAR_N14,1:kh) = xn end if ! We should always do this for Mg24, since that's never stored if (use_mg24_eqn) then do ik=1, kh xmg = h(VAR_H1,ik) + h(VAR_HE4, ik) + h(VAR_C12, ik) + h(VAR_O16, ik) + h(VAR_NE20, ik) + h(VAR_N14, ik) + xfe + xsi h(VAR_MG24,ik) = max(0.0d0, 1.0 - xmg) end do end if ! Now we must also convert the abundances of the accreted material. If not ! set from init.dat, set from initial abundances. !> \todo FIXME: this will cause problems if we ever need to call REMESH twice in !! the same run !< x1ac = x1ac*cbn(1)/can(1) x4ac = x4ac*cbn(2)/can(2) x12ac = x12ac*cbn(3)/can(3) x14ac = x14ac*cbn(4)/can(4) x16ac = x16ac*cbn(5)/can(5) x20ac = x20ac*cbn(6)/can(6) x24ac = x24ac*cbn(7)/can(7) if (x1ac < 0.0) x1ac = xh0 if (x4ac < 0.0) x4ac = xhe0 if (x12ac < 0.0) x12ac = xc0 if (x14ac < 0.0) x14ac = xn0 if (x16ac < 0.0) x16ac = xo0 if (x20ac < 0.0) x20ac = xne0 if (x24ac < 0.0) x24ac = xmg0 vma = x1ac + x4ac + x12ac + x14ac + x16ac + x20ac + x24ac + xfe + xsi x1ac = x1ac / vma x4ac = x4ac / vma x12ac = x12ac / vma x14ac = x14ac / vma x16ac = x16ac / vma x20ac = x20ac / vma x24ac = x24ac / vma ! make sure XH is 1-everything else and abundancies sum to 1 x1ac = max(0.0d0, 1.0d0-(x4ac+x12ac+x14ac+x16ac+x20ac+x24ac+xfe0+xsi0)) ! Initialise accretion abundances for both stars xac(1, 1:2) = x1ac xac(2, 1:2) = x4ac xac(3, 1:2) = x12ac xac(4, 1:2) = x14ac xac(5, 1:2) = x16ac xac(6, 1:2) = x20ac xac(7, 1:2) = x24ac ! Set initial values of some other variables ! Typical mass-scale for the interior (needed for mesh spacing function) mc(jstar) = tm ! New mass after remesh var(:) = h(:, kh) dvar(:) = 0.0d0 call funcs1 ( kh, -2, var(:), dvar(:), fn1(:), eos, px=sx(:,2)) hpc = sqrt(eos%p/(cg * eos%rho * eos%rho)) mc(jstar) = 3.5d-33 * eos%rho * hpc**3 ! Initialise binary (orbital) parameters h(VAR_HORB, 1:kh) = oa ! New orbital angular momentum h(VAR_ECC, 1:kh) = ecc ! New eccentricity h(VAR_BMASS, 1:kh) = bms ! New total binary mass ! First: change the number of meshpoints or the mesh spacing function ! Determine if we need to calculate a new mesh (independent of the number ! of meshpoints) newmesh = .false. if (jch>3) newmesh = .true. ! Set new number of meshpoints nm_current = kh nm_target = kh2 nm_next = nm_target print *, 'nremesh from', nm_current, 'to', nm_target do while(newmesh .or. nm_current /= nm_next) newmesh = .false. print *, 'trying ', nm_next ! Store old model, so we can go back if needed nh(:,1:nm_current) = h(:,1:nm_current) ndh(:,1:nm_current) = dh(:,1:nm_current) ! Find values of mesh spacing function do ik=1, nm_current var(:) = h(:, ik) call funcs1 ( ik, -2, var(:), dvar(:), fn1(:)) ! Calculate stuff qa(ik) = qq ! Store mesh spacing function end do ! Interpolate model onto new mesh ! Find values of mesh spacing function at the external points ! Needed to calculate the new mesh, where the meshspacing gradient is ! constant. q1 = qa(1) q2 = (nm_next - 1.0d0)/(qa(nm_current) - qa(1)) do ik = 1, nm_current qa(ik) = (qa(ik) - q1)*q2 + 1.0d0 ! Adjust meshspacing end do ih = 1 do ik = 1, nm_next dk = 0.0d0 if ( ik == nm_next ) ih = nm_current if ( ik /= 1 .and. ik /= nm_next ) then ! Find the proper value for the meshspacing function at ! this meshpoint do i = 1, 50 ! Sanity check: abort if we're running out of the mesh ! boundary if ( ih+1 > nm_current) then write (0, *) & 'remesh running outside mesh boundary, aborting' stop end if if ( ik >= qa(ih + 1) ) ih = ih + 1 if ( ik < qa(ih + 1) ) exit ! Break loop end do dk = (ik - qa(ih))/(qa(ih + 1) - qa(ih)) end if ! Linear interpolation for new H and DH h(:, ik) = nh(:, ih) + dk*(nh(:, ih + 1) - nh(:, ih)) nndh(:, ik) = ndh(:, ih) + dk*(ndh(:, ih + 1) - ndh(:, ih)) end do !H(6, 1:KH) = 1.0/Q2 ! Gradient of mesh spacing ! Now see if the model will converge properly if we let the code iterate dty = dt/csy jo = 0 jnn = 0 kh = nm_next call printb ( jo, 1, 22 ) age = age - dty call nextdt ( dty, jo, 22 ) jnn = 1 dh(:, 1:nm_next) = 0.0d0 call solver(20, id, kt5, jo) if (jo == 0) then print *, 'converged ok' ! If yes, pick next number of meshpoints nm_current = nm_next nm_next = nm_target h(:,1:nm_current) = h(:,1:nm_current) + dh(:,1:nm_current) else ! If no, pick a smaller number of meshpoints in between the current value ! and the target and try again. nm_next = (nm_current+nm_next)/2 print *, 'cannot converge, reduce to ', nm_next ! Restore backup copies of H and DH h(:,1:nm_current) = nh(:,1:nm_current) dh(:,1:nm_current) = ndh(:,1:nm_current) end if end do print *, 'nremesh finished with ', nm_current, '(wanted ', nm_target,')' if (nm_current < nm_target) then print *, '*** nremesh failed ***' stop end if dh(:, 1:nm_current) = nndh(:,1:nm_current) dh(:, 1:nm_current) = 0.0 kh = nm_current ! Second: scale the mass vd = tm/h(VAR_MASS, 1) vd = 1.0 print *, 'scaling mass by factor', vd do while (abs(1.0d0 - vd) > 0.1) vd = max(0.9d0,min(vd, 1.1d0)) h(VAR_MASS, 1:kh) = vd*h(VAR_MASS, 1:kh) ! Scale mass kth = 1 jhold = 4 equilibrium = equilibrate_model(kt5) if (.not. equilibrium) then !H(:,1:nm_current) = NH(:,1:nm_current) print *, '*** failed ***' stop end if vd = tm/h(VAR_MASS, 1) end do h(VAR_MASS, 1:kh) = vd*h(VAR_MASS, 1:kh) ! Scale mass ! Third: scale the surface rotation rate ! Make the whole star rotate with the surface rate, if desired ! Convert rotational period -> rotation rate forall (ik=1:kh) h(VAR_OMEGA, ik) = 2.0*cpi/(h(VAR_OMEGA, ik) * csday) if (start_with_rigid_rotation) h(VAR_OMEGA,2:kh) = h(VAR_OMEGA,1) ! Now scale the surface rate, similar to the way the mass is scaled ! If we forced the star to rigid rotation before then this will set the ! rotation profile throughout the entire star wcrit = sqrt(cg*tm/exp(3*h(VAR_LNR, 1))) pcrit = 2.0*cpi/wcrit/csday w1 = 2.0*cpi/p1/csday print *, 'scaling rotation rate by factor', w1/h(13, 1) ! For rotation rates within 1/4 of critical be a bit more careful. Here we ! need to approach the desired rate smoothly, adjusting the structure of ! the star at each step. !> \todo FIXME: This should be more akin to the bit that updates the code on the !! new mesh, ie, not necessarily bring the star into equilibrium. !< if (wcrit/w1 < 4.0) then call set_solid_rotation print *, 'Period', p1, 'close to critical rate', pcrit vd = 0.25*wcrit/h(VAR_OMEGA,1) h(VAR_OMEGA, 1:kh) = vd*h(VAR_OMEGA, 1:kh) ! Scale rotation rate kth = 1 equilibrium = converge_model(kt5) do while (equilibrium .and. abs(w1 - h(VAR_OMEGA,1)) > 1.0d-6) vd = max(0.9d0,min(vd, 1.1d0)) h(VAR_OMEGA, 1:kh) = vd*h(VAR_OMEGA, 1:kh) jhold = 4 equilibrium = converge_model(kt5) vd = w1/h(VAR_OMEGA, 1) if (.not. equilibrium) then print *, '*** failed ***' stop end if end do end if vd = w1/h(VAR_OMEGA, 1) h(VAR_OMEGA, 1:kh) = vd*h(VAR_OMEGA, 1:kh) ! Scale rotational period ! Compute moment of inertia and surface potential if (jf /= 2) then q2 = h(VAR_QK,1) h(VAR_QK, 1:kh) = 1.0d0 h(VAR_INERT, 1:kh) = 1.0d0 ! Moment of Inertia h(VAR_PHI, 1:kh) = 0.0d0 ! Gravitational potential do ik = 2, kh ikk = kh + 2 - ik var(:) = h(:, ik) call funcs1 ( ik, -2, var(:), dvar(:), fn1(:), px=sx(:,ikk)) qq = sx(85, ikk) qm = sx(86, ikk) phim = sx(87, ikk) m3 = sx(89, ikk) r = sqrt(abs(exp(2.0d0*var(7)) - ct(8))) h(VAR_INERT, ik) = h(VAR_INERT, ik - 1) + r*r*m3/(abs(qm)) h(VAR_PHI, ik) = h(VAR_PHI, ik - 1) + phim/abs(qm) end do gmr = sx(88, kh+1) h(VAR_QK, 1:kh) = q2 h(VAR_PHIS, 1:kh) = - gmr ! Potential at the stellar surface si = h(VAR_INERT, kh) ! Total moment of inertia do ik = 1, kh h(VAR_INERT, ik) = (si - h(VAR_INERT, ik))*abs(q2) ! Moment of inertia of interior h(VAR_PHI, ik) = - gmr - h(VAR_PHI, ik)*abs(q2) ! Gravitational potential end do end if ! Total angular momentum integration h(VAR_TAM, 1:kh) = h(VAR_INERT, 1:kh)*h(VAR_OMEGA, 1) if (relax_loaded_model) then kth = 1 jhold = 4 print *, 'equilibrating...' equilibrium = equilibrate_model(kt5) if (.not. equilibrium) then print *, '*** failed ***' stop end if print *, 'done' dh(:, 1:kh) = 0.0 end if ! Restore old init.dat call pop_init_dat(initdat, ik, ksv, kt5, ik) dt = dtb age = ageb print *, 'Remesh done' end subroutine remesher function converge_model(kt5) use real_kind use mesh use constants use test_variables implicit none logical :: converge_model integer, intent(in) :: kt5 real(double) :: dty integer :: jo jo = 0 dty = dt/csy call solver(20, id, kt5, jo) if (jo == 0) then age = 0.0d0 call printb ( jo, 1, 22 ) h(:,1:kh) = h(:,1:kh) + dh(:,1:kh) call nextdt ( dty, jo, 22 ) end if converge_model = (jo == 0) end function converge_model function equilibrate_model(kt5) use real_kind use mesh use constants use test_variables implicit none logical :: equilibrate_model integer, intent(in) :: kt5 real(double) :: dty integer :: i, jo jo = 0 do i=1, 40 dty = dt/csy call solver(20, id, kt5, jo) if (jo /= 0) exit age = 0.0d0 call printb ( jo, 1, 22 ) h(:,1:kh) = h(:,1:kh) + dh(:,1:kh) call nextdt ( dty, jo, 22 ) if (abs(lth) < 1.0d-8 .or. lth < 0.0d0) exit end do equilibrate_model = .false. if (lth < 1.0d-6 .and. jo == 0) equilibrate_model = .true. end function equilibrate_model end module model_initialiser
