File size: 12,005 Bytes
2e3afdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
---
configs:
- config_name: "10_shot_rlw"
  data_files:
  - split: dev
    path: "10_shot_rlw/dev.*"
  - split: ood_cons_count_10
    path: "10_shot_rlw/ood_cons_count_10.*"
  - split: ood_cons_count_3
    path: "10_shot_rlw/ood_cons_count_3.*"
  - split: ood_cons_count_5
    path: "10_shot_rlw/ood_cons_count_5.*"
  - split: ood_cons_count_7
    path: "10_shot_rlw/ood_cons_count_7.*"
  - split: ood_cons_len_10
    path: "10_shot_rlw/ood_cons_len_10.*"
  - split: ood_cons_len_3
    path: "10_shot_rlw/ood_cons_len_3.*"
  - split: ood_cons_len_5
    path: "10_shot_rlw/ood_cons_len_5.*"
  - split: ood_cons_len_7
    path: "10_shot_rlw/ood_cons_len_7.*"
  - split: ood_lexical
    path: "10_shot_rlw/ood_lexical.*"
  - split: test
    path: "10_shot_rlw/test.*"
  - split: train
    path: "10_shot_rlw/train.*"
- config_name: "1_shot_eng"
  data_files:
  - split: dev
    path: "1_shot_eng/dev.*"
  - split: ood_cons_count_3
    path: "1_shot_eng/ood_cons_count_3.*"
  - split: ood_cons_count_5
    path: "1_shot_eng/ood_cons_count_5.*"
  - split: ood_cons_len_3
    path: "1_shot_eng/ood_cons_len_3.*"
  - split: ood_cons_len_5
    path: "1_shot_eng/ood_cons_len_5.*"
  - split: ood_lexical
    path: "1_shot_eng/ood_lexical.*"
  - split: other_tasks_id
    path: "1_shot_eng/other_tasks_id.*"
  - split: other_tasks_ood
    path: "1_shot_eng/other_tasks_ood.*"
  - split: test
    path: "1_shot_eng/test.*"
  - split: train
    path: "1_shot_eng/train.*"
- config_name: "1_shot_rlw"
  data_files:
  - split: dev
    path: "1_shot_rlw/dev.*"
  - split: ood_cons_count_10
    path: "1_shot_rlw/ood_cons_count_10.*"
  - split: ood_cons_count_3
    path: "1_shot_rlw/ood_cons_count_3.*"
  - split: ood_cons_count_5
    path: "1_shot_rlw/ood_cons_count_5.*"
  - split: ood_cons_count_7
    path: "1_shot_rlw/ood_cons_count_7.*"
  - split: ood_cons_len_10
    path: "1_shot_rlw/ood_cons_len_10.*"
  - split: ood_cons_len_3
    path: "1_shot_rlw/ood_cons_len_3.*"
  - split: ood_cons_len_5
    path: "1_shot_rlw/ood_cons_len_5.*"
  - split: ood_cons_len_7
    path: "1_shot_rlw/ood_cons_len_7.*"
  - split: ood_lexical
    path: "1_shot_rlw/ood_lexical.*"
  - split: test
    path: "1_shot_rlw/test.*"
  - split: train
    path: "1_shot_rlw/train.*"
- config_name: "1_shot_rlw_10x"
  data_files:
  - split: dev
    path: "1_shot_rlw_10x/dev.*"
  - split: ood_cons_count_10
    path: "1_shot_rlw_10x/ood_cons_count_10.*"
  - split: ood_cons_count_3
    path: "1_shot_rlw_10x/ood_cons_count_3.*"
  - split: ood_cons_count_5
    path: "1_shot_rlw_10x/ood_cons_count_5.*"
  - split: ood_cons_count_7
    path: "1_shot_rlw_10x/ood_cons_count_7.*"
  - split: ood_cons_len_10
