import csv import datasets from datasets import Dataset, DatasetInfo, Features, ClassLabel, Value, Sequence, DatasetDict import json from io import StringIO from pathlib import Path import pandas as pd _CITATION = """""" _DESCRIPTION = """""" _HOMEPAGE = "" _URLS = { "questions": "data/questions.json.zip", "questions_aux": "data/questions_aux.json.zip", "statutes": "data/statutes.tsv.zip", } _CONFIGS = {} _CONFIGS["questions"] = { "description": "Questions about housing law.", "features" : Features({ 'idx': Value('int32'), 'state': Value('string'), 'question': Value('string'), 'answer': Value('string'), 'question_group': Value('int32'), 'statutes': [{ 'statute_idx': Value('int32'), 'citation': Value('string'), 'excerpt': Value('string'), }], 'original_question': Value('string'), 'caveats': Sequence(Value('string')), }), "license": None, } _CONFIGS["questions_aux"] = { "description": "An auxilliary set of larger questions about housing law, without statutory annotations.", "features" : Features({ 'idx': Value('int32'), 'state': Value('string'), 'question': Value('string'), 'answer': Value('string'), 'question_group': Value('int32'), 'statutes': Sequence({ 'citation': Value('string'), 'excerpt': Value('string'), }), 'original_question': Value('string'), 'caveats': Sequence(Value('string')), }), "license": None, } _CONFIGS["statutes"] = { "description": "Corpus of statutes", "features": Features({ "citation": datasets.Value("string"), "path": datasets.Value("string"), "state": datasets.Value("string"), "text": datasets.Value("string"), "idx": datasets.Value("int32"), }), "license": None, } class HousingQA(datasets.GeneratorBasedBuilder): """TODO""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name=task, version=datasets.Version("1.0.0"), description=task, ) for task in _CONFIGS ] def _info(self): features = _CONFIGS[self.config.name]["features"] return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, citation=_CITATION, license=_CONFIGS[self.config.name]["license"], ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" downloaded_file_dir = Path(dl_manager.download_and_extract(_URLS[self.config.name])) return [ datasets.SplitGenerator( name="corpus" if self.config.name == "statutes" else "test", gen_kwargs={ "downloaded_file_dir": downloaded_file_dir, "name": self.config.name, }, ), ] def _generate_examples(self, downloaded_file_dir, name): """Yields examples as (key, example) tuples.""" if name in ["questions", "questions_aux"]: fpath = downloaded_file_dir / f"{name}.json" data = json.loads(fpath.read_text()) for id_line, data in enumerate(data): yield id_line, data if name in ["statutes"]: fpath = downloaded_file_dir / f"{name}.tsv" data = pd.read_csv(fpath, sep="\t", dtype={'index': 'int32'}) data = data.to_dict(orient="records") for id_line, data in enumerate(data): yield id_line, data