src/amuse/community/evtwin/src/trunk/code/nremesh.f90
SUBROUTINE MF_LGTORI & (xintg,r,drdc,nderiv) implicit complex (a-h,o-z) real omega,wavenr, & rmax,xmgsq,cthrsh,cmgsq,delta(4) common/mf_flag/iexact,iovflo,kexact,lowg,nodivd,noevct, & nofinl,nointg,nomesh,notlin & /mf_lgfl/lgflag(4) & /mf_mode/theta,c,s,csq,ssq,omega,wavenr,ideriv & /mf_rmtx/x(4),dxdc(4),dxdh(4),dhdxdc(4) dimension xintg(8),r(4),drdc(4) data delta/1.0,0.0,0.0,1.0/,cthrsh/0.03/,rmax/50.0/ cmgsq=REAL(c)**2+AIMAG(c)**2 do i=1,4 if (lgflag(i) .eq. 0) then xmgsq=REAL(xintg(i))**2+AIMAG(xintg(i))**2 if ((xmgsq .gt. rmax**2 .and. cmgsq .ge. cthrsh**2) & .or. & (xmgsq .gt. 1.e3*rmax**2 .and. cmgsq .lt. cthrsh**2)) & then iovflo=1 RETURN end if x(i)=xintg(i) if (nderiv .eq. 1) dxdc(i)=xintg(i+4) else if (ABS(REAL(xintg(i))) .gt. 10.) then iovflo=1 RETURN end if r(i)=EXP(xintg(i)) x(i)=(r(i)+delta(i))/c if (nderiv .eq. 1) then dlnrdc=xintg(i+4) drdc(i)=r(i)*dlnrdc dxdc(i)=(drdc(i)-x(i))/c end if end if end do RETURN END ! MF_LGTORI
LWPCv21/lib/mf_lgtori.for
C$Procedure ZZRYTPDT ( DSK, ray touches planetodetic element ) SUBROUTINE ZZRYTPDT ( VERTEX, RAYDIR, BOUNDS, . CORPAR, MARGIN, NXPTS, XPT ) C$ Abstract C C SPICE Private routine intended solely for the support of SPICE C routines. Users should not call this routine directly due to the C volatile nature of this routine. C C Find nearest intersection to a given ray's vertex of the ray and C a planetodetic volume element. If the vertex is inside the C element, the vertex is considered to be the solution. C C In the computation performed by this routine, ellipsoidal C surfaces are used, instead of surfaces of constant altitude, to C define boundaries of planetodetic volume elements. The element C defined by the input boundaries is contained in the element C bounded by the input latitude and longitude boundaries and by the C ellipsoidal surfaces. C C$ Disclaimer C C THIS SOFTWARE AND ANY RELATED MATERIALS WERE CREATED BY THE C CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) UNDER A U.S. C GOVERNMENT CONTRACT WITH THE NATIONAL AERONAUTICS AND SPACE C ADMINISTRATION (NASA). THE SOFTWARE IS TECHNOLOGY AND SOFTWARE C PUBLICLY AVAILABLE UNDER U.S. EXPORT LAWS AND IS PROVIDED "AS-IS" C TO THE RECIPIENT WITHOUT WARRANTY OF ANY KIND, INCLUDING ANY C WARRANTIES OF PERFORMANCE OR MERCHANTABILITY OR FITNESS FOR A C PARTICULAR USE OR PURPOSE (AS SET FORTH IN UNITED STATES UCC C SECTIONS 2312-2313) OR FOR ANY PURPOSE WHATSOEVER, FOR THE C SOFTWARE AND RELATED MATERIALS, HOWEVER USED. C C IN NO EVENT SHALL CALTECH, ITS JET PROPULSION LABORATORY, OR NASA C BE LIABLE FOR ANY DAMAGES AND/OR COSTS, INCLUDING, BUT NOT C LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, C INCLUDING ECONOMIC DAMAGE OR INJURY TO PROPERTY AND LOST PROFITS, C REGARDLESS OF WHETHER CALTECH, JPL, OR NASA BE ADVISED, HAVE C REASON TO KNOW, OR, IN FACT, SHALL KNOW OF THE POSSIBILITY. C C RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF C THE SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY C CALTECH AND NASA FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE C ACTIONS OF RECIPIENT IN THE USE OF THE SOFTWARE. C C$ Required_Reading C C DSK C C$ Keywords C C GEOMETRY C INTERCEPT C INTERSECTION C RAY C SURFACE C TOPOGRAPHY C C$ Declarations IMPLICIT NONE INCLUDE 'dsktol.inc' DOUBLE PRECISION VERTEX ( 3 ) DOUBLE PRECISION RAYDIR ( 3 ) DOUBLE PRECISION BOUNDS ( 2, 3 ) DOUBLE PRECISION CORPAR ( * ) DOUBLE PRECISION MARGIN INTEGER NXPTS DOUBLE PRECISION XPT ( 3 ) INTEGER LONIDX PARAMETER ( LONIDX = 1 ) INTEGER LATIDX PARAMETER ( LATIDX = 2 ) INTEGER ALTIDX PARAMETER ( ALTIDX = 3 ) C$ Brief_I/O C C VARIABLE I/O DESCRIPTION C -------- --- -------------------------------------------------- C VERTEX I Ray's vertex. C RAYDIR I Ray's direction vector. C BOUNDS I Bounds of planetodetic volume element. C CORPAR I Coordinate parameters. C MARGIN I Margin used for element expansion. C NXPTS O Number of intercept points. C XPT O Intercept. C LONIDX P Longitude index. C LATIDX P Latitude index. C ALTIDX P Altitude index. C C$ Detailed_Input C C VERTEX, C RAYDIR are, respectively, the vertex and direction vector of C the ray to be used in the intercept computation. C C Both the vertex and ray direction must be represented C in the reference frame to which the planetodetic C volume element boundaries correspond. The vertex is C considered to be an offset from the center of the C reference frame associated with the element. C C BOUNDS is a 2x3 array containing the bounds of a planetodetic C volume element. Normally this is the coverage boundary C of a DSK segment. In the element C C BOUNDS(I,J) C C J is the coordinate index. J is one of C C { LONIDX, LATIDX, ALTIDX } C C I is the bound index. C C I = 1 -> lower bound C I = 2 -> upper bound C C If the longitude upper bound is not greater than the C longitude lower bound, a value greater than the upper C bound by 2*pi is used for the comparison. C C RE, C F are, respectively, the equatorial radius and C flattening coefficient associated with the C planetodetic coordinate system in which the input C volume element is described. C C C MARGIN is a scale factor used to effectively expand the C segment boundaries so as to include intersections C that lie slightly outside the volume element. C C C$ Detailed_Output C C XPT is the intercept of the ray on the surface described C by the segment, if such an intercept exists. If the C ray intersects the surface at multiple points, the C one closest to the ray's vertex is selected. XPT is C valid if and only if FOUND is .TRUE. C C XPT is expressed in the reference frame associated C with the inputs VERTEX and RAYDIR. XPT represents C an offset from the origin of the coordinate system. C C XPT is valid only if NXPTS is set to 1. C C C NXPTS is the number of intercept points of the ray and C the volume element. C C Currently there are only two possible values for C NXPTS: C C 1 for an intersection C 0 for no intersection C C If the vertex is inside the element, NXPTS is C set to 1. C C$ Parameters C C LONIDX is the index of longitude in the second dimension of C BOUNDS. C C LATIDX is the index of latitude in the second dimension of C BOUNDS. C C ALTIDX is the index of altitude in the second dimension of C BOUNDS. C$ Exceptions C C 1) If MARGIN is negative, the error SPICE(VALUEOUTOFRANGE) C is signaled. C C 2) If the input ray direction vector is zero, the error C SPICE(ZEROVECTOR) will be signaled. C C 3) Any errors that occur while calculating the ray-surface C intercept will be signaled by routines in the call tree C of this routine. C C$ Files C C None. However, the input segment boundaries normally have C been obtained from a loaded DSK file. C C$ Particulars C C This routine sits on top of data DSK type-specific ray-segment C intercept routines such as DSKX02. C C$ Examples C C See usage in ZZDSKBUX. C C$ Restrictions C C This is a private routine. It is meant to be used only by the DSK C subsystem. C C$ Literature_References C C None. C C$ Author_and_Institution C C N.J. Bachman (JPL) C C$ Version C C- SPICELIB Version 1.0.0, 19-JAN-2017 (NJB) C C-& C$ Index_Entries C C find intercept of ray on planetodetic volume element C C-& C C SPICELIB functions C DOUBLE PRECISION DPMAX DOUBLE PRECISION HALFPI DOUBLE PRECISION VDIST DOUBLE PRECISION VDOT DOUBLE PRECISION VNORM DOUBLE PRECISION VSEP LOGICAL FAILED LOGICAL RETURN LOGICAL VZERO LOGICAL ZZPDPLTC C C Local parameters C C C Altitude expansion factor: C DOUBLE PRECISION RADFAC PARAMETER ( RADFAC = 1.1D0 ) C C Element boundary indices: C INTEGER WEST PARAMETER ( WEST = 1 ) INTEGER EAST PARAMETER ( EAST = 2 ) INTEGER SOUTH PARAMETER ( SOUTH = 1 ) INTEGER NORTH PARAMETER ( NORTH = 2 ) INTEGER LOWER PARAMETER ( LOWER = 1 ) INTEGER UPPER PARAMETER ( UPPER = 2 ) INTEGER NONE PARAMETER ( NONE = 0 ) C C Local variables C DOUBLE PRECISION AMNALT DOUBLE PRECISION