configs:
- config_name: 10_shot_rlw
data_files:
- split: dev
path: 10_shot_rlw/dev.*
- split: ood_cons_count_10
path: 10_shot_rlw/ood_cons_count_10.*
- split: ood_cons_count_3
path: 10_shot_rlw/ood_cons_count_3.*
- split: ood_cons_count_5
path: 10_shot_rlw/ood_cons_count_5.*
- split: ood_cons_count_7
path: 10_shot_rlw/ood_cons_count_7.*
- split: ood_cons_len_10
path: 10_shot_rlw/ood_cons_len_10.*
- split: ood_cons_len_3
path: 10_shot_rlw/ood_cons_len_3.*
- split: ood_cons_len_5
path: 10_shot_rlw/ood_cons_len_5.*
- split: ood_cons_len_7
path: 10_shot_rlw/ood_cons_len_7.*
- split: ood_lexical
path: 10_shot_rlw/ood_lexical.*
- split: test
path: 10_shot_rlw/test.*
- split: train
path: 10_shot_rlw/train.*
- config_name: 1_shot_eng
data_files:
- split: dev
path: 1_shot_eng/dev.*
- split: ood_cons_count_3
path: 1_shot_eng/ood_cons_count_3.*
- split: ood_cons_count_5
path: 1_shot_eng/ood_cons_count_5.*
- split: ood_cons_len_3
path: 1_shot_eng/ood_cons_len_3.*
- split: ood_cons_len_5
path: 1_shot_eng/ood_cons_len_5.*
- split: ood_lexical
path: 1_shot_eng/ood_lexical.*
- split: other_tasks_id
path: 1_shot_eng/other_tasks_id.*
- split: other_tasks_ood
path: 1_shot_eng/other_tasks_ood.*
- split: test
path: 1_shot_eng/test.*
- split: train
path: 1_shot_eng/train.*
- config_name: 1_shot_rlw
data_files:
- split: dev
path: 1_shot_rlw/dev.*
- split: ood_cons_count_10
path: 1_shot_rlw/ood_cons_count_10.*
- split: ood_cons_count_3
path: 1_shot_rlw/ood_cons_count_3.*
- split: ood_cons_count_5
path: 1_shot_rlw/ood_cons_count_5.*
- split: ood_cons_count_7
path: 1_shot_rlw/ood_cons_count_7.*
- split: ood_cons_len_10
path: 1_shot_rlw/ood_cons_len_10.*
- split: ood_cons_len_3
path: 1_shot_rlw/ood_cons_len_3.*
- split: ood_cons_len_5
path: 1_shot_rlw/ood_cons_len_5.*
- split: ood_cons_len_7
path: 1_shot_rlw/ood_cons_len_7.*
- split: ood_lexical
path: 1_shot_rlw/ood_lexical.*
- split: test
path: 1_shot_rlw/test.*
- split: train
path: 1_shot_rlw/train.*
- config_name: 1_shot_rlw_10x
data_files:
- split: dev
path: 1_shot_rlw_10x/dev.*
- split: ood_cons_count_10
path: 1_shot_rlw_10x/ood_cons_count_10.*
- split: ood_cons_count_3
path: 1_shot_rlw_10x/ood_cons_count_3.*
- split: ood_cons_count_5
path: 1_shot_rlw_10x/ood_cons_count_5.*
- split: ood_cons_count_7
path: 1_shot_rlw_10x/ood_cons_count_7.*
- split: ood_cons_len_10
path: 1_shot_rlw_10x/ood_cons_len_10.*
- split: ood_cons_len_3
path: 1_shot_rlw_10x/ood_cons_len_3.*
- split: ood_cons_len_5
path: 1_shot_rlw_10x/ood_cons_len_5.*
- split: ood_cons_len_7
path: 1_shot_rlw_10x/ood_cons_len_7.*
- split: ood_lexical
path: 1_shot_rlw_10x/ood_lexical.*
- split: test
path: 1_shot_rlw_10x/test.*
- split: train
path: 1_shot_rlw_10x/train.*
- config_name: 2_shot_rlw
data_files:
- split: dev
path: 2_shot_rlw/dev.*
- split: ood_cons_count_10
path: 2_shot_rlw/ood_cons_count_10.*
- split: ood_cons_count_3
path: 2_shot_rlw/ood_cons_count_3.*
- split: ood_cons_count_5
path: 2_shot_rlw/ood_cons_count_5.*
- split: ood_cons_count_7
path: 2_shot_rlw/ood_cons_count_7.*
- split: ood_cons_len_10
path: 2_shot_rlw/ood_cons_len_10.*
- split: ood_cons_len_3
path: 2_shot_rlw/ood_cons_len_3.*
- split: ood_cons_len_5
path: 2_shot_rlw/ood_cons_len_5.*
- split: ood_cons_len_7
path: 2_shot_rlw/ood_cons_len_7.*
- split: ood_lexical
path: 2_shot_rlw/ood_lexical.*
- split: test
path: 2_shot_rlw/test.*
- split: train
path: 2_shot_rlw/train.*
- config_name: 3_shot_rlw
data_files:
- split: dev
path: 3_shot_rlw/dev.*
- split: ood_cons_count_10
path: 3_shot_rlw/ood_cons_count_10.*
- split: ood_cons_count_3
path: 3_shot_rlw/ood_cons_count_3.*
- split: ood_cons_count_5
path: 3_shot_rlw/ood_cons_count_5.*
- split: ood_cons_count_7
path: 3_shot_rlw/ood_cons_count_7.*
- split: ood_cons_len_10
path: 3_shot_rlw/ood_cons_len_10.*
- split: ood_cons_len_3
path: 3_shot_rlw/ood_cons_len_3.*
- split: ood_cons_len_5
path: 3_shot_rlw/ood_cons_len_5.*
- split: ood_cons_len_7
path: 3_shot_rlw/ood_cons_len_7.*
- split: ood_lexical
path: 3_shot_rlw/ood_lexical.*
- split: test
path: 3_shot_rlw/test.*
- split: train
path: 3_shot_rlw/train.*
- config_name: 5_shot_rlw
data_files:
- split: dev
path: 5_shot_rlw/dev.*
- split: ood_cons_count_10
path: 5_shot_rlw/ood_cons_count_10.*
- split: ood_cons_count_3
path: 5_shot_rlw/ood_cons_count_3.*
- split: ood_cons_count_5
path: 5_shot_rlw/ood_cons_count_5.*
- split: ood_cons_count_7
path: 5_shot_rlw/ood_cons_count_7.*
- split: ood_cons_len_10
path: 5_shot_rlw/ood_cons_len_10.*
- split: ood_cons_len_3
path: 5_shot_rlw/ood_cons_len_3.*
- split: ood_cons_len_5
path: 5_shot_rlw/ood_cons_len_5.*
- split: ood_cons_len_7
path: 5_shot_rlw/ood_cons_len_7.*
- split: ood_lexical