    path: "1_shot_rlw_10x/ood_cons_len_10.*"
  - split: ood_cons_len_3
    path: "1_shot_rlw_10x/ood_cons_len_3.*"
  - split: ood_cons_len_5
    path: "1_shot_rlw_10x/ood_cons_len_5.*"
  - split: ood_cons_len_7
    path: "1_shot_rlw_10x/ood_cons_len_7.*"
  - split: ood_lexical
    path: "1_shot_rlw_10x/ood_lexical.*"
  - split: test
    path: "1_shot_rlw_10x/test.*"
  - split: train
    path: "1_shot_rlw_10x/train.*"
- config_name: "2_shot_rlw"
  data_files:
  - split: dev
    path: "2_shot_rlw/dev.*"
  - split: ood_cons_count_10
    path: "2_shot_rlw/ood_cons_count_10.*"
  - split: ood_cons_count_3
    path: "2_shot_rlw/ood_cons_count_3.*"
  - split: ood_cons_count_5
    path: "2_shot_rlw/ood_cons_count_5.*"
  - split: ood_cons_count_7
    path: "2_shot_rlw/ood_cons_count_7.*"
  - split: ood_cons_len_10
    path: "2_shot_rlw/ood_cons_len_10.*"
  - split: ood_cons_len_3
    path: "2_shot_rlw/ood_cons_len_3.*"
  - split: ood_cons_len_5
    path: "2_shot_rlw/ood_cons_len_5.*"
  - split: ood_cons_len_7
    path: "2_shot_rlw/ood_cons_len_7.*"
  - split: ood_lexical
    path: "2_shot_rlw/ood_lexical.*"
  - split: test
    path: "2_shot_rlw/test.*"
  - split: train
    path: "2_shot_rlw/train.*"
- config_name: "3_shot_rlw"
  data_files:
  - split: dev
    path: "3_shot_rlw/dev.*"
  - split: ood_cons_count_10
    path: "3_shot_rlw/ood_cons_count_10.*"
  - split: ood_cons_count_3
    path: "3_shot_rlw/ood_cons_count_3.*"
  - split: ood_cons_count_5
    path: "3_shot_rlw/ood_cons_count_5.*"
  - split: ood_cons_count_7
    path: "3_shot_rlw/ood_cons_count_7.*"
  - split: ood_cons_len_10
    path: "3_shot_rlw/ood_cons_len_10.*"
  - split: ood_cons_len_3
    path: "3_shot_rlw/ood_cons_len_3.*"
  - split: ood_cons_len_5
    path: "3_shot_rlw/ood_cons_len_5.*"
  - split: ood_cons_len_7
    path: "3_shot_rlw/ood_cons_len_7.*"
  - split: ood_lexical
    path: "3_shot_rlw/ood_lexical.*"
  - split: test
    path: "3_shot_rlw/test.*"
  - split: train
    path: "3_shot_rlw/train.*"
- config_name: "5_shot_rlw"
  data_files:
  - split: dev
    path: "5_shot_rlw/dev.*"
  - split: ood_cons_count_10
    path: "5_shot_rlw/ood_cons_count_10.*"
  - split: ood_cons_count_3
    path: "5_shot_rlw/ood_cons_count_3.*"
  - split: ood_cons_count_5
    path: "5_shot_rlw/ood_cons_count_5.*"
  - split: ood_cons_count_7
    path: "5_shot_rlw/ood_cons_count_7.*"
  - split: ood_cons_len_10
    path: "5_shot_rlw/ood_cons_len_10.*"
  - split: ood_cons_len_3
    path: "5_shot_rlw/ood_cons_len_3.*"
  - split: ood_cons_len_5
    path: "5_shot_rlw/ood_cons_len_5.*"
  - split: ood_cons_len_7
    path: "5_shot_rlw/ood_cons_len_7.*"
  - split: ood_lexical
    path: "5_shot_rlw/ood_lexical.*"
  - split: test
    path: "5_shot_rlw/test.*"
  - split: train
    path: "5_shot_rlw/train.*"