AMXALT DOUBLE PRECISION ANGLE DOUBLE PRECISION APEX ( 3 ) DOUBLE PRECISION DIST DOUBLE PRECISION EASTB ( 3 ) DOUBLE PRECISION EBACK ( 3 ) DOUBLE PRECISION EMAX DOUBLE PRECISION EMIN DOUBLE PRECISION ENDPT2 ( 3 ) DOUBLE PRECISION F DOUBLE PRECISION LONCOV DOUBLE PRECISION MAXALT DOUBLE PRECISION MAXLAT DOUBLE PRECISION MAXLON DOUBLE PRECISION MAXR DOUBLE PRECISION MINALT DOUBLE PRECISION MINLAT DOUBLE PRECISION MINLON DOUBLE PRECISION MNDIST DOUBLE PRECISION NEGDIR ( 3 ) DOUBLE PRECISION PMAX DOUBLE PRECISION PMIN DOUBLE PRECISION RE DOUBLE PRECISION RP DOUBLE PRECISION S DOUBLE PRECISION SRFX ( 3 ) DOUBLE PRECISION UDIR ( 3 ) DOUBLE PRECISION VTXANG DOUBLE PRECISION VTXLVL DOUBLE PRECISION VTXOFF ( 3 ) DOUBLE PRECISION WBACK ( 3 ) DOUBLE PRECISION WESTB ( 3 ) DOUBLE PRECISION XPT2 ( 3 ) DOUBLE PRECISION XINCPT DOUBLE PRECISION YINCPT DOUBLE PRECISION Z ( 3 ) INTEGER NX LOGICAL FOUND LOGICAL INSIDE LOGICAL XIN LOGICAL XVAL1 LOGICAL XVAL2 C C Saved variables C SAVE Z C C Initial values C DATA Z / 0.D0, 0.D0, 1.D0 / IF ( RETURN() ) THEN RETURN END IF CALL CHKIN ( 'ZZRYTPDT' ) IF ( MARGIN .LT. 0.D0 ) THEN CALL SETMSG ( 'Margin must be non-negative but was #.' ) CALL ERRDP ( '#', MARGIN ) CALL SIGERR ( 'SPICE(VALUEOUTOFRANGE)' ) CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( VZERO(RAYDIR) ) THEN CALL SETMSG ( 'The ray''s direction was the zero vector.' ) CALL SIGERR ( 'SPICE(ZEROVECTOR)' ) CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF C C Determine whether the vertex is inside the element. C CALL ZZINPDT ( VERTEX, BOUNDS, CORPAR, MARGIN, NONE, INSIDE ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( INSIDE ) THEN C C We know the answer. C NXPTS = 1 CALL VEQU ( VERTEX, XPT ) CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF C C Get semi-axis lengths of the reference spheroid. C RE = CORPAR(1) F = CORPAR(2) RP = RE * ( 1.D0 - F ) C C Extract the segment's coordinate bounds into easily C readable variables. C MINALT = BOUNDS( LOWER, ALTIDX ) MAXALT = BOUNDS( UPPER, ALTIDX ) C C Normalize the longitude bounds. After this step, the bounds will C be in order and differ by no more than 2*pi. C CALL ZZNRMLON( BOUNDS(WEST,LONIDX), BOUNDS(EAST,LONIDX), ANGMRG, . MINLON, MAXLON ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF MINLAT = BOUNDS( SOUTH, LATIDX ) MAXLAT = BOUNDS( NORTH, LATIDX ) C C Compute adjusted altitude bounds, taking margin into C account. C AMNALT = MINALT - MARGIN * ABS(MINALT) AMXALT = MAXALT + MARGIN * ABS(MAXALT) C C Generate semi-axis lengths of inner and outer bounding C ellipsoids. C IF ( RE .GE. RP ) THEN C C The reference spheroid is oblate. C CALL ZZELLBDS ( RE, RP, AMXALT, AMNALT, . EMAX, PMAX, EMIN, PMIN ) ELSE C C The reference spheroid is prolate. C CALL ZZELLBDS ( RP, RE, AMXALT, AMNALT, . PMAX, EMAX, PMIN, EMIN ) END IF IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF C C The vertex is outside the element. C C Indicate no intersection to start. C NXPTS = 0 C C We'll use a unit length copy of the ray's direction vector. C CALL VHAT ( RAYDIR, UDIR ) C C Initialize the distance to the closest solution. We'll keep track C of this quantity in order to compare competing solutions. C MNDIST = DPMAX() C C Find the intersection of the ray and outer bounding ellipsoid, if C possible. Often this intersection is the closest to the vertex. C If the intersection exists and is on the boundary of the element, C it's a winner. C CALL SURFPT ( VERTEX, UDIR, EMAX, EMAX, PMAX, SRFX, FOUND ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( .NOT. FOUND ) THEN C C There are no intersections. The ray cannot hit the volume C element. C CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF C C The ray hits the outer bounding ellipsoid. See whether C the longitude and latitude are within bounds, taking C the margin into account. Exclude the altitude coordinate C from testing. C CALL ZZINPDT ( SRFX, BOUNDS, CORPAR, MARGIN, ALTIDX, XIN ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( XIN ) THEN C C This solution is a candidate. C CALL VEQU ( SRFX, XPT ) NXPTS = 1 C C Find the level surface parameter of the vertex relative C to the adjusted outer bounding ellipsoid. C VTXLVL = ( VERTEX(1)/EMAX )**2 . + ( VERTEX(2)/EMAX )**2 . + ( VERTEX(3)/PMAX )**2 IF ( VTXLVL .GT. 1.D0 ) THEN C C The vertex is outside this ellipsoid, and the DSK segment C lies within the ellipsoid. C C No other intersection can be closer to the vertex; C we don't need to check the other surfaces. C CALL CHKOUT ( 'ZZRYTPDT' ) RETURN ELSE C C We have a possible solution. C MNDIST = VDIST( VERTEX, XPT ) END IF END IF C C So far there may be a candidate solution. We'll try the latitude C boundaries next. C C For testing intersections with the latitude boundaries, we'll C need a far endpoint for the line segment on which to perform the C test. C MAXR = MAX ( EMAX, PMAX ) S = VNORM(VERTEX) + RADFAC * MAXR CALL VLCOM ( 1.D0, VERTEX, S, UDIR, ENDPT2 ) C C Now try the upper latitude bound. We can skip this test C if the upper bound is pi/2 radians. C IF ( MAXLAT .LT. HALFPI() ) THEN C C Let ANGLE be the angular separation of the surface of latitude C MAXLAT and the +Z axis. Note that the surface might be the C lower nappe of the cone. C ANGLE = MAX ( 0.D0, HALFPI() - MAXLAT ) C C Compute the Z coordinate of the apex of the latitude cone. C CALL ZZELNAXX ( RE, RP, MAXLAT, XINCPT, YINCPT ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF APEX(1) = 0.D0 APEX(2) = 0.D0 APEX(3) = YINCPT C C Find the offset of the ray's vertex from the cone's apex, C and find the angular separation of the offset from the +Z C axis. This separation enables us to compare the latitude of C the vertex to the latitude boundary without making a RECGEO C call to compute the planetodetic coordinates of the vertex. C C (The comparison will be done later.) C CALL VSUB ( VERTEX, APEX, VTXOFF ) VTXANG = VSEP ( VTXOFF, Z ) C C Check for intersection of the ray with the latitude cone. C CALL INCNSG ( APEX, Z, ANGLE, VERTEX, ENDPT2, NX, SRFX, XPT2 ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF C C Unlike the case of latitudinal coordinates, for planetodetic C coordinates, the surface of the latitude cone does not C coincide with the set of points having that latitude (which is C equal to pi/2 - the cone's angular separation from the +Z C axis). The subset of the cone having the specified latitude is C truncated by the X-Y plane. If we ignore round-off errors, we C can assert that the Z-coordinate of a point having the given C planetodetic latitude must match the direction of the nappe of C the cone: positive if ANGLE < pi/2, negative if ANGLE > pi/2, C and 0 if ANGLE = pi/2. C C However, we cannot ignore round-off errors. For a cone having C angle from its central axis of nearly pi/2, it's possible for C a valid ray-cone intercept to be on the "wrong" side of the C X-Y plane due to round-off errors. So we use a more robust C check to determine whether an intercept should be considered C to have the same latitude as the cone. C C Check all intercepts. C IF ( NX .GT. 0 ) THEN C C Check the first intercept. C XVAL1 = ZZPDPLTC( RE, F, SRFX, MAXLAT ) XVAL2 = .FALSE. IF ( NX .EQ. 2 ) THEN C C Check the second intercept. C XVAL2 = ZZPDPLTC( RE, F, XPT2, MAXLAT ) END IF IF ( XVAL1 .AND. ( .NOT. XVAL2 ) ) THEN NX = 1 ELSE IF ( XVAL2 .AND. (.NOT. XVAL1 ) ) THEN C C Only the second solution is valid. Overwrite C the first. C NX = 1 CALL VEQU( XPT2, SRFX ) ELSE IF ( ( .NOT. XVAL1 ) .AND. ( .NOT. XVAL2 ) ) THEN C C Neither solution is valid. C NX = 0 END IF END IF IF ( NX .GE. 1 ) THEN C C The ray intercept SRFX lies on the upper latitude boundary. C C See whether SRFX meets the longitude and proxy altitude C constraints. C CALL ZZINPDT ( SRFX, BOUNDS, CORPAR, MARGIN, LATIDX, XIN ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( XIN ) THEN C C SRFX is a candidate solution. C DIST = VDIST( VERTEX, SRFX ) IF ( DIST .LT. MNDIST ) THEN CALL VEQU ( SRFX, XPT ) NXPTS = 1 IF ( VTXANG .LT. ANGLE ) THEN IF ( ( MAXLAT .LT. 0.D0 ) . .OR. ( VERTEX(3) .GT. 0.D0 ) ) THEN C C If MAXLAT is negative, the vertex offset C being outside the cone is enough to C guarantee the planetodetic latitude of the C vertex is greater than that of the cone. C C If MAXLAT is non-negative, the angle of the C vertex offset relative to the +Z axis is not C enough; we need the vertex to lie above the C X-Y plane as well. C C Getting here means one of these conditions C was met. C C Since the latitude