|
import csv |
|
|
|
import datasets |
|
from datasets import Dataset, DatasetInfo, Features, ClassLabel, Value, Sequence, DatasetDict |
|
import json |
|
from io import StringIO |
|
from pathlib import Path |
|
import pandas as pd |
|
|
|
_CITATION = """""" |
|
_DESCRIPTION = """""" |
|
_HOMEPAGE = "" |
|
_URLS = { |
|
"questions": "data/questions.json.zip", |
|
"questions_aux": "data/questions_aux.json.zip", |
|
"statutes": "data/statutes.tsv.zip", |
|
} |
|
|
|
_CONFIGS = {} |
|
|
|
_CONFIGS["questions"] = { |
|
"description": "Questions about housing law.", |
|
"features" : Features({ |
|
'idx': Value('int32'), |
|
'state': Value('string'), |
|
'question': Value('string'), |
|
'answer': Value('string'), |
|
'question_group': Value('int32'), |
|
'statutes': [{ |
|
'statute_idx': Value('int32'), |
|
'citation': Value('string'), |
|
'excerpt': Value('string'), |
|
}], |
|
'original_question': Value('string'), |
|
'caveats': Sequence(Value('string')), |
|
}), |
|
"license": None, |
|
} |
|
|
|
_CONFIGS["questions_aux"] = { |
|
"description": "An auxilliary set of larger questions about housing law, without statutory annotations.", |
|
"features" : Features({ |
|
'idx': Value('int32'), |
|
'state': Value('string'), |
|
'question': Value('string'), |
|
'answer': Value('string'), |
|
'question_group': Value('int32'), |
|
'statutes': Sequence({ |
|
'citation': Value('string'), |
|
'excerpt': Value('string'), |
|
}), |
|
'original_question': Value('string'), |
|
'caveats': Sequence(Value('string')), |
|
}), |
|
"license": None, |
|
} |
|
|
|
_CONFIGS["statutes"] = { |
|
"description": "Corpus of statutes", |
|
"features": Features({ |
|
"citation": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"state": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"idx": datasets.Value("int32"), |
|
}), |
|
"license": None, |
|
} |
|
|
|
|
|
class HousingQA(datasets.GeneratorBasedBuilder): |
|
"""TODO""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=task, version=datasets.Version("1.0.0"), description=task, |
|
) |
|
for task in _CONFIGS |
|
] |
|
|
|
def _info(self): |
|
features = _CONFIGS[self.config.name]["features"] |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_CONFIGS[self.config.name]["license"], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
downloaded_file_dir = Path(dl_manager.download_and_extract(_URLS[self.config.name])) |
|
return [ |
|
datasets.SplitGenerator( |
|
name="corpus" if self.config.name == "statutes" else "test", |
|
gen_kwargs={ |
|
"downloaded_file_dir": downloaded_file_dir, |
|
"name": self.config.name, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, downloaded_file_dir, name): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if name in ["questions", "questions_aux"]: |
|
fpath = downloaded_file_dir / f"{name}.json" |
|
data = json.loads(fpath.read_text()) |
|
for id_line, data in enumerate(data): |
|
yield id_line, data |
|
|
|
if name in ["statutes"]: |
|
fpath = downloaded_file_dir / f"{name}.tsv" |
|
data = pd.read_csv(fpath, sep="\t", dtype={'index': 'int32'}) |
|
data = data.to_dict(orient="records") |
|
for id_line, data in enumerate(data): |
|
yield id_line, data |