annotations_creators:
- machine-generated
language:
- en
language_creators:
- machine-generated
license:
- other
multilinguality:
- monolingual
pretty_name: Templatic Generation Tasks for In-Context Learning Research
size_categories:
- 10K<n<100K
- 1K<n<10K
- n<1K
source_datasets:
- original
tags:
- seq2seq
task_categories:
- text2text-generation
task_ids: []
---
# Dataset Card for Active/Passive/Logical Transforms

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Dataset Subsets (Tasks)](#data-tasks)
  - [Dataset Splits](#data-splits)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:**
- **Repository:** 
- **Paper:** 
- **Leaderboard:** 
- **Point of Contact:** [Roland Fernandez](mailto:[email protected])

### Dataset Summary

This dataset is a synthetic dataset containing a set of templatic generation tasks using both English and random 2-letter words. 

### Supported Tasks and Leaderboards

[TBD]

### Languages

All data is in English or random 2-letter words.  

## Dataset Structure

The dataset consists of several subsets, or tasks. Each task contains a train split, a dev split, and a
test split, and multiple out-of-distribution splits.

Each sample in a split contains a source string, a target string, and an annotation string (describing the sample).

### Dataset Subsets (Tasks)
The dataset consists of the following tasks:

```
- 1_shot_rlw              (1 example input/output pair, a test input, and the gold output, all using random 2-letter words)
- 1_shot_eng              (same as 1_shot_rlw but using English words).
- 1_shot_rlw_10x          (same as 1_shot_rlw, but with 10x the training samples) 
- 2_shot_rlw              (2 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
- 3_shot_rlw              (3 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
- 5_shot_rlw              (5 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
- 10_shot_rtw             (10 example input/output pairs, a test input, and the gold output, all using random 2-letter words)
```

### Data Splits

Most tasks have the following splits:
  - train
  - dev
  - test
  - ood_lexical
  - ood_cons_count_3
  - ood_cons_count_5
  - ood_cons_count_7
  - ood_cons_count_10
  - ood_cons_len_3
  - ood_cons_len_5
  - ood_cons_len_7
  - ood_cons_len_10
  
Here is a table showing how the number of examples varies by split (for most tasks):

| Dataset Split | Number of Instances in Split                |
| ------------- | ------------------------------------------- |
| train         | 280,000                                     |
| dev           |  35,000                                     |
| test          |  35,000                                     |
| ood_*         |  84,000                                     |


### Data Instances

Each sample consits of a source, target, and annotation string (all tab separated).

Here is an example from the *train* split of the *1_shot_eng* task:

```
{
  'raw': 'Q any mouse ) ; bear A any mouse & . Q road ) ; building A	road & .	{"cons_count": "Q2A1", "cons_len": "Q21.Q11"}'

  'source': 'Q any mouse ) ; bear A any mouse & . Q road ) ; building A',
  'target': 'road & .',
  'annotation': '{"cons_count": "Q2A1", "cons_len": "Q21.Q11"}'
}
```

### Data Fields

- `source`: the string containing the N-shot examples and the test cue
- `target`: the string containing the desired (gold) output
- `annotation`: the string describing the example (as a python or JSON dictionary)  

## Dataset Creation

### Curation Rationale

We wanted a dataset that would test in-context (and from scratch) learning of abstract, semantic-free symbolic transformations, 
based on a random template for each example.  The dataset is designed to test 3 types of out of distribution generalization:

  - lexical - known words used in new contexts (relative to train split)
  - length - train split uses constituents of 1, 2, or 4 words; OOD splits use 3, 5, 7, or 10 words
  - count - train split uses 1, 2, or 4 constituents; OOD splits use 3, 5, 7, or 10 constituents

### Source Data

[N/A]

#### Initial Data Collection and Normalization

[N/A]

#### Who are the source language producers?

The dataset by generated from templates designed by Paul Smolensky and Roland Fernandez.

### Annotations

Besides the source and target strings, each sample contains an annotation string that describes the sample.

#### Annotation process

The annotation columns were generated from each sample template.

#### Who are the annotators?

[N/A]

### Personal and Sensitive Information

No names or other sensitive information are included in the data.

## Considerations for Using the Data

### Social Impact of Dataset

The purpose of this dataset is to research how LLM and from-scratch model can learn to solve templatic generation tasks.  

### Discussion of Biases

[TBD]

### Other Known Limitations

[TBD]

## Additional Information

The internal name of this dataset is nc_tgt_v11.  Also see DATASET_INFO.md and GRAMMAR.md files.

### Dataset Curators

The dataset by generated from templates designed by Paul Smolensky and Roland Fernandez.

### Licensing Information

This dataset is released under the [Permissive 2.0 license](https://cdla.dev/permissive-2-0/). 

### Citation Information

[TBD]

### Contributions

Thanks to [The Neurocompositional AI group at Microsoft Research](https://www.microsoft.com/en-us/research/project/neurocompositional-ai/) for creating and adding this dataset.