of the vertex is greater C than MAXLAT, this is the best solution, since C the volume element is on the other side of the C maximum latitude boundary. C CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF END IF C C This is the best solution seen so far, but we C need to check the remaining boundaries. C MNDIST = DIST END IF END IF IF ( NX .EQ. 2 ) THEN C C Check the second solution as well. C CALL ZZINPDT ( XPT2, BOUNDS, CORPAR, . MARGIN, LATIDX, XIN ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( XIN ) THEN C C XPT2 is a candidate solution. C DIST = VDIST( VERTEX, XPT2 ) IF ( DIST .LT. MNDIST ) THEN CALL VEQU ( XPT2, XPT ) NXPTS = 1 MNDIST = DIST C C This is the best solution seen so far. C However, it's not necessarily the best C solution. So we continue. C END IF END IF END IF C C We've handled the second root, if any. C END IF C C We're done with the upper latitude boundary. C END IF C C Try the lower latitude bound. We can skip this test if the lower C bound is -pi/2 radians. C IF ( MINLAT .GT. -HALFPI() ) THEN C C Let ANGLE be the angular separation of the surface C of latitude MINLAT and the +Z axis. Note that the C surface might be the lower nappe of the cone. C ANGLE = HALFPI() - MINLAT C Compute the Z coordinate of the apex of the latitude cone. C CALL ZZELNAXX ( RE, RP, MINLAT, XINCPT, YINCPT ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF APEX(1) = 0.D0 APEX(2) = 0.D0 APEX(3) = YINCPT CALL INCNSG ( APEX, Z, ANGLE, VERTEX, . ENDPT2, NX, SRFX, XPT2 ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF C C Find the offset of the ray's vertex from the cone's apex, C and find the angular separation of the offset from the +Z C axis. This separation enables us to compare the latitude of C the vertex to the latitude boundary without making a RECGEO C call to compute the planetodetic coordinates of the vertex. C C (The comparison will be done later.) C CALL VSUB ( VERTEX, APEX, VTXOFF ) VTXANG = VSEP ( VTXOFF, Z ) C C Check whether the latitude of the intercept can be C considered to match that of the cone. C IF ( NX .GT. 0 ) THEN C C Check the first intercept. C XVAL1 = ZZPDPLTC( RE, F, SRFX, MINLAT ) XVAL2 = .FALSE. IF ( NX .EQ. 2 ) THEN C C Check the second intercept. C XVAL2 = ZZPDPLTC( RE, F, XPT2, MINLAT ) END IF IF ( XVAL1 .AND. ( .NOT. XVAL2 ) ) THEN NX = 1 ELSE IF ( XVAL2 .AND. (.NOT. XVAL1 ) ) THEN C C Only the second solution is valid. Overwrite C the first. C NX = 1 CALL VEQU( XPT2, SRFX ) ELSE IF ( ( .NOT. XVAL1 ) .AND. ( .NOT. XVAL2 ) ) THEN C C Neither solution is valid. C NX = 0 END IF END IF IF ( NX .GE. 1 ) THEN C C The ray intercept SRFX lies on the lower latitude boundary. C C See whether SRFX meets the longitude and proxy altitude C constraints. C CALL ZZINPDT ( SRFX, BOUNDS, CORPAR, MARGIN, LATIDX, XIN ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( XIN ) THEN C C SRFX is a candidate solution. C DIST = VDIST( VERTEX, SRFX ) IF ( DIST .LT. MNDIST ) THEN CALL VEQU ( SRFX, XPT ) NXPTS = 1 IF ( VTXANG .GT. ANGLE ) THEN IF ( ( MINLAT .GT. 0.D0 ) . .OR. ( VERTEX(3) .LT. 0.D0 ) ) THEN C C If MINLAT is positive, the vertex offset C being outside the cone is enough to C guarantee the planetodetic latitude of the C vertex is less than that of the cone. C C If MINLAT is non-positive, the angle of the C vertex offset relative to the +Z axis is not C enough; we need the vertex to lie below the C X-Y plane as well. C C Getting here means one of these conditions C was met. C C Since the latitude of the vertex is less than C than MINLAT, this is the best solution, since C the volume element is on the other side of the C minimum latitude boundary. C CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF END IF C C This is the best solution seen so far, but we C need to check the remaining boundaries. MNDIST = DIST END IF END IF IF ( NX .EQ. 2 ) THEN C C Check the second solution as well. C CALL ZZINPDT ( XPT2, BOUNDS, CORPAR, . MARGIN, LATIDX, XIN ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( XIN ) THEN C C XPT2 is a candidate solution. C DIST = VDIST( VERTEX, XPT2 ) IF ( DIST .LT. MNDIST ) THEN CALL VEQU ( XPT2, XPT ) NXPTS = 1 MNDIST = DIST C C This is the best solution seen so far. C However, it's not necessarily the best C solution. So we continue. C CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF END IF END IF END IF C C We're done with the lower latitude boundary. C END IF C C Perform longitude boundary checks if the coverage is not C 2*pi radians. Note that MAXLON > MINLON at this point. C LONCOV = MAXLON - MINLON IF ( COS(LONCOV) .LT. 1.D0 ) THEN C C We have distinct longitude boundaries. Go to work. C C C Check the longitude boundaries. Try the plane of western C longitude first. C CALL VPACK ( SIN(MINLON), -COS(MINLON), 0.D0, WESTB ) S = RADFAC * ( VNORM(VERTEX) + MAXR ) CALL ZZINRYPL ( VERTEX, UDIR, WESTB, 0.D0, S, NX, SRFX ) IF ( NX .EQ. 1 ) THEN C C We have one point of intersection. Determine whether it's a C candidate solution. Don't use longitude in the following C inclusion test. Note that we'll perform a separate check C later in place of the longitude check. C CALL ZZINPDT ( SRFX, BOUNDS, CORPAR, MARGIN, LONIDX, XIN ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( XIN ) THEN C C Make sure the intercept is not too far on the C "wrong" side of the Z axis. C CALL UCRSS ( WESTB, Z, WBACK ) IF ( VDOT(SRFX, WBACK) .LT. (MARGIN*MAXR) ) THEN C C The intercept is either on the same side of the Z C axis as the west face of the segment, or is very C close to the Z axis. C DIST = VDIST( VERTEX, SRFX ) IF ( DIST .LT. MNDIST ) THEN C C Record the intercept, distance, and surface index. C CALL VEQU ( SRFX, XPT ) NXPTS = 1 MNDIST = DIST END IF END IF END IF END IF C C We're done with the western boundary. C C C Try the plane of eastern longitude next. C CALL VPACK ( -SIN(MAXLON), COS(MAXLON), 0.D0, EASTB ) CALL ZZINRYPL ( VERTEX, UDIR, EASTB, 0.D0, S, NX, SRFX ) IF ( NX .EQ. 1 ) THEN C C We have one point of intersection. Determine whether it's a C candidate solution. C CALL ZZINPDT ( SRFX, BOUNDS, CORPAR, MARGIN, LONIDX, XIN ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( XIN ) THEN C C Make sure the intercept is not too far on the "wrong" C side of the Z axis. C CALL UCRSS ( Z, EASTB, EBACK ) IF ( VDOT(SRFX, EBACK) .LT. (MARGIN*MAXR) ) THEN C C The intercept is either on the same side of the Z C axis as the east face of the segment, or is very C close to the Z axis. C DIST = VDIST( VERTEX, SRFX ) IF ( DIST .LT. MNDIST ) THEN C C Record the intercept, distance, and surface index. C CALL VEQU ( SRFX, XPT ) NXPTS = 1 MNDIST = DIST END IF END IF END IF END IF END IF C C End of longitude boundary checks. C C C Find the intersection of the ray and lower bounding C ellipsoid, if possible. C CALL SURFPT ( VERTEX, UDIR, EMIN, EMIN, PMIN, SRFX, FOUND ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( FOUND ) THEN C C See whether this solution is in the element. C CALL ZZINPDT ( SRFX, BOUNDS, CORPAR, MARGIN, ALTIDX, XIN ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( XIN ) THEN DIST = VDIST( VERTEX, SRFX ) IF ( DIST .LT. MNDIST ) THEN C C Record the intercept, distance, and surface index. C CALL VEQU ( SRFX, XPT ) NXPTS = 1 MNDIST = DIST END IF END IF END IF C C Unlike the outer ellipsoid, either intersection of the ray with C the inner ellipsoid might be a valid solution. We'll test for the C case where the intersection farther from the ray's vertex is the C correct one. C CALL VMINUS( UDIR, NEGDIR ) CALL SURFPT ( ENDPT2, NEGDIR, EMIN, EMIN, PMIN, SRFX, FOUND ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( FOUND ) THEN CALL ZZINPDT ( SRFX, BOUNDS, CORPAR, MARGIN, ALTIDX, XIN ) IF ( FAILED() ) THEN CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END IF IF ( XIN ) THEN DIST = VDIST( VERTEX, SRFX ) IF ( DIST .LT. MNDIST ) THEN C C Record the intercept, distance, and surface index. C CALL VEQU ( SRFX, XPT ) NXPTS = 1 C C There's no need to update MNDIST at this point. C END IF END IF END IF C C NXPTS and XPT are set. C CALL CHKOUT ( 'ZZRYTPDT' ) RETURN END
source/nasa_f/zzrytpdt.f