path: 5_shot_rlw/ood_lexical.*
- split: test
path: 5_shot_rlw/test.*
- split: train
path: 5_shot_rlw/train.*
annotations_creators:
- machine-generated
language:
- en
language_creators:
- machine-generated
license:
- other
multilinguality:
- monolingual
pretty_name: Templatic Generation Tasks for In-Context Learning Research
size_categories:
- 10K<n<100K
- 1K<n<10K
- n<1K
source_datasets:
- original
tags:
- seq2seq
task_categories:
- text2text-generation
task_ids: []
Dataset Card for Active/Passive/Logical Transforms
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage:
- Repository:
- Paper:
- Leaderboard:
- Point of Contact: Roland Fernandez
Dataset Summary
This dataset is a synthetic dataset containing a set of templatic generation tasks using both English and random 2-letter words.
Supported Tasks and Leaderboards
[TBD]
Languages
All data is in English or random 2-letter words.
Dataset Structure
The dataset consists of several subsets, or tasks. Each task contains a train split, a dev split, and a test split, and multiple out-of-distribution splits.
Each sample in a split contains a source string, a target string, and an annotation string (describing the sample).
Dataset Subsets (Tasks)
The dataset consists of the following tasks:
- 1_shot_rlw (1 example input/output pair, a test input, and the gold output, all using random 2-letter words)
- 1_shot_eng (same as 1_shot_rlw but using English words).
- 1_shot_rlw_10x (same as 1_shot_rlw, but with 10x the training samples)
- 2_shot_rlw (2 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
- 3_shot_rlw (3 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
- 5_shot_rlw (5 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
- 10_shot_rtw (10 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
Data Splits
Most tasks have the following splits:
- train
- dev
- test
- ood_lexical
- ood_cons_count_3
- ood_cons_count_5
- ood_cons_count_7
- ood_cons_count_10
- ood_cons_len_3
- ood_cons_len_5
- ood_cons_len_7
- ood_cons_len_10
Here is a table showing how the number of examples varies by split (for most tasks):
Dataset Split | Number of Instances in Split |
---|---|
train | 280,000 |
dev | 35,000 |
test | 35,000 |
ood_* | 84,000 |
Data Instances
Each sample consits of a source, target, and annotation string (all tab separated).
Here is an example from the train split of the 1_shot_eng task:
{
'raw': 'Q any mouse ) ; bear A any mouse & . Q road ) ; building A road & . {"cons_count": "Q2A1", "cons_len": "Q21.Q11"}'
'source': 'Q any mouse ) ; bear A any mouse & . Q road ) ; building A',
'target': 'road & .',
'annotation': '{"cons_count": "Q2A1", "cons_len": "Q21.Q11"}'
}
Data Fields
source
: the string containing the N-shot examples and the test cuetarget
: the string containing the desired (gold) outputannotation
: the string describing the example (as a python or JSON dictionary)
Dataset Creation
Curation Rationale
We wanted a dataset that would test in-context (and from scratch) learning of abstract, semantic-free symbolic transformations, based on a random template for each example. The dataset is designed to test 3 types of out of distribution generalization:
- lexical - known words used in new contexts (relative to train split)
- length - train split uses constituents of 1, 2, or 4 words; OOD splits use 3, 5, 7, or 10 words
- count - train split uses 1, 2, or 4 constituents; OOD splits use 3, 5, 7, or 10 constituents
Source Data
[N/A]
Initial Data Collection and Normalization
[N/A]
Who are the source language producers?
The dataset by generated from templates designed by Paul Smolensky and Roland Fernandez.
Annotations
Besides the source and target strings, each sample contains an annotation string that describes the sample.
Annotation process
The annotation columns were generated from each sample template.
Who are the annotators?
[N/A]
Personal and Sensitive Information
No names or other sensitive information are included in the data.
Considerations for Using the Data
Social Impact of Dataset
The purpose of this dataset is to research how LLM and from-scratch model can learn to solve templatic generation tasks.
Discussion of Biases
[TBD]
Other Known Limitations
[TBD]
Additional Information
The internal name of this dataset is nc_tgt_v11. Also see DATASET_INFO.md and GRAMMAR.md files.
Dataset Curators
The dataset by generated from templates designed by Paul Smolensky and Roland Fernandez.
Licensing Information
This dataset is released under the Permissive 2.0 license.
Citation Information
[TBD]
Contributions
Thanks to The Neurocompositional AI group at Microsoft Research for creating and adding this dataset.