SUBROUTINE TG_VI2F ( vdtm, idtm, fdtm, lnth, iret ) C************************************************************************ C* DE_VI2F * C* * C* This subroutine converts a forecast valid time of the form * C* YYMMDD/HHNN and an initial GEMPAK time of the form yymmdd/hhnn * C* into a proper GEMPAK forecast time stamp of the form * C* yymmdd/hhnnFhhhnn. * C* * C* TG_VI2F ( VDTM, IDTM, FDTM, LNTH, IRET ) * C* * C* Input parameters: * C* VDTM CHAR* Valid GEMPAK time, YYMMDD/HHNN * C* IDTM CHAR* Init. GEMPAK time, yymmdd/hhnn * C* * C* Output parameters: * C* FDTM CHAR* Forecast time, yymmdd/hhnn * C* LNTH INTEGER Length of string FDTM * C* IRET INTEGER Return code * C* 0 = normal return * C* -1 = invalid date or time * C* -3 = invalid forecast time * C** * C* Log: * C* T. Lee/SAIC 1/05 * C************************************************************************ CHARACTER*(*) vdtm, idtm, fdtm CHARACTER sfh*3, snn*2 C------------------------------------------------------------------------ iret = 0 lnth = 0 C C* Return if VDTM or IDTM is blank, C IF ( ( vdtm .eq. ' ' ) .or. ( idtm .eq. ' ' ) ) THEN iret = -1 fdtm = ' ' RETURN END IF C C* Compute the difference between valid time and initial time. C CALL TG_DIFF ( vdtm, idtm, nmin, iret ) IF ( iret .ne. 0 ) RETURN C IF ( ( nmin .lt. 0 ) .or. ( nmin .ge. 60000 ) ) THEN iret = -3 RETURN END IF C ifh = nmin / 60 nn = MOD ( nmin, 60 ) WRITE ( sfh, 50, IOSTAT = ier ) ifh 50 FORMAT ( I3.3 ) WRITE ( snn, 60, IOSTAT = ier ) nn 60 FORMAT ( I2.2 ) C C* Construct the forecast time stamp. C CALL ST_LSTR ( idtm, lstr, ier ) fdtm = idtm ( :lstr ) // 'F' // sfh // snn C CALL ST_LSTR ( fdtm, lnth, ier ) C* RETURN END
gempak/source/gemlib/tg/tgvi2f.f
! Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved. ! ! Licensed under the Apache License, Version 2.0 (the "License"); ! you may not use this file except in compliance with the License. ! You may obtain a copy of the License at ! ! http://www.apache.org/licenses/LICENSE-2.0 ! ! Unless required by applicable law or agreed to in writing, software ! distributed under the License is distributed on an "AS IS" BASIS, ! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ! See the License for the specific language governing permissions and ! limitations under the License. ! ! Tests F2003 defined I/O (recursive read) module person_module logical rslt(10), expect(10) integer :: cnt type :: person character(len=20) :: name integer :: age contains procedure :: my_read => rf procedure :: my_write => wf generic :: READ(FORMATTED) => my_read generic :: WRITE(FORMATTED) => my_write end type type, extends(person) :: employee integer id real salary contains procedure :: my_read => rf2 procedure :: my_write => wf2 end type contains recursive subroutine rf(dtv, unit, iotype, vlist, iostat, iomsg) class(person), intent(inout) :: dtv integer, intent(in) :: unit character(len=*),intent(in) :: iotype integer, intent(in) :: vlist(:) integer, intent(out) :: iostat character (len=*), intent(inout) :: iomsg character(len=9) :: pfmt read (unit, *, iostat=iostat) dtv%name, dtv%age if (iostat .eq. 0) then cnt = cnt + 1 rslt(cnt) = dtv%age .eq. 40+(cnt-1) read(unit, *) dtv endif end subroutine subroutine wf(dtv, unit, iotype, vlist, iostat, iomsg) class(person), intent(inout) :: dtv integer, intent(in) :: unit character(len=*),intent(in) :: iotype integer, intent(in) :: vlist(:) integer, intent(out) :: iostat character (len=*), intent(inout) :: iomsg character(len=9) :: pfmt write (unit, *) dtv%name, dtv%age end subroutine subroutine wf2(dtv, unit, iotype, vlist, iostat, iomsg) class(employee), intent(inout) :: dtv integer, intent(in) :: unit character(len=*),intent(in) :: iotype integer, intent(in) :: vlist(:) integer, intent(out) :: iostat character (len=*), intent(inout) :: iomsg character(len=9) :: pfmt write (unit, *) dtv%name, dtv%age, dtv%id, dtv%salary end subroutine recursive subroutine rf2(dtv, unit, iotype, vlist, iostat, iomsg) class(employee), intent(inout) :: dtv integer, intent(in) :: unit character(len=*),intent(in) :: iotype integer, intent(in) :: vlist(:) integer, intent(out) :: iostat character (len=*), intent(inout) :: iomsg character(len=9) :: pfmt read (unit, *, iostat=iostat) dtv%name, dtv%age, dtv%id, dtv%salary if (iostat .eq. 0) then cnt = cnt + 1 rslt(cnt) = dtv%id .eq. 100+(cnt-1) read(unit, *) dtv endif end subroutine end module use person_module integer id, members type(employee) :: chairman chairman%name='myname' chairman%age=40 chairman%id = 100 chairman%salary = 0 rslt = .false. expect = .true. open(11, file='io16.output', status='replace') do i=1,10 write(11, *) chairman chairman%id = chairman%id + 1 enddo cnt = 0 open(11, file='io16.output', position='rewind') read(11, *) chairman close(11) call check(rslt, expect, 10) end
test/f90_correct/src/io16.f90
subroutine blue(value,hexrep,bfrac) C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% C % C Copyright (C) 1996, The Board of Trustees of the Leland Stanford % C Junior University. All rights reserved. % C % C The programs in GSLIB are distributed in the hope that they will be % C useful, but WITHOUT ANY WARRANTY. No author or distributor accepts % C responsibility to anyone for the consequences of using them or for % C whether they serve any particular purpose or work at all, unless he % C says so in writing. Everyone is granted permission to copy, modify % C and redistribute the programs in GSLIB, but only under the condition % C that this notice and the above copyright notice remain intact. % C % C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% c----------------------------------------------------------------------- c c Provided with a real value ``value'' this subroutine returns the blue c portion of the color specification. c c Note common block "color" and call to "hexa" c c----------------------------------------------------------------------- real value character hexrep*2,hexa*2 common /color/ cmin,cmax,cint(4),cscl hexrep = '00' if(value.lt.cint(2))then c c Scale it between (255,255): c integ = 255 else if((value.ge.cint(2)).and.(value.lt.cint(3)))then c c Scale it between (255,0): c integ = int((cint(3)-value)/(cint(3)-cint(2))*255.) if(integ.gt.255) integ = 255 if(integ.lt.0) integ = 0 else if(value.ge.cint(3))then c c Scale it between (0,0): c integ = 0 end if c c Establish coding and return: c bfrac = real(integ) / 255. hexrep = hexa(integ) return end
visim/visim_src/gslib/blue.f
SUBROUTINE DEG2CHR(DEGS,LATLON,CHAR) C****************************************************************** C# SUB DEG2CHR(DEGS,LATLON,CHAR) Degrees to CHARACTER (xxxNxx'xx") C Convert degrees to characters for output. C DEGS = input degrees (may be -180 to 180 or 0 to 360) C LATLON=0= latitude format xxxNxx'xx" C =1= longitude format xxxExx'xx" c =2= latitude format xx.xxN c =3= longitude format xxx.xxE C CHAR = CHARACTER*10 output C****************************************************************** CHARACTER*(*) CHAR CHARACTER*1 NSEW DEG=DEGS IF(DEG.GT.180.) DEG=DEG-360. modd=mod(latlon,2) IF(modd.EQ.0 .AND. DEG.GE.0.) NSEW='N' IF(modd.EQ.0 .AND. DEG.LT.0.) NSEW='S' IF(modd.NE.0 .AND. DEG.GE.0.) NSEW='E' IF(modd.NE.0 .AND. DEG.LT.0.) NSEW='W' D=ABS(DEG) IDEG=D D=(D-IDEG)*60. MIN=D ISEC=(D-MIN)*60. + .5 IF(ISEC.LT.60) GO TO 10 ISEC=0 MIN=MIN+1 IF(MIN.LT.60) GO TO 10 MIN=MIN-60 IDEG=IDEG+1 10 if(latlon.le.1) then WRITE(CHAR,11) IDEG,NSEW,MIN,ISEC 11 format(i3,a1,i2,1h',i2,1h") else WRITE(CHAR,'(f6.2,a1)') abs(DEG),NSEW end if RETURN END
src/voa_lib/deg2chr.for
! ! Copyright 2019-2020 SALMON developers ! ! Licensed under the Apache License, Version 2.0 (the "License"); ! you may not use this file except in compliance with the License. ! You may obtain a copy of the License at ! ! http://www.apache.org/licenses/LICENSE-2.0 ! ! Unless required by applicable law or agreed to in writing, software ! distributed under the License is distributed on an "AS IS" BASIS, ! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ! See the License for the specific language governing permissions and ! limitations under the License. ! module jellium implicit none contains !=========================================================================================== != check condition ========================================================================= subroutine check_condition_jm use salmon_global, only: yn_md, yn_opt, yn_out_pdos, yn_out_tm, yn_out_rvf_rt, nelem, natom, nelec, spin, xc, & yn_periodic, layout_multipole, shape_file_jm, num_jm, sphere_nion_jm, & method_singlescale use parallelization, only: nproc_id_global use communication, only: comm_is_root implicit none call condition_yn_jm(yn_md, 'yn_md', 'n') call condition_yn_jm(yn_opt, 'yn_opt', 'n') call condition_yn_jm(yn_out_pdos, 'yn_out_pdos', 'n') call condition_yn_jm(yn_out_tm, 'yn_out_tm', 'n') call condition_yn_jm(yn_out_rvf_rt,'yn_out_rvf_rt','n') call condition_int_jm(nelem,'nelem',1) call condition_int_jm(natom,'natom',1) if(yn_periodic=='n'.and.layout_multipole/=1) then if(comm_is_root(nproc_id_global)) & write(*,'("For yn_jm = y and yn_periodic = n, layout_multipole must be 1.")') stop end if if(mod(nelec,2)/=0) then if(comm_is_root(nproc_id_global)) write(*,'("For yn_jm = y, nelec must be even number.")') stop end if if(trim(spin)/='unpolarized') then if(comm_is_root(nproc_id_global)) write(*,'("For yn_jm = y, spin must be even unpolarized.")') stop end if if(trim(xc)/='pz') then if(comm_is_root(nproc_id_global)) write(*,'("For yn_jm = y, xc must be pz.")') stop end if if(trim(method_singlescale)/='3d') then if(comm_is_root(nproc_id_global)) write(*,'("For yn_jm = y, method_singlescale must be 3d.")') stop end if if (trim(shape_file_jm)=='none' .and. nelec/=sum(sphere_nion_jm(:)))then if(comm_is_root(nproc_id_global)) & write(*,'("For yn_jm = y and shape_file_jm = none, nelec must be sum(sphere_nion_jm).")') stop end if if(num_jm<1) then if(comm_is_root(nproc_id_global)) write(*,'("For yn_jm = y, num_jm must be larger than 0.")') stop end if return contains !+ CONTAINED IN check_condition_jm +++++++++++++++++++++++++++++++++++++++++++++++++++++++ !+ check condition for y/n +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ subroutine condition_yn_jm(tar,name,ans) implicit none character(1),intent(in) :: tar character(*),intent(in) :: name character(1),intent(in) :: ans if (tar/=ans) then if(comm_is_root(nproc_id_global)) write(*,'("For yn_jm = y, ",A," must be ",A,".")') name,ans stop end if return end subroutine condition_yn_jm !+ CONTAINED IN check_condition_jm +++++++++++++++++++++++++++++++++++++++++++++++++++++++ !+ check condition for integer +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ subroutine condition_int_jm(tar,name,ans) implicit none integer, intent(in) :: tar character(*),intent(in) :: name integer, intent(in) :: ans if (tar/=ans) then if(comm_is_root(nproc_id_global)) write(*,'("For yn_jm = y, ",A," must be ",I4,".")') name,ans stop end if return end subroutine condition_int_jm end subroutine check_condition_jm !=========================================================================================== != meke positive back ground charge density ================================================ subroutine make_rho_jm(lg,mg,info,system,rho_jm) use salmon_global, only: shape_file_jm, num_jm, rs_bohr_jm, sphere_nion_jm, sphere_loc_jm, & yn_charge_neutral_jm, yn_output_dns_jm, yn_periodic, nelec, unit_system use inputoutput, only: ulength_from_au use structures, only: s_rgrid, s_dft_system, s_parallel_info, s_scalar, allocate_scalar use parallelization, only: nproc_id_global, nproc_group_global use communication, only: comm_is_root, comm_summation use common_maxwell, only: input_shape_em use write_file3d, only: write_cube use math_constants, only: pi implicit none type(s_rgrid), intent(in) :: lg, mg type(s_parallel_info), intent(in) :: info type(s_dft_system), intent(in) :: system type(s_scalar), intent(inout) :: rho_jm type(s_scalar) :: work_l1,work_l2 integer,allocatable :: imedia(:,:,:) integer :: ii, ix, iy, iz, nelec_sum, mod_nelec real(8),allocatable :: dens(:), radi(:), mod_rs_bohr_jm(:) real(8) :: rab, charge_sum, charge_error character(60) :: suffix character(30) :: phys_quantity !set density allocate(dens(num_jm)); dens(:)=0.0d0; do ii=1,num_jm dens(ii) = 1.0d0/(4.0d0*pi/3.0*(rs_bohr_jm(ii)**3.0d0)) end do !make rho_jm if (trim(shape_file_jm)=='none')then !**************************************************************************************! !*** rho_jm is generated by spherecal shapes ******************************************! !**************************************************************************************! !allocate radius allocate(radi(num_jm)); radi(:)=0.0d0; !make spheres do ii=1,num_jm !set radius radi(ii) = ( dble(sphere_nion_jm(ii))/dens(ii)/(4.0d0*pi/3.0) )**(1.0d0/3.0d0) !make ii-th sphere do iz=mg%is(3),mg%ie(3) do iy=mg%is(2),mg%ie(2) do ix=mg%is(1),mg%ie(1) rab = sqrt( (lg%coordinate(ix,1)-sphere_loc_jm(ii,1))**2.0d0 & +(lg%coordinate(iy,2)-sphere_loc_jm(ii,2))**2.0d0 & +(lg%coordinate(iz,3)-sphere_loc_jm(ii,3))**2.0d0 ) if(rab<=radi(ii)) rho_jm%f(ix,iy,iz)=dens(ii) end do end do end do end do !set total electron number nelec_sum = sum(sphere_nion_jm(:)) else !**************************************************************************************! !*** rho_jm is generated by cube file *************************************************! !**************************************************************************************! !input shape allocate(imedia(mg%is(1):mg%ie(1),mg%is(2):mg%ie(2),mg%is(3):mg%ie(3))); imedia(:,:,:)=0; if(comm_is_root(nproc_id_global)) write(*,*) if(comm_is_root(nproc_id_global)) write(*,*) "**************************" if(index(shape_file_jm,".cube", back=.true.)/=0) then if(comm_is_root(nproc_id_global)) then write(*,*) "shape file is inputed by .cube format." end if call input_shape_em(shape_file_jm,600,mg%is,mg%ie,lg%is,lg%ie,0,imedia,'cu') elseif(index(shape_file_jm,".mp", back=.true.)/=0) then if(comm_is_root(nproc_id_global)) then write(*,*) "shape file is inputed by .mp format." write(*,*) "This version works for only .cube format.." end if stop else if(comm_is_root(nproc_id_global)) then write(*,*) "shape file must be .cube or .mp formats." end if stop end if if(comm_is_root(nproc_id_global)) write(*,*) "**************************" !make rho_jm from shape file do iz=mg%is(3),mg%ie(3) do iy=mg%is(2),mg%ie(2) do ix=mg%is(1),mg%ie(1) if(imedia(ix,iy,iz)>0) rho_jm%f(ix,iy,iz)=dens(imedia(ix,iy,iz)) end do end do end do !set total electron number nelec_sum = nelec end if !check charge neutrality call check_neutral_jm(charge_sum,charge_error,nelec_sum) !propose modified parameter & stop !or modify parameters allocate(mod_rs_bohr_jm(num_jm)); mod_rs_bohr_jm(:)=0.0d0; if(charge_error>=2.0d0/dble(nelec))then !stop & propose modified parameter mod_nelec = int(charge_sum) if(mod(mod_nelec,2)/=0) mod_nelec=mod_nelec+1 if(comm_is_root(nproc_id_global))then write(*,*) write(*,'("Charge nertrality error is",E23.15E3,".")') charge_error write(*,'("To improve charge nertrality, change nelec to",I9,".")') mod_nelec end if stop else !modify parameters and recheck neutrality if(yn_charge_neutral_jm=='y')then rho_jm%f(:,:,:) = rho_jm%f(:,:,:) * ( dble(nelec)/charge_sum ) dens(:) = dens(:) * ( dble(nelec)/charge_sum ) mod_rs_bohr_jm(:) = ( 1.0d0/(4.0d0*pi/3.0*dens(:)) )**(1.0d0/3.0d0) call check_neutral_jm(charge_sum,charge_error,nelec_sum) end if end if !output cube file if(yn_output_dns_jm=='y') then call allocate_scalar(lg,work_l1); call allocate_scalar(lg,work_l2); do iz=mg%is(3),mg%ie(3) do iy=mg%is(2),mg%ie(2) do ix=mg%is(1),mg%ie(1) work_l1%f(ix,iy,iz) = rho_jm%f(ix,iy,iz) end do end do end do call comm_summation(work_l1%f,work_l2%f,lg%num(1)*lg%num(2)*lg%num(3),nproc_group_global) suffix = "dns_jellium"; phys_quantity = "pbcd"; call write_cube(lg,103,suffix,phys_quantity,work_l2%f,system) end if !write information if(comm_is_root(nproc_id_global))then write(*,*) write(*,*) '****************** Jellium information ******************' if(trim(shape_file_jm)=='none')then write(*,'(" Positive background charge density is generated by spherecal shapes:")') do ii=1,num_jm write(*, '(A,I3,A,E23.15E3)') ' Radius of sphere(',ii,') =', radi(ii)*ulength_from_au end do write(*,*) " in the unit system, ",trim(unit_system),"." else write(*,'(" Positive background charge density is generated by shape file.")') end if if(sum(mod_rs_bohr_jm(:))==0.0d0) then write(*,'(" Wigner-Seitz radius is set as follows:")') do ii=1,num_jm write(*, '(A,I3,A,E23.15E3)') ' rs_bohr_jm(',ii,') =', rs_bohr_jm(ii) end do else write(*,'(" To keep charge neutrality, Wigner-Seitz radius is modified as follows:")') do ii=1,num_jm write(*, '(A,I3,A,E23.15E3)') ' mod_rs_bohr_jm(',ii,') =', mod_rs_bohr_jm(ii) end do end if write(*,*) " in the atomic unit(Bohr)." write(*,'(A,E23.15E3," %")') ' Chrge neutrality error =', charge_error if(yn_periodic=='y') then write(*,*) write(*,'(" For yn_jm = y and yn_periodic=y, this version still cannot output Total Energy.")') write(*,*) end if write(*,*) '*********************************************************' write(*,*) end if !change sign in view of electron density rho_jm%f(:,:,:) = -rho_jm%f(:,:,:) return contains !+ CONTAINED IN make_rho_jm ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ !+ check charge neutrality +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ subroutine check_neutral_jm(sum_c,err,num_e) implicit none real(8), intent(inout) :: sum_c real(8), intent(out) :: err integer, intent(in) :: num_e real(8) :: sum_tmp sum_tmp = 0.0d0; sum_c = 0.0d0; !$omp parallel !$omp do private(ix,iy,iz) reduction( + : sum_tmp ) do iz=mg%is(3),mg%ie(3) do iy=mg%is(2),mg%ie(2) do ix=mg%is(1),mg%ie(1) sum_tmp = sum_tmp + rho_jm%f(ix,iy,iz) end do end do end do !$omp end do !$omp end parallel call comm_summation(sum_tmp,sum_c,info%icomm_r) sum_c = sum_c * system%hvol err = abs( (sum_c - dble(num_e)) / dble(num_e) ) return end subroutine check_neutral_jm end subroutine make_rho_jm end module jellium
src/atom/jellium.f90
! Loop recovery fails. Might be due to semantics not providing the ! necessary preconditions c%2.3 subroutine s234 (ntimes,ld,n,ctime,dtime,a,b,c,d,e,aa,bb,cc) c c loop interchange c if loop to do loop, interchanging with if loop necessary c integer ntimes, ld, n, i, nl, j real a(n), b(n), c(n), d(n), e(n), aa(ld,n), bb(ld,n), cc(ld,n) real t1, t2, second, chksum, ctime, dtime, cs2d ! call init(ld,n,a,b,c,d,e,aa,bb,cc,'s234 ') ! t1 = second() do 1 nl = 1,ntimes/n i = 1 11 if(i.gt.n) goto 10 j = 2 21 if(j.gt.n) goto 20 aa(i,j) = aa(i,j-1) + bb(i,j-1) * cc(i,j-1) j = j + 1 goto 21 20 i = i + 1 goto 11 10 continue ! call dummy(ld,n,a,b,c,d,e,aa,bb,cc,1.) 1 continue ! t2 = second() - t1 - ctime - ( dtime * float(ntimes/n) ) ! chksum = cs2d(n,aa) ! call check (chksum,(ntimes/n)*n*(n-1),n,t2,'s234 ') return end
packages/PIPS/validation/Transformations/S234.f
!*==ctrevc3.f90 processed by SPAG 7.51RB at 20:08 on 3 Mar 2022 !> \brief \b CTREVC3 ! ! =========== DOCUMENTATION =========== ! ! Online html documentation available at ! http://www.netlib.org/lapack/explore-html/ ! !> \htmlonly !> Download CTREVC3 + dependencies !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrevc3.f"> !> [TGZ]</a> !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrevc3.f"> !> [ZIP]</a> !> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrevc3.f"> !> [TXT]</a> !> \endhtmlonly ! ! Definition: ! =========== ! ! SUBROUTINE CTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, ! LDVR, MM, M, WORK, LWORK, RWORK, LRWORK, INFO) ! ! .. Scalar Arguments .. ! CHARACTER HOWMNY, SIDE ! INTEGER INFO, LDT, LDVL, LDVR, LWORK, M, MM, N ! .. ! .. Array Arguments .. ! LOGICAL SELECT( * ) ! REAL RWORK( * ) ! COMPLEX T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), ! $ WORK( * ) ! .. ! ! !> \par Purpose: ! ============= !> !> \verbatim !> !> CTREVC3 computes some or all of the right and/or left eigenvectors of !> a complex upper triangular matrix T. !> Matrices of this type are produced by the Schur factorization of !> a complex general matrix: A = Q*T*Q**H, as computed by CHSEQR. !> !> The right eigenvector x and the left eigenvector y of T corresponding !> to an eigenvalue w are defined by: !> !> T*x = w*x, (y**H)*T = w*(y**H) !> !> where y**H denotes the conjugate transpose of the vector y. !> The eigenvalues are not input to this routine, but are read directly !> from the diagonal of T. !> !> This routine returns the matrices X and/or Y of right and left !> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an !> input matrix. If Q is the unitary factor that reduces a matrix A to !> Schur form T, then Q*X and Q*Y are the matrices of right and left !> eigenvectors of A. !> !> This uses a Level 3 BLAS version of the back transformation. !> \endverbatim ! ! Arguments: ! ========== ! !> \param[in] SIDE !> \verbatim !> SIDE is CHARACTER*1 !> = 'R': compute right eigenvectors only; !> = 'L': compute left eigenvectors only; !> = 'B': compute both right and left eigenvectors. !> \endverbatim !> !> \param[in] HOWMNY !> \verbatim !> HOWMNY is CHARACTER*1 !> = 'A': compute all right and/or left eigenvectors; !> = 'B': compute all right and/or left eigenvectors, !> backtransformed using the matrices supplied in !> VR and/or VL; !> = 'S': compute selected right and/or left eigenvectors, !> as indicated by the logical array SELECT. !> \endverbatim !> !> \param[in] SELECT !> \verbatim !> SELECT is LOGICAL array, dimension (N) !> If HOWMNY = 'S', SELECT specifies the eigenvectors to be !> computed. !> The eigenvector corresponding to the j-th eigenvalue is !> computed if SELECT(j) = .TRUE.. !> Not referenced if HOWMNY = 'A' or 'B'. !> \endverbatim !> !> \param[in] N !> \verbatim !> N is INTEGER !> The order of the matrix T. N >= 0. !> \endverbatim !> !> \param[in,out] T !> \verbatim !> T is COMPLEX array, dimension (LDT,N) !> The upper triangular matrix T. T is modified, but restored !> on exit. !> \endverbatim !> !> \param[in] LDT !> \verbatim !> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N). !> \endverbatim !> !> \param[in,out] VL !> \verbatim !> VL is COMPLEX array, dimension (LDVL,MM) !> On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must !> contain an N-by-N matrix Q (usually the unitary matrix Q of !> Schur vectors returned by CHSEQR). !> On exit, if SIDE = 'L' or 'B', VL contains: !> if HOWMNY = 'A', the matrix Y of left eigenvectors of T; !> if HOWMNY = 'B', the matrix Q*Y; !> if HOWMNY = 'S', the left eigenvectors of T specified by !> SELECT, stored consecutively in the columns !> of VL, in the same order as their !> eigenvalues. !> Not referenced if SIDE = 'R'. !> \endverbatim !> !> \param[in] LDVL !> \verbatim !> LDVL is INTEGER !> The leading dimension of the array VL. !> LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N. !> \endverbatim !> !> \param[in,out] VR !> \verbatim !> VR is COMPLEX array, dimension (LDVR,MM) !> On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must !> contain an N-by-N matrix Q (usually the unitary matrix Q of !> Schur vectors returned by CHSEQR). !> On exit, if SIDE = 'R' or 'B', VR contains: !> if HOWMNY = 'A', the matrix X of right eigenvectors of T; !> if HOWMNY = 'B', the matrix Q*X; !> if HOWMNY = 'S', the right eigenvectors of T specified by !> SELECT, stored consecutively in the columns !> of VR, in the same order as their !> eigenvalues. !> Not referenced if SIDE = 'L'. !> \endverbatim !> !> \param[in] LDVR !> \verbatim !> LDVR is INTEGER !> The leading dimension of the array VR. !> LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N. !> \endverbatim !> !> \param[in] MM !> \verbatim !> MM is INTEGER !> The number of columns in the arrays VL and/or VR. MM >= M. !> \endverbatim !> !> \param[out] M !> \verbatim !> M is INTEGER !> The number of columns in the arrays VL and/or VR actually !> used to store the eigenvectors. !> If HOWMNY = 'A' or 'B', M is set to N. !> Each selected eigenvector occupies one column. !> \endverbatim !> !> \param[out] WORK !> \verbatim !> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> \endverbatim !> !> \param[in] LWORK !> \verbatim !> LWORK is INTEGER !> The dimension of array WORK. LWORK >= max(1,2*N). !> For optimum performance, LWORK >= N + 2*N*NB, where NB is !> the optimal blocksize. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> \endverbatim !> !> \param[out] RWORK !> \verbatim !> RWORK is REAL array, dimension (LRWORK) !> \endverbatim !> !> \param[in] LRWORK !> \verbatim !> LRWORK is INTEGER !> The dimension of array RWORK. LRWORK >= max(1,N). !> !> If LRWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the RWORK array, returns !> this value as the first entry of the RWORK array, and no error !> message related to LRWORK is issued by XERBLA. !> \endverbatim !> !> \param[out] INFO !> \verbatim !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> \endverbatim ! ! Authors: ! ======== ! !> \author Univ. of Tennessee !> \author Univ. of California Berkeley !> \author Univ. of Colorado Denver !> \author NAG Ltd. ! !> \date November 2017 ! ! @generated from ztrevc3.f, fortran z -> c, Tue Apr 19 01:47:44 2016 ! !> \ingroup complexOTHERcomputational ! !> \par Further Details: ! ===================== !> !> \verbatim !> !> The algorithm used in this program is basically backward (forward) !> substitution, with scaling to make the the code robust against !> possible overflow. !> !> Each eigenvector is normalized so that the element of largest !> magnitude has magnitude 1; here the magnitude of a complex number !> (x,y) is taken to be |x| + |y|. !> \endverbatim !> ! ===================================================================== SUBROUTINE CTREVC3(Side,Howmny,Select,N,T,Ldt,Vl,Ldvl,Vr,Ldvr,Mm, & & M,Work,Lwork,Rwork,Lrwork,Info) IMPLICIT NONE !*--CTREVC3250 ! ! -- LAPACK computational routine (version 3.8.0) -- ! -- LAPACK is a software package provided by Univ. of Tennessee, -- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- ! November 2017 ! ! .. Scalar Arguments .. CHARACTER Howmny , Side INTEGER Info , Ldt , Ldvl , Ldvr , Lwork , Lrwork , M , Mm , N ! .. ! .. Array Arguments .. LOGICAL Select(*) REAL Rwork(*) COMPLEX T(Ldt,*) , Vl(Ldvl,*) , Vr(Ldvr,*) , Work(*) ! .. ! ! ===================================================================== ! ! .. Parameters .. REAL ZERO , ONE PARAMETER (ZERO=0.0E+0,ONE=1.0E+0) COMPLEX CZERO , CONE PARAMETER (CZERO=(0.0E+0,0.0E+0),CONE=(1.0E+0,0.0E+0)) INTEGER NBMIN , NBMAX PARAMETER (NBMIN=8,NBMAX=128) ! .. ! .. Local Scalars .. LOGICAL allv , bothv , leftv , lquery , over , rightv , somev INTEGER i , ii , is , j , k , ki , iv , maxwrk , nb REAL ovfl , remax , scale , smin , smlnum , ulp , unfl COMPLEX cdum ! .. ! .. External Functions .. LOGICAL LSAME INTEGER ILAENV , ICAMAX REAL SLAMCH , SCASUM EXTERNAL LSAME , ILAENV , ICAMAX , SLAMCH , SCASUM ! .. ! .. External Subroutines .. EXTERNAL XERBLA , CCOPY , CLASET , CSSCAL , CGEMM , CGEMV , & & CLATRS , CLACPY , SLABAD ! .. ! .. Intrinsic Functions .. INTRINSIC ABS , REAL , CMPLX , CONJG , AIMAG , MAX ! .. ! .. Statement Functions .. REAL CABS1 ! .. ! .. Statement Function definitions .. CABS1(cdum) = ABS(REAL(cdum)) + ABS(AIMAG(cdum)) ! .. ! .. Executable Statements .. ! ! Decode and test the input parameters ! bothv = LSAME(Side,'B') rightv = LSAME(Side,'R') .OR. bothv leftv = LSAME(Side,'L') .OR. bothv ! allv = LSAME(Howmny,'A') over = LSAME(Howmny,'B') somev = LSAME(Howmny,'S') ! ! Set M to the number of columns required to store the selected ! eigenvectors. ! IF ( somev ) THEN M = 0 DO j = 1 , N IF ( Select(j) ) M = M + 1 ENDDO ELSE M = N ENDIF ! Info = 0 nb = ILAENV(1,'CTREVC',Side//Howmny,N,-1,-1,-1) maxwrk = N + 2*N*nb Work(1) = maxwrk Rwork(1) = N lquery = (Lwork==-1 .OR. Lrwork==-1) IF ( .NOT.rightv .AND. .NOT.leftv ) THEN Info = -1 ELSEIF ( .NOT.allv .AND. .NOT.over .AND. .NOT.somev ) THEN Info = -2 ELSEIF ( N<0 ) THEN Info = -4 ELSEIF ( Ldt<MAX(1,N) ) THEN Info = -6 ELSEIF ( Ldvl<1 .OR. (leftv .AND. Ldvl<N) ) THEN Info = -8 ELSEIF ( Ldvr<1 .OR. (rightv .AND. Ldvr<N) ) THEN Info = -10 ELSEIF ( Mm<M ) THEN Info = -11 ELSEIF ( Lwork<MAX(1,2*N) .AND. .NOT.lquery ) THEN Info = -14 ELSEIF ( Lrwork<MAX(1,N) .AND. .NOT.lquery ) THEN Info = -16 ENDIF IF ( Info/=0 ) THEN CALL XERBLA('CTREVC3',-Info) RETURN ELSEIF ( lquery ) THEN RETURN ENDIF ! ! Quick return if possible. ! IF ( N==0 ) RETURN ! ! Use blocked version of back-transformation if sufficient workspace. ! Zero-out the workspace to avoid potential NaN propagation. ! IF ( over .AND. Lwork>=N+2*N*NBMIN ) THEN nb = (Lwork-N)/(2*N) nb = MIN(nb,NBMAX) CALL CLASET('F',N,1+2*nb,CZERO,CZERO,Work,N) ELSE nb = 1 ENDIF ! ! Set the constants to control overflow. ! unfl = SLAMCH('Safe minimum') ovfl = ONE/unfl CALL SLABAD(unfl,ovfl) ulp = SLAMCH('Precision') smlnum = unfl*(N/ulp) ! ! Store the diagonal elements of T in working array WORK. ! DO i = 1 , N Work(i) = T(i,i) ENDDO ! ! Compute 1-norm of each column of strictly upper triangular ! part of T to control overflow in triangular solver. ! Rwork(1) = ZERO DO j = 2 , N Rwork(j) = SCASUM(j-1,T(1,j),1) ENDDO ! IF ( rightv ) THEN ! ! ============================================================ ! Compute right eigenvectors. ! ! IV is index of column in current block. ! Non-blocked version always uses IV=NB=1; ! blocked version starts with IV=NB, goes down to 1. ! (Note the "0-th" column is used to store the original diagonal.) iv = nb is = M DO ki = N , 1 , -1 IF ( somev ) THEN IF ( .NOT.Select(ki) ) CYCLE ENDIF smin = MAX(ulp*(CABS1(T(ki,ki))),smlnum) ! ! -------------------------------------------------------- ! Complex right eigenvector ! Work(ki+iv*N) = CONE ! ! Form right-hand side. ! DO k = 1 , ki - 1 Work(k+iv*N) = -T(k,ki) ENDDO ! ! Solve upper triangular system: ! [ T(1:KI-1,1:KI-1) - T(KI,KI) ]*X = SCALE*WORK. ! DO k = 1 , ki - 1 T(k,k) = T(k,k) - T(ki,ki) IF ( CABS1(T(k,k))<smin ) T(k,k) = smin ENDDO ! IF ( ki>1 ) THEN CALL CLATRS('Upper','No transpose','Non-unit','Y',ki-1,T,& & Ldt,Work(1+iv*N),scale,Rwork,Info) Work(ki+iv*N) = scale ENDIF ! ! Copy the vector x or Q*x to VR and normalize. ! IF ( .NOT.over ) THEN ! ------------------------------ ! no back-transform: copy x to VR and normalize. CALL CCOPY(ki,Work(1+iv*N),1,Vr(1,is),1) ! ii = ICAMAX(ki,Vr(1,is),1) remax = ONE/CABS1(Vr(ii,is)) CALL CSSCAL(ki,remax,Vr(1,is),1) ! DO k = ki + 1 , N Vr(k,is) = CZERO ENDDO ! ELSEIF ( nb==1 ) THEN ! ------------------------------ ! version 1: back-transform each vector with GEMV, Q*x. IF ( ki>1 ) CALL CGEMV('N',N,ki-1,CONE,Vr,Ldvr, & & Work(1+iv*N),1,CMPLX(scale), & & Vr(1,ki),1) ! ii = ICAMAX(N,Vr(1,ki),1) remax = ONE/CABS1(Vr(ii,ki)) CALL CSSCAL(N,remax,Vr(1,ki),1) ! ELSE ! ------------------------------ ! version 2: back-transform block of vectors with GEMM ! zero out below vector DO k = ki + 1 , N Work(k+iv*N) = CZERO ENDDO ! ! Columns IV:NB of work are valid vectors. ! When the number of vectors stored reaches NB, ! or if this was last vector, do the GEMM IF ( (iv==1) .OR. (ki==1) ) THEN CALL CGEMM('N','N',N,nb-iv+1,ki+nb-iv,CONE,Vr,Ldvr, & & Work(1+(iv)*N),N,CZERO,Work(1+(nb+iv)*N),N) ! normalize vectors DO k = iv , nb ii = ICAMAX(N,Work(1+(nb+k)*N),1) remax = ONE/CABS1(Work(ii+(nb+k)*N)) CALL CSSCAL(N,remax,Work(1+(nb+k)*N),1) ENDDO CALL CLACPY('F',N,nb-iv+1,Work(1+(nb+iv)*N),N,Vr(1,ki)& & ,Ldvr) iv = nb ELSE iv = iv - 1 ENDIF ENDIF ! ! Restore the original diagonal elements of T. ! DO k = 1 , ki - 1 T(k,k) = Work(k) ENDDO ! is = is - 1 ENDDO ENDIF ! IF ( leftv ) THEN ! ! ============================================================ ! Compute left eigenvectors. ! ! IV is index of column in current block. ! Non-blocked version always uses IV=1; ! blocked version starts with IV=1, goes up to NB. ! (Note the "0-th" column is used to store the original diagonal.) iv = 1 is = 1 DO ki = 1 , N ! IF ( somev ) THEN IF ( .NOT.Select(ki) ) CYCLE ENDIF smin = MAX(ulp*(CABS1(T(ki,ki))),smlnum) ! ! -------------------------------------------------------- ! Complex left eigenvector ! Work(ki+iv*N) = CONE ! ! Form right-hand side. ! DO k = ki + 1 , N Work(k+iv*N) = -CONJG(T(ki,k)) ENDDO ! ! Solve conjugate-transposed triangular system: ! [ T(KI+1:N,KI+1:N) - T(KI,KI) ]**H * X = SCALE*WORK. ! DO k = ki + 1 , N T(k,k) = T(k,k) - T(ki,ki) IF ( CABS1(T(k,k))<smin ) T(k,k) = smin ENDDO ! IF ( ki<N ) THEN CALL CLATRS('Upper','Conjugate transpose','Non-unit','Y',& & N-ki,T(ki+1,ki+1),Ldt,Work(ki+1+iv*N),scale, & & Rwork,Info) Work(ki+iv*N) = scale ENDIF ! ! Copy the vector x or Q*x to VL and normalize. ! IF ( .NOT.over ) THEN ! ------------------------------ ! no back-transform: copy x to VL and normalize. CALL CCOPY(N-ki+1,Work(ki+iv*N),1,Vl(ki,is),1) ! ii = ICAMAX(N-ki+1,Vl(ki,is),1) + ki - 1 remax = ONE/CABS1(Vl(ii,is)) CALL CSSCAL(N-ki+1,remax,Vl(ki,is),1) ! DO k = 1 , ki - 1 Vl(k,is) = CZERO ENDDO ! ELSEIF ( nb==1 ) THEN ! ------------------------------ ! version 1: back-transform each vector with GEMV, Q*x. IF ( ki<N ) CALL CGEMV('N',N,N-ki,CONE,Vl(1,ki+1),Ldvl, & & Work(ki+1+iv*N),1,CMPLX(scale), & & Vl(1,ki),1) ! ii = ICAMAX(N,Vl(1,ki),1) remax = ONE/CABS1(Vl(ii,ki)) CALL CSSCAL(N,remax,Vl(1,ki),1) ! ELSE ! ------------------------------ ! version 2: back-transform block of vectors with GEMM ! zero out above vector ! could go from KI-NV+1 to KI-1 DO k = 1 , ki - 1 Work(k+iv*N) = CZERO ENDDO ! ! Columns 1:IV of work are valid vectors. ! When the number of vectors stored reaches NB, ! or if this was last vector, do the GEMM IF ( (iv==nb) .OR. (ki==N) ) THEN CALL CGEMM('N','N',N,iv,N-ki+iv,CONE,Vl(1,ki-iv+1), & & Ldvl,Work(ki-iv+1+(1)*N),N,CZERO, & & Work(1+(nb+1)*N),N) ! normalize vectors DO k = 1 , iv ii = ICAMAX(N,Work(1+(nb+k)*N),1) remax = ONE/CABS1(Work(ii+(nb+k)*N)) CALL CSSCAL(N,remax,Work(1+(nb+k)*N),1) ENDDO CALL CLACPY('F',N,iv,Work(1+(nb+1)*N),N,Vl(1,ki-iv+1),& & Ldvl) iv = 1 ELSE iv = iv + 1 ENDIF ENDIF ! ! Restore the original diagonal elements of T. ! DO k = ki + 1 , N T(k,k) = Work(k) ENDDO ! is = is + 1 ENDDO ENDIF ! ! ! End of CTREVC3 ! END SUBROUTINE CTREVC3
src/complex/ctrevc3.f90
active component C { async command C opcode "abc" }
compiler/tools/fpp-check/test/command/bad_opcode.fpp

No dataset card yet

Downloads last month
3